文章信息
- 邹威, 罗义, 周启星
- ZOU Wei, LUO Yi, ZHOU Qi-xing
- 畜禽粪便中抗生素抗性基因(ARGs)污染问题及环境调控
- Pollution and Environmental Regulation of Antibiotic Resistance Genes(ARGs) in Livestock Manure
- 农业环境科学学报, 2014, 33(12): 2281-2287
- Journal of Agro-Environment Science, 2014, 33(12): 2281-2287
- http://dx.doi.org/10.11654/jaes.2014.12.001
-
文章历史
- 收稿日期:2014-06-07
随着工业化进程的快速发展,越来越多的污染物进入到环境中,造成土壤、地表水和地下水污染日趋严重,抗生素在养殖业和医疗行业的大量不规范使用给生态环境和人类健康构成长期潜在的威胁,由此造成的环境污染及其生态毒理效应已成为全球面临的重大问题[1],其中以抗生素在畜禽养殖业的滥用导致的环境污染问题尤为突出,已成为当前国际上的研究热点之一[2]。
我国是抗生素使用大国,其重要应用领域之一是畜禽养殖。据统计,每年有超过8000 t的抗生素投入畜禽养殖业中用于动物的催速生长和疾病治疗[3]。研究表明,只有少量抗生素参与动物的新陈代谢而被有效利用,大部分抗生素及其在动物体内诱导出的抗生素抗性基因(ARGs)随着动物尿液和粪便直接排出体外[4, 5, 6, 7],这些不经任何处理并残留有抗生素的粪便作为有机肥施入农田,将会对土壤环境中微生物的耐药性产生压力,再次诱导出抗生素抗性基因,造成严重的环境污染和生态毒性[8]。本文总结了畜禽养殖粪便中抗生素抗性基因污染现状以及土壤环境中抗生素抗性基因的污染水平,并指出可以对畜禽粪便进行堆肥处理,通过添加抑制剂或者嗜热菌剂等途径改善堆肥条件来尽可能防止抗生素抗性基因进入土壤环境,以降低抗生素抗性基因这种新型环境污染物的污染水平。 1 ARGs的传播和扩散
兽用抗生素在畜禽养殖业中的长期滥用,在养殖动物肠道内诱导出抗性菌株,畜禽粪便中这些含有ARGs的抗性菌株是土壤和地下水中ARGs的最重要来源之一,大量畜禽粪便的排放会直接导致ARGs的面源污染[9]。图 1为畜禽养殖业ARGs在环境中潜在的传播途径及生物效应。
![]() |
图 1 畜禽养殖业 ARGs 在环境中潜在的传播途径及生物效应 Figure 1 Potential transports and biological effects of antibiotic resistance genes from livestock breeding in environment |
研究表明,畜禽粪便施肥是ARGs进入土壤环境的主要方式[10]。Jensen等[11]研究了动物粪肥使用前后土壤中假单胞菌(Pseudomonas spp,革兰氏阴性菌)和蜡状芽孢杆菌(Bacillus cereus,革兰氏阳性菌)抗性水平的变化,结果表明,动物粪肥对土壤中的抗性细菌具有选择性压力,畜禽粪便施肥是耐药微生物及ARGs进入土壤环境的主要途径。进一步的研究发现ARGs不仅能在动物肠道的菌株间传播,还能整合到一些可移动基因元件上(如质粒、转座子、整合子等),进入土壤环境后还能够在土壤土著细菌与其他微生物之间传播扩散[12]。在选择性压力条件下,携带有ARGs的病原微生物通过基因水平转移作用在各种土著微生物之间进行传播[13, 14]。通过这种基因横向转移,ARGs可以在土壤、地下水等环境介质中迁移、转化,并且这种获得ARGs的土著微生物由于适应性强,很容易大量繁殖成为抗性基因的储存库[15]。更重要的是,食用产品中的ARGs和土壤中的抗性质粒极有可能伴随食物链进入人体[6],增加人体的抗生素耐药性[10, 16]。由于基因污染特殊,具有遗传性,很难控制和消除,一旦传播开来将对人类健康和生态系统造成长期、不可逆的危害。因此,应当严格重视畜禽粪便中ARGs进入环境中造成的环境污染问题和进入人体造成的潜在威胁[17]。 2 ARGs的污染现状
ARGs污染逐步的全球化,畜禽养殖粪便中频繁检测出各种ARGs[18, 19, 20, 21],美国和其他一些亚洲国家等发表了各种关于ARGs的研究。众多学者研究发现,在检测出来的ARGs种类中,四环素类抗性基因和磺胺类抗性基因是畜禽养殖业中最常见的两类,喹诺酮类抗性基因并不多见,但也有检出。日本学者研究养殖农场附近粪便沉积物,四环素类抗性基因被频繁检出,而且经调查该养殖场最常用的抗生素就是四环素类[22];Zhang等[23]在美国牛粪收集池检测出四环素类抗性基因和磺胺类抗性基因,发现基因丰度最高的是sul2,达到6.3×10-1拷贝数/(16s-rRNA 拷贝数);Joy等[24]检测猪粪中金霉素、泰乐霉素和其对应的ARGs,检出到tet和erm,并发现tet随着金霉素的降解逐渐消失,erm则不会因泰乐霉素的降解而减少。
为了治疗动物疾病和加速动物生长,畜禽养殖业滥用各种抗生素[25, 26, 27, 28],导致诱导出大量抗性菌株,排粪和排尿等畜牧活动使动物体内的抗性菌株扩散进入环境,并将其携带的抗性基因传播给环境微生物[29, 30],导致如今ARGs面源污染相当严重。尽管ARGs在环境中的迁移转化和归趋等环境行为尚不明确,但畜禽粪便排放作为ARGs污染的主要来源之一,其附近水和土壤环境介质中检测出大量ARGs与此密不可分[31]。Chee-Sanford[9]采用PCR-DGGE和序列分析技术在养猪场附近的化粪池和地下水样中发现了8种编码抗性的四环素抗性基因分别为tet(O)、tet(Q)、tet(w)、tet(M)、tetB(P)、tet(S)、tet(T)和otr(A);闫书海等[32]在部分养殖场畜禽粪便和排放废水中也检测到四环素类抗性基因和磺胺类抗性基因的存在。类似这方面的发现[33, 34]均表明畜禽粪便的不合理排放及处理会造成周边水和土壤环境严重的ARGs污染问题。
我国是一个农业大国,畜禽养殖业逐步由分散式向集约化养殖方式转变,在经济利益的诱惑下,抗生素滥用情况比其他各国更为严重,因此畜禽粪便造成的ARGs污染问题也更为突出[35]。Akinbowale[36]和Srinivasan等[37]国外科学家利用分子生物学技术PCR在养殖场粪便和周边土壤中检测到抗性基因的存在后,我国学者同样意识到畜禽粪便排放导致ARGs污染环境的严重性。Ji等[38]在上海地区养猪场、养鸟场和养牛场畜禽粪便及周围土壤中均检测到八类抗性基因,证明畜禽粪便ARGs污染与土壤污染有明显关系,并分析得出大部分ARGs浓度与其对应的抗生素含量有微弱的正相关关系;Cheng等[39]通过研究我国东部的畜牧农场,证实了四环素类抗性基因和磺胺类抗性基因的存在;Wu等[40]分析北京、天津及浙江嘉兴三地的猪饲养场周边土壤发现了15种四环素类抗性基因的存在;在我国南方地区,邹世春等[41]在珠海某养殖场周边土壤检测到多种四环素类抗性基因。这些研究结果表明,畜禽粪便ARGs污染造成的土壤问题越来越普遍,采取应对措施刻不容缓。
ARGs相对丰度是判定ARGs污染程度、评价ARGs污染水平的重要指标。有学者通过对上海一些动物粪便的研究,检测到磺胺类抗性基因(sul1,sul2,sul3)的相对丰度变化范围为10-5~10-2拷贝数/(16s-rRNA拷贝数)[38];在美国,Munir[42]利用定量PCR技术测定出美国密歇根州的畜牧农场粪便中tet(W)的相对丰度为10-3~10-2拷贝数/(16s-rRNA拷贝数),sul1的相对丰度则保持在10-6~10-5拷贝数/(16s-rRNA拷贝数)。Wu等[40]在我国三个养殖场附近土壤中检测到15种四环素类抗性基因,并重点定量检测出tet(M)、tet(O)、tet(Q)、tet(W)四种ARGs的相对丰度为10-4~10-2拷贝数/(16s-rRNA拷贝数),结果发现周边土壤与畜禽粪便中ARGs的种类和丰度都相差不大。
养殖对象不同,养殖场粪便中含有的ARGs丰度也不同。2011年有学者[42] 发现美国牛粪中sul基因的相对丰度接近10-6~10-5拷贝数/(16s-rRNA拷贝数),与Cheng等[39]发现猪和羊粪便中sul基因的相对丰度为3.26×10-4~2.81×10-3拷贝数/(16s-rRNA拷贝数)有一定差距,而且在Cheng的研究中发现鸡粪和鸭粪中sul基因的相对丰度显著变化范围为1.09×10-2~1.32×10-1拷贝数/(16s-rRNA拷贝数)。从以上数据可以看出,虽然不同畜禽粪便中ARGs的相对丰度相差较大,但总体维持在一个较高的水平[43],应该予以重视。 3 畜禽粪便堆肥及ARGs污染水平变化
堆肥是处理各种废弃物使之无害化和资源化的一种有效途径,利用堆肥去除畜禽粪便中有害污染物也能起到一定的效果。基因是具有遗传效应的DNA片段,抗性基因的直接载体是微生物,堆肥中微生物群落结构属于动态变化的过程,优势菌群会逐渐取代弱势菌群占据支配地位[44]。Tang等[45]利用醌类图谱分析技术发现牛粪堆肥后微生物群落结构变得更加复杂。此外,早些年前就有学者发现在高温阶段嗜热细菌逐渐在微生物种群中占据明显的主导地位,在堆肥后期更有放线菌的出现[46]。
堆肥过程中微生物群落结构发生变化,携带有ARGs的菌群也会随之变化。抗性基因在传播过程中虽然可以通过基因水平转移来传播扩散,但得到载体的基因原件,如抗性质粒不能承受很高的温度,故在堆肥高温阶段可以有效去除[47]。Selvam等[47]研究发现在猪粪堆肥高温阶段主要携带抗性基因的大肠杆菌不能承受高温而死亡,随后微生物群落会有短暂的恢复,在起始阶段的0、1、3、7d微生物多样性有一定区别,但总体上堆肥前后微生物多样性增强,加入额外抗生素在一定程度上影响优势菌群的变化,而且堆肥过后抗性基因的绝对丰度变低。为了在堆肥过程中有效地降低ARGs的丰度,需要重点研究堆肥过程中抗性微生物的变化和影响微生物群落结构变化的因素。
在实际堆肥生产中,一般会选择添加调理剂来调节堆肥效果,例如锯末、稻草、秸秆、蘑菇渣、泥炭、沸石、过磷酸钙等,其中锯末、稻草、秸秆等由于具有高的含碳量,在好氧堆肥特别是鸡粪堆肥中应用最为广泛[49]。好的调理剂不仅能延长高温持续时间,提高堆肥效果,还直接影响堆体温度,提高微生物群落结构的多样性。黄懿梅等[50]在进行鸡粪和锯末混合堆肥时发现,泥炭、沸石、过磷酸钙对pH值和堆体温度都有影响,同时添加过磷酸钙有利于堆体温度的提高,延长高温期持续时间,促进有机物分解从而改善堆肥的品质;Liu等[51]研究发现,在鸡粪堆肥过程中加入生物炭作为调理剂,不仅可以缩短到达高温所需要的时间(3 d),还能延长高温(56 ℃)持续的时间。除此廉价常见的调理剂之外,石灰氮对肠菌和杆菌的抑制作用也一直倍受重视,石灰氮不仅是良好的杀菌剂,还是一种高效土壤肥料。Simujide等[52]在为期63 d的常温粪便堆肥过程中加入不同浓度的石灰氮,发现加入石灰氮对蛋白水解细菌和脂肪水解细菌等有不同程度的影响,对微生物活性起到了促进和抑制的双重作用;李玉等[53]基于石灰氮的作用机制,研究发现添加石灰氮对于堆肥中粪肠球菌有良好的灭杀效果,但石灰氮会推迟高温阶段起始的时间。
畜禽粪便中肠杆菌和肠球菌浓度高[54],动物肠道内携带有抗性基因的这两类菌株是堆肥过程中需要重点去除的对象。温度是堆肥过程中灭杀病原微生物的重要因素,堆肥中添加微生物菌剂(以嗜热菌剂为代表)能显著提高堆体温度,影响微生物群落结构[55]。2006年胡菊等[56]对鸡粪堆肥接种VT菌剂,发现接种 VT 菌剂堆肥比不接种堆肥的高温维持时间长,细菌和放线菌数量多,但对真菌数量的影响不大;接种VT菌剂堆肥比不接种堆肥的纤维素酶和脲酶活性高,大肠杆菌群数及植物毒性比不接种情况下降低的幅度大。Wakase等[57]也通过调查发现粪便堆肥接种微生物添加剂时物种多样性明显较不接种时改善许多。同样有报道指出通过对畜禽粪便分别接种不同菌剂,虽然对堆肥效果影响程度有区别,但都能提高堆体平均温度,延长高温持续时间[58]。接种菌剂后堆肥温度明显提高,高温持续时间明显延长,能更有效地灭杀抗性微生物,同时丰富微生物群落结构,促使肠道菌逐步被其他微生物优势菌种取代,有可能有效促进ARGs污染水平的降低。
堆肥可以明显降低粪便中抗生素浓度,但关于ARGs能否利用堆肥去除的研究不多,只有极少数研究证明堆肥对抗性基因有一定影响。Chen等[59]发现猪粪便中含有的erm基因在样品堆肥后有降低,虽然总体ARGs丰度变化并未详细研究,但给我们提供了降低ARGs丰度的理论参考;Selvam等[60]通过实验探讨堆肥对抗性基因的影响,发现猪粪中四环素类抗性基因[如tet(Q),tet(W),tet(C),tet(G),tet(Z),tet(Y)]、磺胺类抗性基因(sul1,sul2,dfrA1和 dfrA7)和喹诺酮类抗性基因[gyr(A)和par(C)]经过28~42 d的堆肥后,在总的16s-rDNA中所占的比例明显减少,虽未检测基因绝对丰度是否变化,但拷贝比例分别占总16s-rDNA拷贝数10.28%和1.91%的四环素类抗性基因和磺胺类抗性基因的相对丰度降低明显,去除率很高,只有喹诺酮中的par(C)还有部分残留。上述研究表明,堆肥极有可能是去除ARGs的一种有效方法。
在粪便中不仅存在着携带有抗性基因的抗性细菌,还包含作为抗性基因载体的抗性质粒[48, 61, 62, 63]。要降低抗性基因的丰度,不仅要灭杀抗性微生物,也要利用堆肥过程的高温除去抗性质粒。研究表明,在堆肥高温超过50 ℃情况下,鸡粪中携带有抗性基因的质粒元件RP4、pIE723及其大肠杆菌寄主均不能存活,说明堆肥在灭杀病原微生物的同时也有能力除去携带有抗性基因的抗性质粒。
堆肥前畜禽粪便中ARGs丰度一般较高,就已知的一些研究结果看,鸡粪中磺胺类抗性基因丰度比猪粪和牛粪中略高,数量级一般保持在10-2~10-1拷贝数/(16s-rRNA拷贝数);四环素类抗性基因丰度则以牛粪中居高,数量级保持在10-3~10-1拷贝数/(16s-rRNA拷贝数)。根据堆肥过程中微生物群落结构和抗性质粒数量的变化,堆肥后ARGs丰度应该会大幅度降低甚至接近于零。粪便堆肥前后tet基因和sul基因相对丰度预期结果如表 1。
![]() |
目前,大部分畜禽粪便不经过堆肥处理直接用于农作物的各种土地施肥,抗生素抗性基因(ARGs)很有可能通过土壤环境进入农作物,甚至通过食物链进入人体,威胁人类的健康和安全。然而巨大的经济效益使养殖业越发兴盛,一时间难以形成遏制形势,大规模的养殖产生越来越多的粪便,抗生素本身是动物预防疾病必须使用的,不可能被禁用,因而很难通过从源头控制抗生素的使用来消除ARGs污染问题,可以考虑在ARGs传播过程中采取有效措施进行防治和消除。
堆肥不仅能够让畜禽粪便资源合理化利用,还能利用堆肥产生的高温有效去除ARGs,并迅速降解粪便中残留的抗生素,防止堆肥过程中抗性基因的再次诱导,降低畜禽粪便中ARGs对生态环境的危害性;另外,根据多种灭菌原理,在堆肥过程后期可掺入化学消毒剂,如胺类、吲哚等对残留的肠道微生物进行清除,作为去除ARGs的一种有效手段。
为了尽量保证堆肥后粪便的有效性,影响堆肥效果的因素,如含水率、C/N比和pH都必须控制在一定范围内。因此,可以广泛开展堆肥过程可调节因素对ARGs丰度动态变化的影响研究,深入分析畜禽粪便堆肥过程中抗生素抗性基因的动态归趋,寻求既能满足堆肥肥效,又能较好地降低ARGs丰度的堆肥条件。这样,通过堆肥不仅能够延续畜禽粪便资源利用的优良传统,还可以为控制畜禽粪便ARGs污染水平、保护土壤环境提供一种有效途径。
[1] | 周启星, 罗 义, 王美娥. 抗生素的环境残留, 生态毒性及抗性基因污染[J]. 生态毒理学报, 2007, 2(3):243-251. ZHOU Qi-xing, LUO Yi, WANG Mei-e. Environmental residues and ecotoxicity of antibiotic and their resistance gene pollution[J]. Asian Journal of Ecotoxicity, 2007, 2(3):243-251. |
[2] | Boxall A B, Fogg L A, Blackwell P A, et al. Veterinary medicines in the environment[M]. Reviews of environmental contamination and toxicology. Berlin: Springer. 2004:1-91. |
[3] | Ben W, Qiang Z, Adams C, et al. Simultaneous determination of sulfonamides, tetracyclines and tiamulin in swine wastewater by solid-phase extraction and liquid chromatography-mass spectrometry[J]. Journal of Chromatography A, 2008, 1202(2):173-180. |
[4] | Heuer H, Schmitt H, Smalla K. Antibiotic resistance gene spread due to manure application on agricultural fields[J]. Current Opinion in Microbiology, 2011, 14(3):236-243. |
[5] | Hu X G, Zhou Q X, Luo Y. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, Northern China[J]. Environmental Pollution, 2010, 158(9):2992-2998. |
[6] | Martínez J L. Antibiotics and antibiotic resistance genes in natural environments[J]. Science, 2008, 321(5887):365-367. |
[7] | Séveno N, Kallifidas D, Smalla K, et al. Occurrence and reservoirs of antibiotic resistance genes in the environment[J]. Reviews in Medical Microbiology, 2002, 13(1):15-27. |
[8] | Schmitt H, Stoob K, Hamscher G, et al. Tetracyclines and tetracycline resistance in agricultural soils:Microcosm and field studies[J]. Microbial Ecology, 2006, 51(3):267-276. |
[9] | Chee-Sanford J, Aminov R, Krapac I, et al. Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities[J]. Applied and Environmental Microbiology, 2001, 67(4):1494-1502. |
[10] | 罗 义, 周启星. 抗生素抗性基因(ARGs):一种新型环境污染物[J]. 环境科学学报, 2008, 28(8):1499-1505. LUO Yi, ZHOU Qi-xing. Antibiotic resistance genes(ARGs) as emerging pollutants[J]. Acta Scientiae Circumstantiae, 2008, 28(8):1499-1505. |
[11] | Jensen L, Baloda S, Boye M, et al. Antimicrobial resistance among Pseudomonas spp. and the Bacillus cereus group isolated from Danish agricultural soil[J]. Environment International, 2001, 26(7):581-587. |
[12] | Rysz M, Alvarez P. Amplification and attenuation of tetracycline resistance in soil bacteria:Aquifer column experiments[J]. Water Research, 2004, 38(17):3705-3712. |
[13] | Smalla K, Heuer H, Gotz A, et al. Exogenous isolation of antibiotic resistance plasmids from piggery manure slurries reveals a high prevalence and diversity of IncQ-like plasmids[J]. Applied and Environmental Microbiology, 2000, 66(11):4854-4862. |
[14] | Pruden A, Pei R, Storteboom H, et al. Antibiotic resistance genes as emerging contaminants:Studies in Northern Colorado[J]. Environmental Science & Technology, 2006, 40(23):7445-7450. |
[15] | Salyers A A, Gupta A, Wang Y P. Human intestinal bacteria as reservoirs for antibiotic resistance genes[J]. Trends in Microbiology, 2004, 12(9):412-416. |
[16] | Shea K. Antibiotic resistance:What is the impact of agricultural uses of antibiotics on children's health?[J]. Pediatrics, 2003, 112:253-258. |
[17] | Tello A, Austin B, Telfer T. Selective pressure of antibiotic pollution on bacteria of importance to public health[J]. Environmental Health Perspectives, 2012, 120(8):1100. |
[18] | Allen H, Donato J, Wang H, et al. Call of the wild:Antibiotic resistance genes in natural environments[J]. Nature Reviews Microbiology, 2010, 8(4):251-259. |
[19] | Wiener P, Egan S, Wellington E. Evidence for transfer of antibiotic resistance genes in soil populations of streptomycetes[J]. Molecular Ecology, 1998, 7(9):1205-1216. |
[20] | Xi C W, Zhang Y L, Marrs C F, et al. Prevalence of antibiotic resistance in drinking water treatment and distribution systems[J]. Applied and Environmental Microbiology, 2009, 75(17):5714-5718. |
[21] | Zhang X X, Zhang T, Fang H. Antibiotic resistance genes in water environment[J]. Applied Microbiology and Biotechnology, 2009, 82(3):397-414. |
[22] | Tamminen M, Karkman A, Lohmus A, et al. Tetracycline resistance genes persist at aquaculture farms in the absence of selection pressure[J]. Environmental Science & Technology, 2010, 45(2):386-391. |
[23] | Zhang Y, Zhang C, Parker D B, et al. Occurrence of antimicrobials and antimicrobial resistance genes in beef cattle storage ponds and swine treatment lagoons[J]. Science of the Total Environment, 2013, 463:631-638. |
[24] | Joy S R, Li X, Snow D D, et al. Fate of antimicrobials and antimicrobial resistance genes in simulated swine manure storage[J]. Science of the Total Environment, 2014, 481:69-74. |
[25] | Cabello F. Heavy use of prophylactic antibiotics in aquaculture:A growing problem for human and animal health and for the environment[J]. Environmental Microbiology, 2006, 8(7):1137-1144. |
[26] | McManus P, Stockwell V, Sundin G, et al. Antibiotic use in plant agriculture[J]. Annual Review of Phytopathology, 2002, 40(1):443-465. |
[27] | Singer R, Finch R, Wegener H, et al. Antibiotic resistance-the interplay between antibiotic use in animals and human beings[J]. The Lancet Infectious Diseases, 2003, 3(1):47-51. |
[28] | Smith D, Harris A, Johnson J, et al. Animal antibiotic use has an early but important impact on the emergence of antibiotic resistance in human commensal bacteria[J]. Proceedings of the National Academy of Sciences, 2002, 99(9):6434-6439. |
[29] | Furushita M, Shiba T, Maeda T, et al. Similarity of tetracycline resistance genes isolated from fish farm bacteria to those from clinical isolates[J]. Applied and Environmental Microbiology, 2003, 69(9):5336-5342. |
[30] | Isaacson R, Torrence M. Role of antibiotics in agriculture[R]. American Academy of Microbiology, 2002. |
[31] | 王丽梅, 罗 义, 毛大庆, 等. 抗生素抗性基因在环境中的传播扩散及抗性研究方法[J]. 应用生态学报, 2010, 21(4):1063-1069. WANG Li-mei, LUO Yi, MAO Da-qing, et al. Transport of antibiotic resistance genes in environment and detection methods of antibiotic resistance[J]. Journal of Applied Ecology, 2010, 21(4):1063-1069. |
[32] | 闫书海. 畜禽养殖废水/粪便中典型抗药基因的调查研究[D]. 杭州:浙江大学, 2013. YAN Shu-hai. Research on representative antibiotic resistance genes in livestock lagoons and manures[D]. Hangzhou:Zhejiang University,2013. |
[33] | Li Y W, Mo C H, Zhao N, et al. Investigation of sulfonamides and tetracyclines antibiotics in soils from various vegetable fields[J]. Environmental Science, 2009, 30(6):1762-1766. |
[34] | Luo Y, Xu L, Rysz M, et al. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China[J]. Environmental Science & Technology, 2011, 45(5):1827-1833. |
[35] | Pallecchi L, Bartoloni A, Paradisi F, et al. Antibiotic resistance in the absence of antimicrobial use:Mechanisms and implications[J]. Expert Review of Anti-Infective Therapy, 2008, 6(5): 725-732. |
[36] | Akinbowale O, Peng H, Barton M. Diversity of tetracycline resistance genes in bacteria from aquaculture sources in Australia[J]. Journal of Applied Microbiology, 2007, 103(5):2016-2025. |
[37] | Srinivasan V, Nam H M, Sawant A A, et al. Distribution of tetracycline and streptomycin resistance genes and class 1 integrons in Enterobacteriaceae isolated from dairy and nondairy farm soils[J]. Microbial Ecology, 2008, 55(2):184-193. |
[38] | Ji X L, Shen Q H, Liu F, et al. Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai, China[J]. Journal of Hazardous Materials, 2012, 235:178-185. |
[39] | Cheng W, Chen H, Su C, et al. Abundance and persistence of antibiotic resistance genes in livestock farms:A comprehensive investigation in Eastern China[J]. Environment International, 2013, 61:1-7. |
[40] | Wu N, Qiao M, Zhang B, et al. Abundance and diversity of tetracycline resistance genes in soils adjacent to representative swine feedlots in China[J]. Environmental Science & Technology, 2010, 44(18):6933-6939. |
[41] | 邹世春, 李 青, 贺竹梅. 禽畜养殖场土壤抗生素抗性基因污染的初步研究[J]. 中山大学学报, 2012, 51(6):87-91. ZOU Shi-chun, LI Qing, HE Zhu-mei. A Preliminary study on the tetracycline resistance genes in the livestock soil, South China[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2012, 51(6):87-91. |
[42] | Munir M, Xagoraraki I. Levels of antibiotic resistance genes in manure, biosolids, and fertilized soil[J]. Journal of Environmental Quality, 2011, 40(1):248-255. |
[43] | Salyers A, Amabile-Cuevas C. Why are antibiotic resistance genes so resistant to elimination?[J]. Antimicrobial Agents and Chemotherapy, 1997, 41(11):2321. |
[44] | He Y, Xie K, Xu P, et al. Evolution of microbial community diversity and enzymatic activity during composting[J]. Research in Microbiology, 2013, 164(2):189-198. |
[45] | Tang J C, Kanamori T, Inoue Y, et al. Changes in the microbial community structure during thermophilic composting of manure as detected by the quinone profile method[J]. Process Biochemistry, 2004, 39(12):1999-2006. |
[46] | Blanc M, Marilley L, Beffa T, et al. Thermophilic bacterial communities in hot composts as revealed by most probable number counts and molecular(16S rDNA) methods[J]. FEMS Microbiology Ecology, 1999, 28(2):141-149. |
[47] | Selvam A, Zhao Z, Wong J. Composting of swine manure spiked with sulfadiazine, chlortetracycline and ciprofloxacin[J]. Bioresource Technology, 2012, 126:412-417. |
[48] | Guan J, Wasty A, Grenier C, et al. Influence of temperature on survival and conjugative transfer of multiple antibiotic-resistant plasmids in chicken manure and compost microcosms[J]. Poultry Science, 2007, 86(4):610-613. |
[49] | 李吉进, 郝晋珉, 邹国元, 等. 高温堆肥碳氮循环及腐殖质变化特征研究[J]. 生态环境, 2004, 13(3):332-334. LI Ji-jin, HAO Jin-min, ZOU Guo-yuan, et al. Carbon and nitrogen circulation and humus characteristics of high-temperature composting[J]. Ecology and Environment, 2004, 13(3):332-334. |
[50] | 黄懿梅, 曲 东, 李国学. 调理剂在鸡粪锯末堆肥中的保氮效果[J]. 环境科学, 2003, 24(2):156-160. HUANG Yi-mei, QU Dong, LI Guo-xue. Effect of adding amendments on preserving nitrogen during chicken manure and saw composting[J]. Environmental Science, 2003, 24(2):156-160. |
[51] | Liu W, Wei S T, Zhang J, et al. Biochar influences the microbial community structure during tomato stalk composting with chicken manure[J]. Bioresource Technology, 2014, 154:148-154. |
[52] | Simujide H, Aorigele C, Wang C J, et al. Microbial activities during mesophilic composting of manure and effect of calcium cyanamide addition[J]. International Biodeterioration & Biodegradation, 2013, 83:139-144. |
[53] | 李 玉. 牛粪堆肥中添加石灰氮对粪肠球菌的杀灭效果及堆肥发酵影响的研究[D]. 呼和浩特:内蒙古农业大学, 2011. LI Yu. The effcet of adding lime nitrogen to cattle manure compost on the killing effect of enterococcus faecalis and composting[D]. Hohhot:Inner Mongolia Agricultural University, 2011. |
[54] | 李 远. 我国畜禽养殖业的环境影响与管理政策初探[J]. 中国生态农业学报, 2002, 10(2):136-138. LI Yuan. Preliminary studies of management of livestock pollution in China[J]. Chinese Journal of Eco-Agriculture, 2002, 10(2):136-138. |
[55] | Liu J, Xu X H, Li H T, et al. Effect of microbiological inocula on chemical and physical properties and microbial community of cow manure compost[J]. Biomass and Bioenergy, 2011, 35(8):3433-3439. |
[56] | 胡 菊, 秦 莉, 吕振宇, 等. VT 菌剂对鸡粪堆肥的微生物指标变化的影响[J]. 农业环境科学学报, 2006, 25(1):214-218. HU Ju, QIN Li, Lü Zhen-yu, et al. Effect of microbiological indexes of chicken manure composting with inoculation of VT microbes[J]. Journal of Agro-Environment Science, 2006, 25(1):214-218. |
[57] | Wakase S, Sasaki H, Itoh K, et al. Investigation of the microbial community in a microbiological additive used in a manure composting process[J]. Bioresource Technology, 2008, 99(7):2687-2693. |
[58] | 牛明芬, 赵明梅, 郭 睿, 等. 不同微生物菌剂对畜禽粪便堆肥效果的温度指标研究[J]. 环境保护与循环经济, 2010(5):51-52. NIU Ming-fen, ZHAO Ming-mei, GUO Rui, et al. Research of temperature indicators during livestock manure composting with inoculation of microbial agents[J]. Environmental Protection and Recycling Economy, 2010(5):51-52. |
[59] | Chen J, Yu Z, Michel F, et al. Development and application of real-time PCR assays for quantification of erm genes conferring resistance to macrolides-lincosamides-streptogramin B in livestock manure and manure management systems[J]. Applied and Environmental Microbiology, 2007, 73(14):4407-4416. |
[60] | Selvam A, Xu D, Zhao Z, et al. Fate of tetracycline, sulfonamide and fluoroquinolone resistance genes and the changes in bacterial diversity during composting of swine manure[J]. Bioresource Technology, 2012, 126:383-390. |
[61] | Graves A, Liwimbi L, Israel D, et al. Distribution of ten antibiotic resistance genes in E. coli isolates from swine manure, lagoon effluent and soil collected from a lagoon waste application field[J]. Folia Microbiologica, 2011, 56(2):131-137. |
[62] | Norman A, Hansen L, Sorensen S. Conjugative plasmids:Vessels of the communal gene pool[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2009, 364(1527):2275-2289. |
[63] | Rhodes G, Huys G, Swings J, et al. Distribution of oxytetracycline resistance plasmids between aeromonads in hospital and aquaculture environments:Implication of Tn1721 in dissemination of the tetracycline resistance determinant Tet A[J]. Applied and Environmental Microbiology, 2000, 66(9):3883-3890. |