快速检索        
  农业环境科学学报  2015, Vol. 34 Issue (2): 221-226

文章信息

李冬琴,陈桂葵,郑海,黎华寿,李小兵
LI Dong-qin, CHEN Gui-kui, ZHENG Hai, LI Hua-shou, LI Xiao-bing
镉对两品种玉豆生长和抗氧化酶的影响
Effects of Cadmium on Growth and Antioxidant Enzyme Activities of Two Kidney Bean(Phaseolus vulgaris L.)Cultivars
农业环境科学学报, 2015, 34(2): 221-226
Journal of Agro-Environment Science, 2015, 34(2): 221-226
http://dx.doi.org/10.11654/jaes.2015.02.003

文章历史

收稿日期:2014-09-14
镉对两品种玉豆生长和抗氧化酶的影响
李冬琴,陈桂葵,郑海,黎华寿 ,李小兵    
华南农业大学 农业部华南热带农业环境重点实验室, 广东省高等学校农业生态与农村环境重点实验室, 广州 510642
摘要:利用水培盆栽试验,研究了不同浓度的镉胁迫对两种(优选和特选)玉豆(Phaseolus vulgaris Linn)株高、植株生物量、根构型和叶片中抗氧化酶活性的影响.结果表明:镉胁迫显着抑制了两种玉豆的株高、生物量、总根长、总根表面积、根平均直径和根总体积,且对特选玉豆的抑制程度大于优选玉豆;镉胁迫使两种玉豆的丙二醛(Malondialdehyde, MDA)含量和过氧化物酶(Peroxidase, POD)活性持续增强,超氧化物歧化酶(Superoxide dismutase, SOD)活性则呈现低浓度增加高浓度下降的趋势;特选玉豆的过氧化氢酶(Catalase, CAT)活性呈低浓度增加高浓度下降趋势,但优选玉豆的CAT活性则持续增强,且特选玉豆的MDA含量、SOD活性和CAT活性的变化幅度都大于优选玉豆,但优选玉豆的POD活性大于特选玉豆.上述结果说明优选玉豆对镉胁迫的耐性高于特选玉豆.
关键词镉胁迫     玉豆     生长     根构型     抗氧化酶    
Effects of Cadmium on Growth and Antioxidant Enzyme Activities of Two Kidney Bean(Phaseolus vulgaris L.)Cultivars
LI Dong-qin, CHEN Gui-kui, ZHENG Hai, LI Hua-shou , LI Xiao-bing    
Key Laboratory of Tropical Agricultural Environment in South China, the Ministry of Agriculture, South China Agricultural University, Key Laboratory of Agroecology and Rural Environment of Guangdong Regular Higher Education Institutions, Guangzhou 510642, China
Abstract:Different genotypes of plants show various tolerances to and accumulation of heavy metals. Here a hydroponic experiment was conducted to investigate the effects of different concentrations of cadmium on plant height, biomass, root configuration, and antioxidant enzyme activities of two cultivars of kidney beans, viz. Texuan and Youxuan. Results showed that plant height, plant biomass, root length, total root surface area, average root diameter and total root volume were all significantly inhibited under cadmium stresses. The inhibitory effect of cadmium on Texuan kidney bean was greater than that of Youxuan kidney bean. Increasing cadmium concentrations increased malondialdehyde(MDA) contents and peroxidase(POD) activities of two cultivars. Superoxide dismutase(SOD) activity of two cultivars increased at low Cd concentrations, but decreased at high concentrations. Catalase(CAT) activity of Texuan kidney bean increased at low Cd concentrations whereas it decreased at high Cd concentrations. That of Youxuan kidney bean, however, increased with increasing cadmium concentrations. The variations in MDA contents, and SOD and CAT activities were greater for Texuan bean than Youxuan kidney bean, while that for the POD activity was just opposite. These results indicate that tolerance of Youxuan kidney bean to cadmium stress is much greater than that of Texuan kidney bean.
Key words: cadmium stress     kidney bean     growth     root architecture     antioxidant enzymes    

玉豆(Phaseolus vulgarisL.),又名菜豆、四季豆,系豆科菜豆属栽培种,一年生缠绕或近直立草本植物,原产美洲的墨西哥和阿根廷,我国在16世纪末开始引种栽培.玉豆营养丰富,蛋白质含量高,既是蔬菜又是粮食,还可作糕点和豆馅,是我国最重要的蔬菜种类之一,也是南菜北运最佳蔬菜之一,华南地区春秋两季均可播种.

镉(Cadmium,Cd)是生物非必需的毒性最强的重金属元素之一,具有稳定、积累和不易清除等特性,进入土壤环境中易被植物吸收,并可通过食物链进入人体,在人体内不断积累,具有潜在的致癌作用,严重威胁人体健康及生命安全[1, 2, 3].随着我国工业化的快速发展,有色金属开采、冶炼过程和使用含镉原料的工矿企业每年都有大量镉通过 “三废” 排到环境中.据研究,排到环境中的镉有82%~94%进入土壤,其中相当部分为农业土壤[4].在我国,因镉含量超标被迫弃耕的耕地约为 1.3×104hm2[5].

镉对农业环境的污染状况及其对农作物生长发育、生理特性的影响已引起人们广泛的关注[1, 6, 7, 8, 9, 10],大量研究表明,豆科植物如花生[11, 12]、大豆[13, 14]等对重金属镉有较强的耐性和富集能力,而且不同基因型(品种)间的耐性和富集能力差异明显;关于镉对玉豆的影响也有部分研究[15, 16, 17, 18],但对于镉胁迫下玉豆品种之间差异特征的研究鲜有报道.因此,本实验选用两个玉豆品种幼苗,采用水培实验,研究镉胁迫下两种玉豆生长和叶片中抗氧化酶的变化,比较它们耐镉的差异性,为探究耐镉毒害机理提供理论依据. 1 材料与方法 1.1 材料

供试材料为优选双亲16号玉豆(优选玉豆)和泽盈特选12号玉豆(特选玉豆),由广州世贸农业科技有限公司和香港泽盈农业有限公司生产. 1.2 处理方法

选择籽粒饱满的种子,用10%双氧水消毒10 min,经自来水和蒸馏水漂洗干净后,播于装有经高压灭菌的蔬菜育苗基质(由广州市园林基质厂生产)的盆钵中,待幼苗生长一周后,选择长势一致的幼苗,用海绵包茎固定幼苗,移栽到装有清水的塑料盆里(容积为1 L),加漏盖,盆外套上黑色袋子便于根系生长,每盆3株,第二天把塑料盆里的清水换成 Hoagland 全营养液,缓苗1周后,将两种玉豆分别置于镉浓度为0、2、5、8、15 mg·L-1的Hoagland营养液中培养,镉 以CdCl2·2.5H2O水溶液的形式加入营养液中.每个处理设3个重复.每隔1 d更换一次含镉营养液,1周后收获.实验于2014年3月下旬至4月中旬在广州华南农业大学一玻璃温室内自然光照条件下进行,通过空调控制其昼温为25 ℃、夜温为18 ℃. 1.3 测定方法

株高采用直接测量;植株生物量测定采用称重法,先用自来水反复冲洗干净,吸水纸吸干表面水分,称取鲜重,105 ℃下杀青30 min,于80 ℃烘干至恒重,称取干重;根形态测定使用STD-4800 根系扫描仪(Regent Instruments,Canada)进行,经WinRHIZO Reg(2009年版)根系分析软件获取根系扫描图像,并获得根系总长度、总表面积、平均直径和总体积等根构型参数.丙二醛(MDA)含量、超氧化物歧化酶(SOD)活性、过氧化物酶(POD)活性和过氧化氢酶(CAT)活性均参照邹琦[19] 的方法. 1.4 数据分析

数据处理采用Microsoft Excel 2003、SPSS 17.0统计软件,采用单因素方差分析(One-Way ANOVA)和LSD多重比较各处理间的差异显着性.作图分析采用SigmaPlot 12.0软件. 2 结果与分析 2.1 镉对两种玉豆生长特性的影响 2.1.1 玉豆株高和植株生物量

表 1显示两种玉豆的株高随着镉处理浓度的升高而显着降低.与对照相比,在2、5、8 mg·L-1和15 mg·L-1镉处理下,特选玉豆的株高分别下降了23.21%、40.05%、43.02%和56.06%,优选玉豆株高分别下降了12.32%、35.22%、37.41%和44.87%,说明相同浓度镉处理下优选玉豆的株高下降幅度小于特选玉豆.

表 1 镉对两品种玉豆株高和植株生物量的影响 Table 1 Effects of cadmium stress on plant height and biomass of two kidney bean cultivars

两种玉豆的植株生物量也随镉处理浓度的升高而明显下降,与对照相比,在2、5、8 mg·L-1和15 mg·L-1处理下,特选玉豆地上部鲜重分别下降了19.21%、34.52%、42.24%和48.87%,根系鲜重分别下降了38.3%、41.81%、48.83%和54.09%,地上部干重分别下降了18.87%、40.17%、52.78%和54.11%,根系干重下降了31.02%、35.87%、42.62%和44.17%;优选玉豆地上部鲜重分别下降了15.37%、28.96%、32.27%和45.38%,根系鲜重分别下降了15.34%、33.87%、36.74%和44.09%,地上部干重分别下降了20.26%、49.84%、51.89%和51.14%,根系干重分别下降了15.37%、35.39%、37.42%和42.67%. 2.1.2 玉豆根构型

表 2显示,经不同镉浓度处理后,两种玉豆的总根长,表面积、平均直径和总体积都显着低于对照组.在2、5、8、15 mg·L-1镉处理下,特选玉豆的总根长与对照相比分别下降了35.18%、56.83%、58.85%和61.07%,优选玉豆分别下降了27.07%、35.11%、40.48%和51.21%;特选玉豆各处理组的根表面积与对照相比分别下降了29.07%、57.11%、57.26%和63.86%,优选玉豆分别下降了43.04%、45.79%、54.36%和61.77%;特选玉豆各处理组的根平均直径与对照相比分别下降了2.7%、4.05%、9.46%和10.81%,优选玉豆分别下降了5.59%、6.39%、7.39%和8.09%;特选玉豆各处理组的总根体积与对照相比分别下降了22.75%、48.5%、56.29%和61.67%,优选玉豆分别下降了40.3%、41.79%、54.23%和60.7%.其中特选玉豆的根系长度、根表面积和总体积在镉浓度为5、8、15 mg·L-1的处理组之间差异不显着;优选玉豆的根表面积、平均直径和体积在各个镉处理组之间差异不显着,其根系长度在2、5、8 mg·L-1处理组之间差异不显着.

表 2 镉对两品种玉豆根构型的影响 Table 2 Effect of cadmium stress on root architecture of two kidney bean cultivars
2.2 镉对两种玉豆生理特性的影响 2.2.1 丙二醛含量

经不同浓度镉处理后,两种玉豆的MDA含量(图 1)随镉浓度的升高而显着增加,且在相同浓度下,特选玉豆体内的MDA含量明显高于优选玉豆.其中特选玉豆在镉浓度为15 mg·L-1时达到了56.62 μmol·g-1 FW,与对照相比增加了3.57倍;优选玉豆的MDA含量在15 mg·L-1时为27.72 μmol·g-1 FW,与对照相比增加了2.91倍.

图 1 镉处理对两品种玉豆MDA含量影响 Figure 1 Effect of cadmium stress on MDA contents of two kidney bean cultivars
2.2.2 超氧化物歧化酶活性

两种玉豆的SOD活性(图 2)随镉浓度的升高呈现先增加后下降的趋势.其中特选玉豆的SOD活性在各浓度间差异显着,在5 mg·L-1处理时达到最大值292.83 U·g-1 FW,与对照相比增加了66.79%,但在15 mg·L-1镉胁迫时与对照相比下降了30.95%,与5 mg·L-1处理时相比下降了58.60%;优选玉豆SOD活性在2 mg·L-1和5 mg·L-1镉处理时差异不显着,在8 mg·L-1处理时达到最大值238.78 U·g-1 FW,比对照增加了81.15%,但在15 mg·L-1镉胁迫时与对照相比增加了11.5%,与8 mg·L-1处理时相比则下降了38.48%.

图 2 镉处理对两种玉豆SOD活性影响 Figure 2 Effect of cadmium stress on SOD activity of two kidney bean cultivars
2.2.3 过氧化物酶活性

在各浓度镉处理下,两种玉豆的POD活性(图 3)都显着高于其对照组,其中特选玉豆的POD活性增加的趋势比优选玉豆缓慢且幅度小,在15 mg·L-1时达到最大值2 048.33 U·g-1 FW·min-1,比对照增加了29.1%;优选玉豆POD活性随镉浓度的升高而显着增加,在15 mg·L-1时达到最大值2840 U·g-1 FW·min-1,比对照增加了1.38倍.

图 3 镉处理对两种玉豆POD活性影响 Figure 3 Effect of cadmium stress on POD activity of two kidney bean cultivars
2.2.4 过氧化氢酶活性

经不同镉浓度胁迫后,特选玉豆CAT活性(图 4)随胁迫浓度升高呈先增后降的趋势,且各处理与对照相比差异显着,在8 mg·L-1处理时为最高值1 366.67 U·g-1 FW·min-1,与对照相比增加了1.16倍;优选玉豆的CAT活性随胁迫浓度升高而升高,各浓度间差异显着,在15 mg·L-1处理时为最高值1 036.67 U·g-1 FW·min-1,与对照相比增加了0.94倍.

图 4 处理对两种玉豆CAT活性影响 Figure 4 Effect of cadmium stress on CAT activity of two kidney bean cultivars
3 讨论

镉是一种有毒的非必需元素,易于被植物吸收、富集,过量的镉会影响植物的正常生长发育[20].有研究[21] 表明,镉胁迫下植物的株高、生物量等生长指标会受到一定的抑制作用.在本实验中,镉胁迫下两种玉豆的株高和植株质量与对照相比均明显下降,在2 mg·L-1镉胁迫时两种玉豆就开始受到明显的抑制,其抑制程度随镉胁迫浓度的升高而不断增强,在最高浓度(15 mg·L-1)时受到的抑制作用最为显着.就下降幅度而言,同样镉浓度下,特选玉豆下降的幅度大于优选玉豆,说明特选玉豆比优选玉豆更易受到重金属镉的伤害.

根系长度和表面积等指标是反应根型特征的基本参数,一般而言,植物受到外界刺激后根构型发生改变,进而影响地上部生长发育.有研究[22] 表明,钨可通过影响根系伸长区的扩张来抑制根增长.苏格兰松幼苗根系经镉处理后,根的伸长明显受到抑制[23],且镉胁迫对幼苗根尖细胞的抑制和毒害作用具有显着的积累效应[24].本研究也显现类似的结果,经镉处理后,两种玉豆的总根长、表面积、平均直径、总体积等都受到不同程度的抑制,整体而言,特选玉豆在8、15 mg·L-1处理时的降低幅度大于优选玉豆.

一般植物在重金属胁迫下体内活性氧(Reactive oxygen species,ROS)会大量增加,导致植物体内发生代谢紊乱,从而对植物的生长产生不利影响.许多研究表明镉可诱导脂质过氧化过程[25, 26],MDA是膜脂过氧化的产物,其含量可反映机体内脂质过氧化的程度,也间接反映细胞损伤的程度,是衡量膜脂过氧化损伤的指标[27].据此,通过测定植物体内MDA含量的变化,可以反映该植物抵抗不良环境能力的强弱.很多研究[28, 29] 表明,在重金属胁迫下,MDA含量上升.在本试验中,随镉胁迫浓度的增加,两种玉豆的MDA含量呈上升趋势,其中特选玉豆的上升幅度大于优选玉豆,表明特选玉豆的膜脂过氧化程度高于优选,这在一定程度上说明镉胁迫对特选玉豆的伤害程度比优选玉豆大.

为了防止脂质过氧化损伤,植物通过提高SOD、POD、CAT等各种抗氧化酶的活性来维持植物体内ROS产生和清除的动态平衡[29, 30, 31, 32].SOD酶可清除污染物诱导以及正常代谢过程产生的超氧阴离子自由基,是植物抗氧化系统发挥功能的首要酶,而CAT酶和SOD酶主要是清除植物体内的H2O2,能将H2O2分解为O2和H2O,是过氧化物酶体的主要酶类.在本实验中,两种玉豆SOD和特选玉豆CAT活性随着营养液中镉浓度的增加先上升后下降,上升的原因是植物应激产生的保护作用以降低膜脂过氧化程度,随着镉浓度的升高,镉引起的过氧化物不断积累、过氧化损伤不断增加,打破了植物体内ROS产生和清除的动态平衡,使其活性开始下降,说明两种玉豆SOD活性存在一个镉胁迫浓度的阈值.两种玉豆POD和优选玉豆CAT活性随着营养液中镉浓度的增加而持续上升,可能与两种玉豆在镉胁迫下的应激有关.从3种酶活性的变化幅度来分析,特选玉豆SOD和CAT活性的变幅大于优选玉豆,有研究表明当SOD活性降低时抗性强的品种下降幅度小[31, 32],表明优选玉豆的抗性高于特选玉豆.而优选玉豆的POD活性增强幅度远大于特选玉豆,可能是由于优选玉豆体内清除H2O2的关键酶是POD,亦或许与植物体内产生的H2O2含量有关. 4 结论

(1)随着镉处理浓度的升高,两种玉豆的株高和生物量显着降低,且特选玉豆降低的幅度大于优选玉豆.

(2)经不同浓度镉处理后,两种玉豆的总根长、表面积、平均直径和总体积都显着降低,且特选玉豆在中高浓度处理下的降低幅度大于优选玉豆.

(3)两种玉豆的MDA含量随镉浓度的升高而升高,特选玉豆MDA含量的增幅大于优选玉豆,表明其脂质过氧化程度高于优选玉豆;特选玉豆SOD活性和CAT活性变幅都大于优选玉豆,但优选玉豆POD活性变幅大于特选玉豆.

综合两种玉豆上述生长和生理指标的变化可知,优选玉豆耐重金属镉的能力高于特选玉豆.

参考文献
[1] Sato A, Takeda H, Oyanagi W, et al. Reduction of cadmium uptake in spinach(Spinacia oleracea L.) by soil amendment with animal waste compost[J]. Journal of Hazardous Materials, 2010, 181(1-3):298-304.
[2] 于方明, 刘可慧, 刘 华, 等. 镉污染对水稻不同生育期抗氧化系统的影响[J]. 生态环境学报, 2012, 21(1):88-93. YU Fang-ming, LIU Ke-hui, LIU Hua, et al. Effects of cadmium pollution on the antioxidant system of the rice in different growth period[J]. Ecology and Environmental Sciences, 2012, 21(1):88-93.
[3] Stohs S J, Bagchi D, Hassoun E, et al. Oxidative mechanisms in the toxicity of chromium and cadmium ions[J]. Journal of Environmental Pathology, Toxicology and Oncology, 2001, 20(2):77-88.
[4] 孟庆强, 黄国锋, 吴启堂, 等. 土壤中重金属迁移到水体的机理及预测研究[C]. 第七次""土壤与环境""学术研讨会论文摘要, 2011. MENG Qing-qiang, HUANG Guo-feng, WU Qi-tang, et al. The mechanism and prediction research of heavy metals in soil migrating to water[C]. The seventh ""Soil and environment"" academic seminar paper, 2011.
[5] 李培军, 刘 宛, 孙铁珩, 等. 我国污染土壤修复研究现状与展望[J]. 生态学杂志, 2006, 25(12):1544-1548. LI Pei-jun, LIU wan, SUN Tie-heng, et al. Remedlation of contaminated soil:Its present research situation and prospect[J]. Chinese Journal of Ecology, 2006, 25(12):1544-1548.
[6] Stritsis C, Steingrobe B, Claassen N. Shoot cadmium concentration of soil-grown plants as related to their root properties[J]. Journal of Plant Nutrition and Soil Science, 2012, 175(3):456-465.
[7] Metwali M R, Gowayed S M H, Al-Maghrabi O A, et al. Evaluation of toxic effect of copper and cadmium on growth, physiological traits and protein profile of wheat(Triticum aestivium L. ), maize(Zea mays L. )and sorghum(Sorghum bicolor L. )[J]. World Applied Sciences Journal, 2013, 21(3):301-304.
[8] Lu H P, Zhuang P, Li Z A, et al. Contrasting effects of silicates on cadmium uptake by three dicotyledonous crops grown in contaminated soil[J]. Environmental Science and Pollution Research, 2014, 21(16):9921-9930.
[9] Shentu J L, He Z L, Zeng Y Y, et al. Microbial biomass and PLFA profile changes in rhizosphere of pakchoi(Brassica chinensis L.) as affected by external cadmium loading[J]. Pedosphere, 2014, 24(4):553-562.
[10] Srivastava R K, Pandey P, Rajpoot R, et al. Cadmium and lead interactive effects on oxidative stress and antioxidative responses in rice seedlings[J]. Protoplasma, 2014, 251(5):1047-1065.
[11] McLaughlin M J, Bell M J, Wright G C, et al. Uptake and partitioning of cadmium by cultivars of peanut(Arachis hypogaea L. )[J]. Plant and Soil, 2000, 222(1-2):51-58.
[12] Shi G R, Cai Q S. Cadmium tolerance and accumulation in eight potential energy crops[J]. Biotechnology Advances, 2009, 27(5):555-561.
[13] Fang X L, Zhao Y Y, Ma Q B, et al. Identification and comparative analysis of cadmium tolerance-associated miRNAs and their targets in two soybean genotypes[J]. PLoS ONE, 2013, 8(12):e81471.
[14] Tang Y L, Cao Y, Qiu J B, et al. Expression of a vacuole-localized BURP-domain protein from soybean(SALI3-2) enhances tolerance to cadmium and copper stresses[J]. PLoS ONE, 2014, 9(6):e98830.
[15] 吕金印, 邸丽俊, 叶庆富. 镉胁迫对菜豆幼苗基因组DNA多态性的影响[J]. 中国环境科学, 2012, 32(5):892-899. LÜ Jin-yin, DI Li-jun, YE Qing-fu. Effects of cadmium stress on DNA polymorphism of genome in Phaseolus vulgaris seedling[J]. China Environmental Science, 2012, 32(5):892-899.
[16] 邸丽俊. 镉硫交互对菜豆幼苗植物络合素及DNA增色效应的影响[D]. 杨凌:西北农林科技大学, 2011. DI Li-jun. The influence of interaction between cadmium and sulfur on phytochelatin and DNA hyperchromic of phaseolus vulgaris seedling[D]. Yangling:Northwest Agriculture and Forestry University, 2011.
[17] 周 青, 张 辉, 黄晓华, 等. 镧对镉胁迫下菜豆(Phaseolus vulgaris)幼苗生长的影响[J]. 环境科学, 2003, 24(4):48-53. ZHOU Qing, ZHANG Hui, HUANG Xiao-hua, et al. Effects of La on the growth of kidney bean seedling under Cd stress[J]. Environmental Science, 2003, 24(4):48-53.
[18] 黄晓华, 周 青. 镧对水培菜豆和玉米幼苗镉胁迫的缓解作用[J]. 中国稀土学报, 2005, 23(2):245-249. HUANG Xiao-hua, ZHOU Qing. Lanthanum relief on hydroponic beans and corn seedling under cadmium stress[J]. Journal of the Chinese Rare Earth Society, 2005, 23(2):245-249.
[19] 邹 琦. 植物生理学实验指导[M]. 北京:中国农业出版社, 2000. ZOU Qi. Plant physiology experiment guidance[M]. Beijing:China Agriculture Press, 2000.
[20] 张金彪, 黄维南. 镉胁迫对草莓光合的影响[J]. 应用生态学报, 2007, 18(7):1673-1676. ZHANG Jin-biao, HUANG Wei-nan. Effects of cadmium stress on photosynthetic functions of strawberry[J]. Chinese Journal of Applied Ecology, 2007, 18(7):1673-1676.
[21] Hassan M J, Shao G, Zhang G. Influence of cadmium toxicity on growth and antioxidant enzyme activity in rice cultivars with different grain cadmium accumulation[J]. Journal of Plant Nutrition, 2005, 7(28):1259-1270.
[22] Adamakis I D S, Panteris E, Eleftheriou E P. Tungsten disrupts root growth in Arabidopsis thaliana by PIN targeting[J]. Journal of Plant Physiology, 2014, 171(13):1174-1187.
[23] Schützendübel A, Polle A. Plant responses to abiotic stresses:Heavy metal-induced oxidative stress and protection by mycorrhization[J]. Journal of Experimental Botany, 2002, 53(372):1351-1365.
[24] 李照令, 王鹤潼, 陈瑞娟, 等. 运用MSAP研究镉胁迫对拟南芥幼苗基因甲基化的影响[J]. 农业环境科学学报, 2014, 33(1):28-36. LI Zhao-ling, WANG He-tong, CHEN Rui-juan, et al. Studying genomic methylation of arabidopsis thaliana seedling under cadmium stress using MSAP[J]. Journal of Agro-Environment Science, 2014, 33(1):28-36.
[25] Rahoui S, Chaoui A, El Ferjani E. Membrane damage and solute leakage from germinating pea seed under cadmium stress[J]. Journal of Hazardous Materials, 2010, 178(1-3):1128-1131.
[26] Rahoui S, Ben C, Chaoui A, et al. Oxidative injury and antioxidant genes regulation in cadmium-exposed radicles of six contrasted Medicago truncatula genotypes[J]. Environmental Science and Pollution Research, 2014, 21(13):8070-8083.
[27] 雷静静, 冯 佳, 谢树莲. 纳米氧化镍对3种绿藻的毒性效应[J]. 中国环境科学, 2013, 33(10):1842-1849. LEI Jing-jing, FENG Jia, XIE Shu-lian. Toxic effects of nNiO on three species of green algae[J]. China Environmental Science, 2013, 33(10):1842-1849.
[28] Sfaxi-Bousbih A, Chaoui A, El Ferjani E. Unsuitable availability of nutrients in germinating bean embryos exposed to copper excess[J]. Biological Trace Element Research, 2010, 135(1-3):295-303.
[29] Gusman G S, Oliveira J A, Farnese F S, et al. Mineral nutrition and enzymatic adaptation induced by arsenate and arsenite exposure in lettuce plants[J]. Plant Physiology and Biochemistry, 2013, 71:307-314.
[30] Liu D L, Zhang S P, Chen Z, et al. Soil cadmium regulates antioxidases in sorghum[J]. Agricultural Sciences in China, 2010, 9(10):1475-1480.
[31] 陈鸿鹏, 谭晓风. 超氧化物歧化酶(SOD)研究综述[J]. 经济林研究, 2007, 25(1):59-65. CHEN Hong-peng, TAN Xiao-feng. Literature review of researches on superoxide dismutase[J]. Nonwood Forest Research, 2007, 25(1):59-65.
[32] Zhang F Q, Zhang H X, Wang G P, et al. Cadmium-induced accumulation of hydrogen peroxide in the leaf apoplast of Phaseolus aureus and Vicia sativa and the roles of different antioxidant enzymes[J]. Journal of Hazardous Materials, 2009, 168:76-84. 表1 镉对两品种玉豆株高和植株生物量的影响