文章信息
- 郭萍, 李红娜, 李峰
- GUO Ping, LI Hong-na, LI Feng
- MST与水环境生物源污染定量化溯源
- Microbial source tracking(MST) and quantitative tracking of biological fecal contamination in water environment
- 农业环境科学学报, 2016, 35(2): 205-211
- Journal of Agro-Environment Science, 2016, 35(2): 205-211
- http://dx.doi.org/10.11654/jaes.2016.02.001
-
文章历史
- 收稿日期: 2015-08-07
生物源污染包括养殖场废水和生活污水,由于这类废水中的粪尿污染物携带大量的肠道微生物,具备了微生物溯源的可行性。由于众多的生物污染源具有非点源排放的特性,通过目标污染环境其他非生物成分很难准确定位污染源,给污染管理和治理工作造成了一定的难度。微生物溯源技术(MST)以其无需对污染物人为标识、污染源分类定位快速而引起研究者极大的兴趣,21世纪以来,美国、加拿大、澳大利亚、日本及欧盟部分发达国家纷纷开展了利用微生物溯源技术监测水体生物源污染的研究和应用工作,并逐渐提高污染检测的定量化水平,为水环境污染管理和疾病防治提供了科学依据[1, 2, 3, 4, 5, 6, 7, 8]。我国近几年也开始了相关的研究工作,并在方法的适宜性研究与应用方面取得了一定的进展。
本文梳理了微生物溯源技术从起源、定性到定量化的发展,重点论述了定量化溯源指示微生物拟杆菌及其水环境定量化溯源的研究进展。拟杆菌作为主要的肠道微生物菌群,以其环境的不可繁殖性和较强的宿主鉴别能力成为定量化溯源的研究重点。针对目前拟杆菌定量化溯源的研究结果与进展,提出深入全面研究其他污染指标、环境因子与定量化检测结果的相关关系,提高定量化检测与溯源结果的准确性,将有助于微生物溯源技术在环境尤其是水环境定量化溯源中更广泛的应用。
1 MST技术起源与发展 1.1 MST技术起源MST技术最早产生于水体粪便污染样品的诊断。20世纪60年代末70年代初有学者提出以粪大肠菌群(Fecal coliform,FC)和粪链球菌(Fecal streptococcus,FS)的比例区分人类和其他动物源粪便污染,两者比例大于4(FC/FS>4)确定为人源的污染,小于0.7(FC/FS < 0.7)确认为其他动物源的污染[9, 10]。90年代研究细化了其他动物源污染,提出当FC/FS>4时可以认为是人源粪便污染,0.1 < FC/FS < 0.6是畜禽养殖排泄物造成的污染,而当FC/FS < 0.1时则认为是野生动物粪便污染[11]。但也有研究发现这种方法得到的结果并不能完全准确诊断污染源,因为粪大肠杆菌和粪链球菌的生长速率和生存能力不同,两者的比率会随着体外存续时间的延长而发生变化[12, 13]。因此,美国公共健康协会(American Public Health Association,APHA)便不再推荐以FC/FS的比率来区分人类和动物来源的粪便污染。如何筛选到有效的生物标记并建立生物源污染诊断的适宜方法再次激发了人们的研究兴趣。
1.2 MST技术发展筛选MST微生物宿主特异性生物标记的广泛研究始于20世纪80年代[14, 15, 16],Scott 等[17]提出理想指示微生物应该具备能够反映水体污染情况、不是致病菌、能够快速检出、容易计数、和致病菌存在较密切联系、非目标环境土著微生物等特点,并据此建立了指示微生物的筛选标准。筛选出的微生物包括大肠菌群(Total coliforms)、粪大肠菌群(Fecal coliforms)、大肠杆菌(E. coli)和肠球菌(Enterococci)这类温血动物肠道及粪便中普遍存在的细菌,研究与应用最多的当属大肠杆菌和肠球菌,这类细菌的监测结果可以作为环境样品是否受到生物源污染的判别依据。
随着生物标记功能的发掘,Farber[18]对污染指示微生物标准做了进一步的补充完善,提出指示微生物不仅应具备能够提供样本是否受到生物源污染的信息,而且能够提供有效区分不同生物源污染的信息。如人源特异的双歧杆菌(Bifidobacterium)和野生动物源的嗜粪红球菌(Rhodococcus coprophilus)等,这类细菌被用来作为不同宿主来源的指示菌[14, 15]。这一研究结果得到了一些学者的验证和支持[19]。虽然这类细菌能够在一定程度上区别不同的宿主来源,但由于这些细菌在体外环境中生存时间较短,且无法从高温环境(如夏天)中检出而使其应用受到了限制;同时该方法在美国、欧洲和南非的测试结果表明,对未知样品的检测效果不是很理想[20]。此外有研究表明,单链RNA(F+RNA)和单链DNA(F+DNA)噬菌体能够被用来区分人类和动物粪便的污染[21, 22]。其他被研究的溯源方法包括肠球菌抗生素抗性分析法(Antibiotic resistance analysis,ARA)[23, 24]、碳源利用分析法(Carbon source utilization,CSU)[25]、大肠菌群的脂肪酸分析法(Fatty acid methyl easter analysis,FAME)[26]、大肠杆菌核糖体核型分析法(Ribotyping)[27]、重复序列PCR分析法(rep-PCR)[28]、脉冲凝胶电泳分析法(Pulse-field gel electrophoresis,PFGE)等培养建库的方法[29],这些方法都有相应的一些应用,结果也存在一定的差异。此外,区别以牛、猪、鸭和人源设计的大肠杆菌特异性生物标记[30, 31, 32, 33]、区分人源和动物源污染设计的肠球菌生物标记 esp(Enterococcal surface protein)也已经被应用到环境监测中[34]。虽然各种方法经过了长期的研究,但对各种分析方法的优劣依然难有定论,其诊断结果的准确性和灵敏性都受到了库容量和分析方法的影响[35]。因此,无需建库和纯培养、同时能够反映定量化信息的溯源技术成为研究人员关注的焦点。
研究结果认为定量化溯源指示微生物应符合以下条件:(1)只存在于靶标污染源中,即宿主特异性标准;(2)靶标污染源中的浓度或者含量要足够多,即检测灵敏度标准;(3)已知不同污染源生物标记的环境存续性和增殖能力,即定量分析的可比性标准[2]。
拟杆菌(Bacteroides spp.)在众多的候选指示菌中受到了更多的关注,并成为定量化溯源研究的主要指示微生物。拟杆菌作为肠道中的主要厌氧菌群,具有数量众多,在环境中不可繁殖,同时具有较高分类水平的宿主特异性基因标记,因此以拟杆菌特异性生物标记为基础的定性与定量溯源技术得到了快速发展[36, 37]。Bernhard 和 Field[3]最先在MST技术中利用了拟杆菌特异性生物标记。目前针对人、鸡、狗、加拿大雁、马、反刍动物和猪粪便的溯源方法已经先后建立并应用到实际的水环境监测中[38, 39, 40, 41, 42, 43, 44, 45, 46, 47]。王显贵等[48]建立了qPCR定量检测模拟水体中猪源拟杆菌特异性生物标记的方法,以宿主特异性引物定量识别检测水体中猪源拟杆菌16S rRNA基因拷贝数,从而确定猪源拟杆菌污染量,以进一步明确水体受猪场废水污染的程度。该方法以混合污水进行试验时,表现出了很好的特异性,能够排除其他寄主来源拟杆菌的干扰。
当然,即使不依赖培养建库的生物标记也具有一定的时空差异[49],所以更好地了解基因标记的环境持续性、时空变异性、基因标记与其他污染指标的定量关系显得尤为重要,这也成为近几年和今后的研究重点。
2 MST水环境生物源污染监测绝大多数水体对生物源污染非常敏感,因为生物源污染不仅能通过娱乐水体和饮用水引起人类疾病,而且能破坏水体生态环境产生富营养化、引起水生生物毒害。目前,重金属和抗生素也成为我国生物源污染的威胁。因此利用MST明确水体生物源污染来源和污染贡献率对于水环境污染治理和病害防治方法的建立非常关键。
2.1 MST与其他污染指标的相关性MST在国外主要用于娱乐水质监测、健康和最大污染负荷管理,主要针对水环境中与人类健康相关的致病微生物[1, 50, 51, 52],研究热点集中在一些与致病微生物或某些病症关系相对比较清楚的指示微生物,例如大肠杆菌和肠球菌等。但是随着对病原菌与指示微生物关系的深入研究,也出现了不同程度的分歧,大部分结果认为它们之间存在相关性[53],但也有研究者认为它们之间不存在相关性或相关性很低[6, 38, 54]。研究结果的差异与所选择的指示微生物生物标记和环境条件都有一定的关系,为提高结果的可靠性和准确率,在实际应用中应结合环境条件进行多标记印证。
尽管生物源污染紧密伴随着富营养化和水生生物毒害,但是目前生物标记与生物源污染相关的氮、磷、重金属和抗生素等的相关性研究和应用仍然比较少。Weidhaas等[55]以短杆菌(Brevibacterium sp.)LA35基因为家禽粪便生物标记,通过qPCR技术确定了该生物标记与家禽粪便、径流、地表水和地下水中粪便指示微生物和重金属的相关性,并且发现该生物标记拷贝数与大肠杆菌、肠球菌、砷、铜、磷和锌的浓度有共变关系,因为只要在能够检出该生物标记的径流样品中,指示微生物和砷、铜、磷、锌的浓度也较没有检出生物标记的样品中高。目前国内未见利用微生物对水体中相关指标进行溯源的研究报道。尽管氮磷是生物源污染的主要成分,但尚未见应用微生物溯源技术对水体中氮磷富营养化物质进行溯源的报道。
无论如何,要明确水环境生物源其他监测指标与指示微生物生物标记的相关性,生物标记在环境因子影响下定量检出的准确性是进一步研究的关键。
2.2 拟杆菌与水环境污染定量化溯源拟杆菌是水环境定量化溯源研究与应用相对集中的指示菌,目前应用研究的关注点主要集中在拟杆菌环境存续性和衰变方面。尽管目前建立了许多人类和动物粪便的基因特异性标记,但由于基因标记的环境持续性差异,虽然在定性层面上的研究结果相对比较一致,但是不同地理区域的定量溯源结果差异相对比较大。即使同一地区,如果对于拟杆菌基因标记水环境衰变机制不十分清楚,也可影响拟杆菌基因标记定量溯源技术在实际水环境的应用效果[56, 57, 58]。由于拟杆菌在环境中的不可繁殖性,其基因标记环境持续性的本质就是拟杆菌基因标记在水环境中的衰退,尤其是在生物因子和非生物因子交互作用影响下的衰退。目前相关性的研究报道主要集中在水环境非生物因子对指示菌和特异性基因标记衰变速率的影响方面[7, 37, 49, 59, 60, 61],且研究结果也不尽相同,有的甚至截然相反。
有研究认为不同寄主来源的拟杆菌基因标记的环境行为趋势一致,其中以温度与基因标记环境存续量的负相关关系最为一致[48, 62, 63, 64],尽管不同的研究结果在二者的相关程度上有差异,但并不影响相关结论的一致性。而与基因标记环境存续量相关的其他环境因子的研究结果却不尽相同,有的甚至完全相反,比如盐度、光照对拟杆菌基因标记持续性的影响、拟杆菌基因标记与活菌细胞和可培养菌群的相对衰变速率等。
Marti等[42]认为水中的溶解氧和温度都对猪源宿主特异性拟杆菌生物标记的稳定性影响较大。Okabe等[7]研究结果表明寄主特异性基因标记在不同盐度水体中的行为特征没有差异,只与温度相关。Okabe以可培养脆弱拟杆菌作为拟杆菌参照,研究了拟杆菌人源特异性基因标记Human-Bac1、猪源特异性基因标记Pig-Bac2、牛源特异性基因标记Cow-Bac2等在不同的温度和盐度水环境条件下的衰变行为,在低温(4 ℃)高盐(海水)的环境中存续时间较高温(30 ℃)低盐(淡水)下的持续时间长,同时基因标记与活菌的衰变速率无差异,明显低于可培养大肠菌群和脆弱拟杆菌的衰变速率。Bae等[63, 65, 66]利用加入PMA(叠氮溴化丙锭,Propidium monoazide)和不加入PMA提取DNA,研究了拟杆菌活细胞与基因标记的衰变,结果表明基因标记的持续时间(177 h)远高于活细胞(28 h),并且在海水中的衰变速率要快于淡水。Okabe与Bae关于基因标记与活菌衰变速率研究结果的差异来源于二者选用的方法和参照活菌体系不同,Bae以与基因标记相同的活菌作为比较对象,加入非活菌DNA检出抑制剂PMA,研究结果较以可培养活菌作参照更接近实际情况。
Walters等[67]分别以DNA和cDNA为模板的qPCR(quantitative PCR)和RTPCR(real-time PCR)方法检测了拟杆菌基因标记和拟杆菌细胞的持续性,认为基因标记的衰变快于活菌细胞,两者均快于大肠杆菌和肠球菌等指示菌,与Okabe和Bae的研究结果都不相同,可能与所选择的基因标记和检测方法不同有关,但基因标记的衰变快于或者高于活细胞的结论有待进一步的研究印证。同时Walters等的研究结果认为光照对基因标记没有影响,而高温(30 ℃)环境下的衰变速率远高于低温(4 ℃)环境,进一步为基因标记与温度负相关的研究结论提供了支撑。Dick等[59]以污水构建拟杆菌通用基因标记AIIBac、人基因标记BacH、HF183及大肠杆菌的环境衰退速率研究体系,认为在恒定的温度(15 ℃)下,不同光照、底泥等环境因子的处理效果没有显著差异,但基因标记都会出现比较快速的衰变,明显高于大肠杆菌,与Walters等的研究结果相一致。Tambalo等[68]采用0.45 μm微孔滤膜过滤水样提取DNA研究了基因标记的环境衰变,结果表明人拟杆菌基因标记BacH、反刍动物基因标记BacR、牛特异性基因标记CowM2等在自然水环境中衰减99%的时间少于8 d,明显快于大肠杆菌15 d以上的衰减期,同样得出了基因标记衰变速率快于大肠杆菌等指示菌的结论。这一结果与大肠杆菌的环境可繁殖性不无关系。
Ekaterina等[69]利用0.2 μm滤膜过滤水体提取DNA,研究了人基因标记BacH和反刍动物基因标记BacR在水环境中迁移和衰变特征,认为各基因标记之间无差异,温度是影响衰变的关键因子,基因标记的衰退速率与温度成正比,但不受光照的影响,并且基因标记相对于总大肠菌群和肠球菌的衰变没有显著差异。其他的研究结果既有支持光照不会影响基因标记衰变的观点[59, 63, 67, 70],也有支持基因标记在光照条件下较黑暗条件下衰退更快的观点[61, 62]。光照影响拟杆菌基因标记和拟杆菌衰变的不同结论,以及拟杆菌活菌和基因标记衰减相对快慢的不同结论差异,可能与研究体系中的其他生物因子相关,而关于其他生物因子如何在不同环境条件下影响了基因标记衰变的研究相对较少。
目前关于生物因子对拟杆菌和拟杆菌基因标记衰变和持续性的影响也有一些初步的研究报道。Kreader[71]认为温度是影响拟杆菌基因标记环境持续性的关键因子,并提出原生生物捕食也是重要的影响因素,证据就是当地表水用放线菌酮-真核生物抑制剂和0.45 μm滤膜过滤处理后,其中拟杆菌基因标记的持续周期会明显延长,由此推断拟杆菌基因衰变可能与真核生物的捕食相关。Kobayashi等[72]以18S rRNA监测水体中各种原生动物也得到了同样的结果。有些研究也在拟杆菌基因标记衰变与其他生物捕食相关方面给出了一些推断性结论[8, 61, 70]。尽管以上的研究结果为生物因子和非生物因子 对基因标记环境持续性或者衰退的影响提供了一些证据,但生物因子对基因标记衰变的影响仍然有待深入,尤其是生物因子与非生物因子的互作机制,及其对基因标记环境衰变的影响机制都还是未知数。
国内在水环境微生物溯源监测方法和应用方面也做了初步探索研究,冯广达[73, 74]和张曦[75]等应用大肠杆菌和拟杆菌的相关基因标记分析了水源和饮用水的污染路径,并证明了水源周边的养猪场是造成水源和饮用水污染的重要污染源;冯雯雯[76]应用肠球菌的抗生素抗性对近海岸水域的污染源进行了比对分析,明确了在不同污染源分类水平下溯源结果的准确率。
2.3 MST技术发展前景微生物溯源技术作为一种新兴的环境监测手段以其环境友好性、监测源广泛、灵敏度高、样品需求量少等优点展示了很好的发展前景。在实际应用中要考虑以下几点:
(1)适宜技术的选择:利用微生物进行溯源时要结合自己的目的和所具备的条件、实验要求等多方面因素选择合适的溯源技术。此外多种溯源技术结合使用,相互验证能够提高实验结果的可信度 。
(2)环境参数的综合考虑:因为目前的研究结果还难以给出明确的环境应用参数,所以要建立应用范围广、结果准确可信、成本低、省时省力的环境应用溯源技术还需进一步深入研究基因标记与环境参数的相关性,不断完善检测的灵敏度和准确性,提高诊断结果的准确性。
(3)提高定量化水平:微生物溯源技术虽然被广泛应用到水环境监测中,所反映的信息仍然在“水体是否被污染与被什么污染”这个层面上,而“不同污染源的贡献率”信息很少,所以定量化的MST技术有待进一步的发展和应用。
(4) 提高MST的信息量:目前的微生物溯源技术主要是针对水体中致病微生物的监测,对水体中的有毒有害物质和氮磷有机物等溯源监测的研究几乎没有开展,因此开展利用生物溯源技术对水体中的有毒有害物质和氮磷有机物等监测溯源的研究具有很大的发展空间。
总体来说,我国微生物溯源研究和应用工作开展较晚,技术相对落后,大多处于定性化水平,加强微生物溯源有关的研究和应用工作,可加快微生物溯源技术在我国水体污染定位中的应用,丰富我国水污染监测手段,提高水污染管理效率。
[1] | Simpson J M, Santo Domingo J W, Reasoner D J. Microbial source tracking:State of the science[J]. Environ Sci Technol, 2002, 36(24):5279-5288. |
[2] | Hagedorn C, Harwood V J, Blanch A R. Microbial source tracking:Methods, applications, and case studies[M]. New York:Springer, 2011:642. |
[3] | Bernhard A E, Field K G. A PCR assay to discriminate human and ruminant feces on the basis of host differences in Bacteroides-Prevotella genes encoding 16S rRNA[J]. Applied and Environmental Microbiology, 2000, 66(10):4571-4574. |
[4] | Meays C L, Broersma K, Nordin R, et al. Source tracking fecal bacteria in water:A critical review of current methods[J]. Journal of Environmental Management, 2004, 73(1):71-79. |
[5] | Prüss A. Review of epidemiological studies on health effects from exposure to recreational water[J]. International Journal of Epidemiology, 1998, 27(1):1-9. |
[6] | Converse R R, Blackwood A D, Kirs M, et al. Rapid qPCR-based assay for fecal Bacteroides spp. as a tool for assessing fecal contamination in recreational waters[J]. Water Research, 2009, 43(19):4828-4837. |
[7] | Okabe S, Shimazu Y. Persistence of host-specific Bacteroides-Prevotella 16S rRNA genetic markers in environmental waters:Effects of temperature and salinity[J]. Applied Microbiology and Biotechnology, 2007, 76(4):935-944. |
[8] | Solecki O, Jeanneau L, Jardé E, et al. Persistence of microbial and chemical pig manure markers as compared to faecal indicator bacteria survival in freshwater and seawater microcosms[J]. Water Research, 2011, 45(15):4623-4633. |
[9] | Geldreich E E, Litsky W. Fecal coliform and fecal streptococcus density relationships in waste discharges and receiving waters[J]. Critical Reviews in Environmental Science and Technology, 1976, 6(4):349-369. |
[10] | Geldreich E E, Kenner B A. Concepts of fecal streptococci in stream pollution[J]. Journal Water Pollution Control Federation, 1969, 41(8):336-352. |
[11] | Edwards D R, Coyne M S, Vendrell P F, et al. Fecal coliform and streptococcus concentrations in runoff from grazed pastures in Northwest Arkansas[J]. Jawra Journal of the American Water Resources Association, 1997, 33(2):413-422. |
[12] | Sinton L W, Finlay R K, Hannah D J. Distinguishing human from animal faecal contamination in water:A review[J]. New Zealand Journal of Marine and Freshwater Research, 1998, 32(2):323-348. |
[13] | Sinton L W, Donnison A M, Hastie C M. Faecal streptococci as faecal pollution indicators:A review. Part Ⅱ:Sanitary significance, survival, and use[J]. New Zealand Journal of Marine and Freshwater Research, 1993, 27(1):117-137. |
[14] | Mara D D, Oragui J I. Sorbitol-fermenting bifidobacteria as specific indicators of human faecal pollution[J]. Journal of Applied Bacteriology, 1983, 55(2):349-357. |
[15] | Mara D D, Oragui J I. Occurrence of Rhodococcus coprophilus and associated actinomycetes in feces, sewage, and freshwater[J]. Applied & Environmental Microbiology, 1981, 42(6):1037-1042. |
[16] | Osawa S, Furuse K, Watanabe I. Distribution of ribonucleic acid coliphages in animals[J]. Applied & Environmental Microbiology, 1981, 41(1):164-168. |
[17] | Scott T M, Rose J B, Jenkins T M, et al. Microbial source tracking:Current methodology and future directions[J]. Applied and Environmental Microbiology, 2002, 68(12):5796-5803. |
[18] | Farber J M. An introduction to the hows and whys of molecular typing[J]. Journal of Food Protection®, 1996, 59(10):1091-1101. |
[19] | Blanch A R, Belanche-Muñoz L, Bonjoch X, et al. Integrated analysis of established and novel microbial and chemical methods for microbial source tracking[J]. Applied and Environmental Microbiology, 2006, 72(9):5915-5926. |
[20] | Bonjoch X, Balleste E, Blanch A R. Enumeration of bifidobacterial populations with selective media to determine the source of waterborne fecal pollution[J]. Water Research, 2005, 39(8):1621-1627. |
[21] | Stewart J R, Vinjé J, Oudejans S J G, et al. Sequence variation among group Ⅲ F-specific RNA coliphages from water samples and swine lagoons[J]. Applied and Environmental Microbiology, 2006, 72(2):1226-1230. |
[22] | Cole D, Long S C, Sobsey M D. Evaluation of F+ RNA and DNA coliphages as source-specific indicators of fecal contamination in surface waters[J]. Applied and Environmental Microbiology, 2003, 69(11):6507-6514. |
[23] | Wiggins B A, Cash P W, Creamer W S, et al. Use of antibiotic resistance analysis for representativeness testing of multiwatershed libraries[J]. Applied and Environmental Microbiology, 2003, 69(6):3399-3405. |
[24] | Whitlock J E, Jones D T, Harwood V J. Identification of the sources of faecal coliforms in an urban watershed using antibiotic resistance analysis[J]. Water Research, 2002, 36(17):4273-4282. |
[25] | Hagedorn C, Crozier J B, Mentz K A, et al. Carbon source utilization profiles as a method to identify sources of faecal pollution in water[J]. Journal of Applied Microbiology, 2003, 94(5):792-799. |
[26] | Duran M, Haznedaroğlu B Z, Zitomer D H. Microbial source tracking using host specific FAME profiles of fecal coliforms[J]. Water Research, 2006, 40(1):67-74. |
[27] | Carson C A, Shear B L, Ellersieck M R, et al. Identification of fecal Escherichia coli from humans and animals by ribotyping[J]. Applied & Environmental Microbiology, 2001, 67(4):1503-1507. |
[28] | Carson C A, Shear B L, Ellersieck M R, et al. Comparison of ribotyping and repetitive extragenic palindromic-PCR for identification of fecal Escherichia coli from humans and animals[J]. Applied & Environmental Microbiology, 2003, 69(3):1836-1839. |
[29] | Hahm B K, Maldonado Y, Schreiber E, et al. Subtyping of foodborne and environmental isolates of Escherichia coli by multiplex-PCR rep-PCR PFGE ribotyping and AFLP[J]. Journal of Microbiological Methods, 2003, 53(3):387-399. |
[30] | Khatib L, Tsai Y, Olson B. A biomarker for the identification of cattle fecal pollution in water using the LTⅡa toxin gene from enterotoxigenic Escherichia coli[J]. Applied Microbiology and Biotechnology, 2002, 59(1):97-104. |
[31] | Khatib L A, Tsai Y L, Olson B H. A biomarker for the identification of swine fecal pollution in water, using the STⅡ toxin gene from enterotoxigenic Escherichia coli[J]. Applied Microbiology and Biotechnology, 2003, 63(2):231-238. |
[32] | Hamilton M J, Yan T, Sadowsky M J. Development of goose-and duck-specific DNA markers to determine sources of Escherichia coli in waterways[J]. Applied and Environmental Microbiology, 2006, 72(6):4012-4019. |
[33] | Clermont O, Lescat M, O'Brien C L, et al. Evidence for a human-specific Escherichia coli clone[J]. Environmental Microbiology, 2008, 10(4):1000-1006. |
[34] | Whitman R L, Katarzyna P K, Shively D A, et al. Incidence of the enterococcal surface protein(esp) gene in human and animal fecal sources[J]. Environmental Science Technology, 2007, 41(17):6090-6095. |
[35] | Myoda S P, Carson C A, Fuhrmann J J, et al. Comparison of genotypic-based microbial source tracking methods requiring a host origin database[J]. Journal of Water & Health, 2003, 1(4):167-180. |
[36] | Layton A, McKay L, Williams D, et al. Development of Bacteroides 16S rRNA gene TaqMan-based real-time PCR assays for estimation of total, human, and bovine fecal pollution in water[J]. Applied and Environmental Microbiology, 2006, 72(6):4214-4224. |
[37] | Bell A, Layton A C, McKay L, et al. Factors influencing the persistence of fecal in stream water[J]. Journal of Environmental Quality, 2009, 38(3):1224-1232. |
[38] | Korajkic A, Brownell M J, Harwood V J. Investigation of human sewage pollution and pathogen analysis at Florida Gulf coast beaches[J]. Journal of Applied Microbiology, 2011, 110(1):174-183. |
[39] | Carson C A, Christiansen J M, Yampara-Iquise H, et al. Specificity of a Bacteroides thetaiotaomicron marker for human feces[J]. Applied and Environmental Microbiology, 2005, 71(8):4945-4949. |
[40] | Shanks O C, Kelty C A, Sivaganesan M, et al. Quantitative PCR for genetic markers of human fecal pollution[J]. Applied and Environmental Microbiology, 2009, 75(17):5507-5513. |
[41] | Lu J, Santo Domingo J, Shanks O C. Identification of chicken-specific fecal microbial sequences using a metagenomic approach[J]. Water Research, 2007, 41(16):3561-3574. |
[42] | Marti R, Mieszkin S, Solecki O, et al. Effect of oxygen and temperature on the dynamic of the dominant bacterial populations of pig manure and on the persistence of pig-associated genetic markers, assessed in river water microcosms[J]. Journal of Applied Microbiology, 2011, 111(5):1159-1175. |
[43] | Fremaux B, Boa T, Yost C K. Quantitative real-time PCR assays for sensitive detection of Canada goose-specific fecal pollution in water sources[J]. Applied and Environmental Microbiology, 2010, 76(14):4886-4889. |
[44] | Dick L K, Bernhard A E, Brodeur T J, et al. Host distributions of uncultivated fecal Bacteroidales bacteria reveal genetic markers for fecal source identification[J]. Applied and Environmental Microbiology, 2005, 71(6):3184-3191. |
[45] | Shanks O C, Atikovic E, Blackwood A D, et al. Quantitative PCR for detection and enumeration of genetic markers of bovine fecal pollution[J]. Applied and Environmental Microbiology, 2008, 74(3):745-752. |
[46] | Mieszkin S, Yala J F, Joubrel R, et al. Phylogenetic analysis of Bacteroidales 16S rRNA gene sequences from human and animal effluents and assessment of ruminant faecal pollution by real-time PCR[J]. Journal of Applied Microbiology, 2010, 108(3):974-984. |
[47] | Mieszkin S, Furet J P, Corthier G, et al. Estimation of pig fecal contamination in a river catchment by real-time PCR using two pig-specific Bacteroidales 16S rRNA genetic markers[J]. Applied and Environmental Microbiology, 2009, 75(10):3045-3054. |
[48] | 王显贵, 郭萍, 田云龙, 等. 利用qPCR定量检测水体中猪源拟杆菌特异性生物标记的研究[J]. 农业环境科学学报, 2013, 32(11):2302-2308. WANG Xian-gui, GUO Ping, TIAN Yun-long, et al. Quantification of swine-specific Bacteroidales in water using qPCR[J]. Journal of Agro-Environment Science, 2013, 32(11):2302-2308. |
[49] | Roslev P, Bukh A S. State of the art molecular markers for fecal pollution source tracking in water[J]. Applied Microbiology and Biotechnology, 2011, 89(5):1341-1355. |
[50] | Santo Domingo J W, Bambic D G, Edge T A, et al. Quo vadis source tracking? Towards a strategic framework for environmental monitoring of fecal pollution[J]. Water Research, 2007, 41(16):3539-3552. |
[51] | Savichtcheva O, Okayama N, Okabe S. Relationships between Bacteroides 16S rRNA genetic markers and presence of bacterial enteric pathogens and conventional fecal indicators[J]. Water Research, 2007, 41(16):3615-3628. |
[52] | Girones R, Ferrús M A, Alonso J L, et al. Molecular detection of pathogens in water:The pros and cons of molecular techniques[J]. Water Research, 2010, 44(15):4325-4339. |
[53] | Gourmelon M, Caprais M P, Mieszkin S, et al. Development of microbial and chemical MST tools to identify the origin of the faecal pollution in bathing and shellfish harvesting waters in France[J]. Water Research, 2010, 44(16):4812-4824. |
[54] | Sauer E P, VandeWalle J L, Bootsma M J, et al. Detection of the human specific Bacteroides genetic marker provides evidence of widespread sewage contamination of stormwater in the urban environment[J]. Water Research, 2011, 45(14):4081-4091. |
[55] | Weidhaas J L, Macbeth T W, Olsen R L, et al. Correlation of quantitative PCR for a poultry-specific Brevibacterium marker gene with bacterial and chemical indicators of water pollution in a watershed impacted by land application of poultry litter[J]. Applied and Environmental Microbiology, 2011, 77(6):2094-2102. |
[56] | Gawler A H, Beecher J E, Brandāo J, et al. Validation of host-specific Bacteroidales 16S rRNA genes as markers to determine the origin of faecal pollution in Atlantic Rim countries of the European Union[J]. Water Research, 2007, 41(16):3780-3784. |
[57] | Ahmed W, Goonetilleke A, Powell D, et al. Evaluation of multiple sewage-associated Bacteroides PCR markers for sewage pollution tracking[J]. Water Research, 2009, 43(19):4872-4877. |
[58] | Okabe S, Okayama N, Savichtcheva O, et al. Quantification of host-specific Bacteroides-Prevotella 16S rRNA genetic markers for assessment of fecal pollution in freshwater[J]. Applied Microbiology & Biotechnology, 2007, 74(4):890-901. |
[59] | Dick L K, Stelzer E A, Bertke E E, et al. Relative decay of bacteroidales microbial source tracking markers and cultivated Escherichia coli in freshwater microcosms[J]. Applied & Environmental Microbiology, 2010, 76(10):3255-3262. |
[60] | Field K G, Samadpour M. Fecal source tracking, the indicator paradigm, and managing water quality[J]. Water Research, 2007, 41(16):3517-3538. |
[61] | Walters S P, Yamahara K M, Boehm A B. Persistence of nucleic acid markers of health-relevant organisms in seawater microcosms:Implications for their use in assessing risk in recreational waters[J]. Water Research, 2009, 43(19):4929-4939. |
[62] | Bae S, Wuertz S. Survival of host-associated bacteroidales cells and their relationship with Enterococcus spp., Campylobacter jejuni, Salmonella enterica serovar Typhimurium, and Adenovirus in freshwater microcosms as measured by propidium monoazide-quantitative PCR[J]. Applied & Environmental Microbiology, 2012, 78(4):922-932. |
[63] | Bae S, Wuertz S. Rapid decay of host-specific fecal Bacteroidales cells in seawater as measured by quantitative PCR with propidium monoazide[J]. Water Research, 2009, 43(19):4850-4859. |
[64] | Liang Z, He Z, Zhou X, et al. High diversity and differential persistence of fecal Bacteroidales population spiked into freshwater microcosm[J]. Water Research, 2011, 46(1):247-257 |
[65] | Bae S, Wuertz S. Discrimination of viable and dead fecal Bacteroidales bacteria by quantitative PCR with propidium monoazide[J]. Applied & Environmental Microbiology, 2009, 75(9):2940-2944. |
[66] | Bae S, Wuertz S. Decay of host-associated Bacteroidales cells and DNA in continuous-flow freshwater and seawater microcosms of identical experimental design and temperature as measured by PMA-qPCR and qPCR[J]. Water Research, 2015, 70:205-213. |
[67] | Walters S P, Field K G. Survival and persistence of human and ruminant-specific faecal Bacteroidales in freshwater microcosms[J]. Environmental Microbiology, 2009, 11(6):1410-1421. |
[68] | Tambalo D D, Fremaux B, Boa T, et al. Persistence of host-associated Bacteroidales gene markers and their quantitative detection in an urban and agricultural mixed prairie watershed[J]. Water Research, 2012, 46(9):2891-2904. |
[69] | Ekaterina S, Johan A, Pettersson T J R, et al. Decay of Bacteroidales genetic markers in relation to traditional fecal indicators for water quality modeling of drinking water sources[J]. Environmental Science & Technology, 2012, 46(2):892-900. |
[70] | Boehm A B, Yamahara K M, Love D C, et al. Covariation and photoinactivation of traditional and novel indicator organisms and human viruses at a sewage-impacted marine beach[J]. Environmental Science & Technology, 2009, 43(21):8046-8052. |
[71] | Kreader C A. Persistence of PCR-detectable Bacteroides distasonis from human feces in river water[J]. Applied & Environmental Microbiology, 1998, 64(10):4103-4105. |
[72] | Kobayashi A, Sano D, Okabe S. Effects of temperature and predator on the persistence of host-specific Bacteroides-Prevotella genetic markers in water[J]. Water Science & Technology, 2013, 67(4):838-845. |
[73] | 冯广达, 邓名荣, 郭俊, 等. 广东某农村塘坝饮用水污染的微生物溯源[J]. 中国环境科学, 2011, 31(1):96-104. FENG Guang-da, DENG Ming-rong, GUO Jun, et al. Microbial source tracking of the pollution in pond-drinking water in a country of Guangdong[J]. China Environmental Science, 2011, 31(1):96-104. |
[74] | 冯广达, 邓名荣, 郭俊, 等. 利用PCR-DGGE溯源典型农村塘坝饮用水中的污染[J]. 环境科学学报, 2011, 31(3):468-475. FENG Guang-da, DENG Ming-rong, GUO Jun, et al. Microbial source tracking of pollution in typical rural pond-drinking water using PCR-DGGE[J]. Acta Scientiae Circumstantiae, 2011, 31(3):468-475. |
[75] | 张曦, 朱昌雄, 冯广达, 等. 基于拟杆菌特异性16S rRNA基因的塘坝型饮用水污染溯源研究[J]. 农业环境科学学报, 2011, 30(9):1880-1887. ZHANG Xi, ZHU Chang-xiong, FENG Guang-da, et al. Potential use of Bacteroidales specific 16S rRNA in tracking the rural pond-drinking water pollution[J]. Journal of Agro-Environment Science, 2011, 30(9):1880-1887. |
[76] | 冯雯雯. 大连近岸海域微生物源示踪技术的应用研究[D]. 大连:大连海事大学, 2011. DOI:doi:10. 7666/d. y1895918. FENG Wen-wen. Application research on microbial source tracking technology in Dalian beach watershed[D]. Dalian:Dalian Maritime University, 2011. DOI:doi:10. 7666/d. y1895918. |