文章信息
- 易亚科, 周志波, 陈光辉
- YI Ya-ke, ZHOU Zhi-bo, CHEN Guang-hui
- 土壤酸碱度对水稻生长及稻米镉含量的影响
- Effects of soil pH on growth and grain cadmium content in rice
- 农业环境科学学报, 2017, 36(3): 428-436
- Journal of Agro-Environment Science, 2017, 36(3): 428-436
- http://dx.doi.org/10.11654/jaes.2016-1274
文章历史
- 收稿日期: 2016-10-07
2. 南方粮油作物协同创新中心, 长沙 410128
2. Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha 410128, China
工业“三废”、农药化肥的不合理使用等造成了重金属镉对生态环境的严重污染,危害人类健康[1-3]。镉通过食物、大气等进入人体,且能在人体内长期保持,对人体骨骼、肾脏、肝脏等产生毒害作用[4-6]。水稻具有富集重金属镉的习性,通过吸收、转运将镉积累至稻米中,导致粮食安全问题[7-8]。众多学者对水稻镉污染防治进行了研究,稻米对重金属镉的吸收与积累受基因和环境的综合作用[9-10],土壤有效镉含量、水分管理、施肥等环境因素均能影响镉吸收,而土壤酸碱度是影响有效镉含量和稻米镉含量的关键因素[11-17]。但前人有关土壤改良剂、稻田水分管理等降低稻米中镉含量的研究,只提出土壤pH值是影响稻米镉含量的关键因素,而未对土壤酸碱度引起水稻生长发育及稻米镉含量同步变化的相关性作深入探究。本研究以5个早稻品种、4个晚稻品种为对象,对土壤不同酸碱度条件下水稻生长发育及稻米镉含量进行了探究,旨在明确土壤不同酸碱度条件下稻米镉吸收的规律,为选育稳定的镉低积累水稻品种、改良镉污染稻田提供技术参考,为保障我国粮食安全提供重要的参考依据。
1 材料与方法 1.1 供试土壤供试土壤全部采自湖南省湘潭县,采集0~20 cm耕作层土壤,经风干、粉碎、混匀后用于盆栽试验,基本理化性质详见表 1。
早稻供试材料5个品种,晚稻供试材料4个品种,其品种类型和生育类型详见表 2。
试验地点设在湖南农业大学水稻科学研究所遮雨网室,采用长×宽×高=47 cm×35 cm×17 cm的塑料盆,每盆装取混合均匀的土样18 kg,设置土壤pH值为4.0、5.0、6.0、7.0、8.0五个处理组,3次重复。土壤酸碱度调节于移栽前30 d开始,pH值为5.0及以下采用硫酸溶液调节,pH值为6.0及以上采用氢氧化钠溶液调节,待其基本稳定后用相对应pH值的硫酸(或氢氧化钠)溶液浇灌,保持土壤酸碱度的稳定。调节酸碱度用水采用无污染自来水,镉含量小于0.005 mg·kg-1。
早稻采用小拱地膜保温湿润育秧,2015年3月27日播种,5月6日移栽;晚稻采用湿润育秧,2015年6月21日播种,7月21日在早稻收获后的土壤上移栽。移栽时选择长势均匀一致的秧苗,每盆植4蔸,常规稻每蔸4粒谷苗,杂交稻每蔸2粒谷苗。移栽前一次性施用复合肥(N+P2O5+K2O≥35%,15-8-12)作基肥,早稻每盆施2.5 g,晚稻每盆施3 g;追肥施尿素,溶于水后浇灌,早稻每盆施0.5 g(5月18日),晚稻每盆施0.6 g(8月1日)。全生育期淹水1~4 cm处理,病虫害管理按照常规方式进行。
1.4 镉含量测定 1.4.1 土壤镉含量测定水稻移栽前、移栽后20 d、移栽后40 d、抽穗期、收获当日取各盆全深度土壤,同一土壤酸碱度条件下的每个品种盆栽土壤3次重复混合成一个湿样,测定其镉含量。土壤中的有效镉含量采用DTPA提取、石墨炉原子吸收分光光度法(GB/T 23739—2009)测定,土壤全镉含量采用HF-HNO3-HClO4消化、原子吸收分光光度法测定[18]。同时做空白对照。
1.4.2 精米镉含量测定水稻黄熟后分盆收取全部稻谷,人工脱粒、晒干,用精米机打成精米后采用万能粉碎机将其粉碎,根据湿式消解、石墨炉原子吸收分光光度法(GB/T 5009.15—2014)测定精米中的镉含量。同时做空白对照。
1.5 考种植株收获前用卷尺测定株高,以茎基部到所有有效穗向上伸展最高点的长度表示株高。收取全部盆栽植株,分盆进行考种,考查穗长、实粒数、结实率、千粒重及单株产量。
1.6 数据处理与分析数据处理和分析采用SPSS 22.0统计软件。原始数据采用二因素方差分析(Two-way ANOVA)并采用新复极差法(Duncan)进行差异显著性检验。采用Pearson相关性分析确定稻米镉含量与水稻生长发育、产量以及土壤有效镉的关系。
2 结果与分析 2.1 镉胁迫下土壤酸碱度对水稻生长发育的影响由表 3可知,品种与土壤pH值对水稻农艺性状及产量的影响均达到显著水平(P < 0.05),即均存在主效应,品种对株高、穗长、千粒重、结实率的影响大于土壤pH值(品种对株高、穗长、千粒重、结实率贡献的离差平方和均大于土壤pH值),土壤pH值对每穗实粒数和单株产量的影响大于品种(土壤pH值对每穗实粒数和单株产量贡献的离差平方和均大于品种)。品种与土壤pH值的交互作用对水稻农艺性状及产量的影响达到极显著水平(P < 0.01),即存在交互效应,其交互作用对株高、每穗实粒数、单株产量的影响介于品种和土壤pH值之间,对穗长、千粒重、结实率的影响均低于品种和土壤pH值。
![]() |
在土壤pH值为4.0~8.0范围内,土壤pH值对水稻农艺性状及产量均产生显著影响(图 1);土壤pH值低于5.0或高于7.0会显著影响水稻的株高、每穗实粒数、结实率和单株产量,其指标均显著下降。株高、每穗实粒数、千粒重、结实率、单株产量随着土壤pH值的升高呈先增后减的趋势,在pH值为6.0时达到最大值,在pH值为4.0或8.0时最小;穗长随着pH值的升高呈线性递减趋势,pH值为4.0时最大,pH值为8.0时显著减小,说明较高的土壤pH值条件下穗长较短。
![]() |
图 1 土壤酸碱度对水稻农艺性状及产量的影响 Figure 1 Effects of soil pH on agronomic characters and yield in rice 不同小写字母表示不同土壤pH值间差异显著(P < 0.05)。下同 Different small letters indicate significant differences (P < 0.05) among different soil pH. The same as below |
分析早稻结果(表 4)可知,品种与土壤pH值对稻米镉含量的影响均达到极显著水平(P < 0.01),即均存在主效应,且土壤pH值对稻米镉含量的影响大于品种(土壤pH值对稻米镉含量贡献的离差平方和为0.227,大于品种贡献的离差平方和0.126)。品种与土壤pH值的交互作用对稻米镉含量的影响达到极显著水平(P < 0.01),即存在交互效应,且其交互效应对稻米镉含量的影响大于品种而小于土壤pH值。
![]() |
晚稻结果与早稻有一定的差异(表 4),品种与土壤pH值对稻米镉含量的影响均达到极显著水平(P < 0.01),即均存在主效应;与早稻不同的是,晚稻品种对稻米镉含量的影响大于土壤pH值,且品种与土壤pH值的交互作用对稻米镉含量的影响未达到显著水平(P=0.070)。
在土壤pH值为4.0~8.0范围内,早稻稻米镉含量呈先增后减趋势分布(图 2A),在土壤pH值为6.0时达到最大值且超过国家安全标准线(GB 2762—2012,0.2 mg·kg-1);在土壤pH值为4.0、5.0、7.0、8.0时,早稻稻米镉含量均未超过0.2 mg·kg-1,相对pH值为6.0均显著降低,在土壤pH值为4.0时最小、8.0次之。
![]() |
图 2 土壤酸碱度对稻米镉含量的影响 Figure 2 Effects of soil pH on Cd content in polished rice 图中虚线表示国家安全标准线 |
在土壤pH值为4.0~8.0范围内,晚稻稻米镉含量变化与早稻保持基本一致(图 2B),在pH值为6.0时最大,在pH值为4.0、5.0、8.0时稻米镉含量相对6.0显著降低,且在土壤pH值为8.0时最小,但晚稻稻米镉含量均未超过0.2 mg·kg-1。
2.3 生育类型与稻型对稻米镉富集系数的影响水稻类型对稻米镉富集系数的影响达到极显著水平(表 5),即存在主效应;而生育类型对稻米镉富集系数的影响未达到显著水平(P=0.148),即不存在主效应;水稻稻型与生育类型的交互作用对稻米镉富集系数的影响未达到显著水平(P=0.223)。
![]() |
由图 3可知,水稻品种类型对稻米镉富集系数的影响以超级杂交稻为最大,其次为常规稻,杂交稻最小,表明超级杂交稻稻米镉富集能力高于常规稻和杂交稻。
![]() |
图 3 稻型对稻米镉富集系数的影响 Figure 3 Effects of cultivar type on Cd enrichment coefficient in polished rice 不同小写字母表示不同稻型间差异显著(P < 0.05) Different small letters indicate significant differences (P < 0.05) in different types |
水稻生育期和土壤pH值对土壤全镉含量的影响均具有主效应(表 6),生育期对土壤全镉含量的影响达到极显著水平(P < 0.01),土壤pH值对全镉含量的影响达到显著水平(P < 0.05),且生育期对土壤全镉含量的影响大于土壤pH值。生育期与土壤pH值对土壤全镉含量的影响存在交互效应,其交互效应对土壤全镉含量的影响达到极显著水平(P < 0.01),其影响大于土壤pH值而小于生育期(离差平方和为0.081)。
![]() |
随着水稻的生长发育,土壤全镉含量先降低后升高(图 4),分蘖期及以后土壤全镉含量显著下降,以孕穗期降幅为最大。分蘖期、孕穗期土壤全镉含量显著下降,孕穗期之后,抽穗期、成熟期土壤全镉含量显著上升。
![]() |
图 4 不同生育期对土壤全镉含量的影响 Figure 4 Effects of growth stage on total Cd content in soil 不同小写字母表示不同生育期间差异显著(P < 0.05) Different small letters indicate significant differences (P < 0.05) among different growth stages |
稻米镉含量与各指标的相关性见表 7。稻米镉含量与株高、单株产量极显著相关(P < 0.01),相关系数分别为0.412、0.371,表明水稻株高和单株产量越高其稻米镉含量可能越高。而稻米镉含量与穗长、每穗实粒数、千粒重和结实率相关性并不显著,说明稻米镉含量与其并无必然联系。在土壤pH值为4.0~8.0条件下,稻米镉含量与移栽前土壤有效镉含量极显著相关(P < 0.01),相关系数为0.710,表明有效镉含量较高的土壤上种植的水稻稻米镉含量可能较高。
![]() |
重金属镉胁迫条件下,单株产量在梯度土壤pH值上并非呈线性变换,水稻生长发育在土壤不同酸碱度条件下差异性显著,单株产量受水稻品种和土壤pH值的交互影响,且土壤pH值的贡献度大于品种效应。本研究中单株产量下降的主要原因为每穗实粒数和结实率下降(相关系数分别为0.842、0.583,P < 0.01)。曾勇军等[19]的盆栽试验结果也表明双季早、晚稻每穗粒数、结实率和千粒重随着土壤pH值的下降表现出下降的趋势;步金宝等[20]的研究表明盐碱胁迫下水稻产量下降的原因是分蘖、有效穗数、成穗率、穗粒数、千粒重下降;杨福等[21]的研究表明水稻单位面积的有效穗数不是减产的原因,而是由于每穗实粒数减少、千粒重减轻。土壤酸碱度对水稻生长发育造成影响的根本原因是土壤酸化会影响根系生长[22-23]。
稻米镉含量相关性分析结果表明,稻米镉含量与移栽前土壤有效镉含量、株高、单株产量极显著相关,而与土壤pH值相关性并不显著;但在双因素分析中,土壤酸碱度对稻米镉含量的贡献度大于品种(表 4),造成结果不一致的原因为稻米镉含量与土壤不同酸碱度并非线性关系,在调节土壤酸碱度时加入硫酸使土壤结构被破坏[24],导致有效镉含量呈不规律变化。在土壤pH值为6.0时稻米镉含量最高,与Kabata-Pendias等[25]、潘杨等[26]结论一致。廖启林等[27]结果也表明,通常情况下土壤pH与稻米镉含量不存在显著相关性,当土壤镉含量超过0.2 mg·kg-1且土壤有机质含量介于2.5%~6.5%时,稻米镉含量与土壤pH呈显著负相关。土壤pH值低于5.0时根系活力以及根系生长指标显著下降[28],对水稻根系吸收及运输营养物质和重金属镉均产生影响,从而导致严重减产、稻米镉含量低。土壤pH值大于6.0,OH-的作用抑制了金属元素Cd水解,更少的H+与Cd2+竞争吸附位点[29-30],此外还会影响土壤中的镉形态分布[13],使能够被水稻吸收的镉含量减少,从而降低稻米镉含量。
稻米镉含量受基因、环境和二者的交互作用影响[9-10],本研究也表明稻米镉含量(或镉富集系数)与水稻品种及环境因素(土壤pH值)相关,与品种生育类型相关性不显著,稻米镉含量由高到低为超级杂交稻、常规稻、杂交稻,仲维功等[31]也认为常规籼稻比杂交稻具有更强的镉吸收及转运至籽粒的能力;而曾翔等[32]结果表明糙米含镉量从高到低依次为特种稻、常规早籼稻、三系杂交晚稻、两系杂交晚稻、常规晚籼稻、常规粳稻、爪洼稻;张磊等[33]发现常规稻镉耐性优于杂交稻和超级稻;而徐燕玲等[9]认为依据品种类型评价稻米镉的公平性有待考虑。依据本研究的结果来看,虽然稻米镉含量在品种类型上具有一定的规律性,可以在筛选镉低积累水稻品种时作为一个考虑因素,但不宜片面以品种类型来考虑稻米镉的富集能力。
土壤中的总镉含量降幅与稻米镉含量呈完全一致趋势,土壤中总镉含量并非随着水稻生长发育而一直下降,而是先大幅度下降后小幅度上升;植株中老叶最初积累了较多的镉使得土壤中镉含量下降,而后死亡落于土壤中被重新降解吸收使得土壤中镉含量小幅度上升[34];也可能存在类似于AtPDR8[35]的镉外排转运蛋白,使得植株中镉含量积累到一定程度后向外排出。孕穗期土壤中全镉含量降幅最大,平均达到30%以上,是因该时期水稻植株生长(干物质量)达到最大[36],且原位土壤中的镉活性高(有效镉含量占全镉含量的70%),使植株中镉积累含量高,土壤中的镉富集至植株中的积累量大,故土壤镉含量降幅最大。水稻各关键生育期土壤中的镉形态变化及植株中镉积累量的变化值得进一步深入探究,以确定镉高积累水稻品种在修复重金属镉污染土壤时是否在孕穗期收获取得最佳效果。
建议在治理镉污染土壤降低稻米镉吸收含量时,不宜片面提高土壤的pH值;在选育水稻镉低积累品种时,宜选择pH值为5~6的土壤。
4 结论(1)在土壤pH值4.0~8.0范围内,品种、土壤pH值及二者交互作用对水稻农艺性状及产量的影响均达到显著水平,单株产量下降的主要原因是每穗实粒数和结实率下降。
(2)在土壤pH值4.0~8.0范围内,早稻品种、土壤pH值及二者交互作用对精米镉含量的影响均达到极显著水平;晚稻品种与土壤pH值对精米镉含量的影响达到极显著水平,但其交互作用的影响未达到显著水平。镉富集系数在水稻品种类型之间达到显著水平,由高到低为超级杂交稻、常规稻、杂交稻;生育类型对精米镉富集系数的影响未达到显著水平。
(3)在土壤pH值4.0~8.0范围内,精米镉含量与株高、单株产量极显著相关,与穗长、每穗实粒数、千粒重和结实率相关性不显著,与移栽前土壤有效镉含量极显著相关。
[1] | Hao L B, Tian M, Zhao X Y, et al. Spatial distribution and sources of trace elements in surface soils, Changchun, China:Insights from stochastic models and geostatistical analyses[J]. Geoderma, 2016, 273: 54–63. DOI:10.1016/j.geoderma.2016.03.017 |
[2] | 闫湘, 王旭, 李秀英, 等. 我国水溶肥料中重金属含量、来源及安全现状[J]. 植物营养与肥料学报, 2016, 22(1): 8–18. YAN Xiang, WANG Xu, LI Xiu-ying, et al. Contents, source and safety status of major heavy metals in water-soluble fertilizers in China[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(1): 8–18. |
[3] | 宋文恩, 陈世宝, 唐杰伟. 稻田生态系统中镉污染及环境风险管理[J]. 农业环境科学学报, 2014, 33(9): 1669–1678. SONG Wen-en, CHEN Shi-bao, TANG Jie-wei. Cadmium pollution and its environmental risk management in rice ecosystem[J]. Journal of Agro-Environment Science, 2014, 33(9): 1669–1678. |
[4] | Wu H Y, Liao Q L, Chillrud S N, et al. Environmental exposure to cadmium:Health risk assessment and its associations with hypertension and impaired kidney function[J]. Scientific Reports, 2016, 6: 1–9. DOI:10.1038/s41598-016-0001-8 |
[5] | Chen C, Xun P C, Nishijo M, et al. Cadmium exposure and risk of lung cancer:A meta-analysis of cohort and case-control studies among general and occupational populations[J]. Journal of Exposure Science and Environmental Epidemiologyl, 2016, 26(5): 437–444. DOI:10.1038/jes.2016.6 |
[6] | Chaney R L, Reeves P G, Ryan J A, et al. An improved understanding of soil Cd risk to humans and low cost methods to phytoextract Cd from contaminated soils to prevent soil Cd risks[J]. Biometals, 2004, 17(5): 549–553. DOI:10.1023/B:BIOM.0000045737.85738.cf |
[7] | 朱智伟, 陈铭学, 牟仁祥, 等. 水稻镉代谢与控制研究进展[J]. 中国农业科学, 2014, 47(18): 3633–3640. ZHU Zhi-wei, CHEN Ming-xue, MOU Ren-xiang, et al. Advances in research of cadmium metabolism and control in rice plants[J]. Scientia Agricultura Sinica, 2014, 47(18): 3633–3640. |
[8] | Liu D Q, Zhang C H, Chen X, et al. Effects of pH, Fe, and Cd on the uptake of Fe2+ and Cd2+ by rice[J]. Environmental Science and Pollution Research, 2013, 20(12): 8947–8954. DOI:10.1007/s11356-013-1855-y |
[9] | 徐燕玲, 陈能场, 徐胜光, 等. 低镉累积水稻品种的筛选方法研究——品种与类型[J]. 农业环境科学学报, 2009, 28(7): 1346–1352. XU Yan-ling, CHEN Neng-chang, XU Sheng-guang, et al. Breeding rice cultivars with low accumulation of cadmium:Cultivars versus types[J]. Journal of Agro-Environment Science, 2009, 28(7): 1346–1352. |
[10] | 滕振宁, 张玉烛, 方宝华, 等. 用AMMI双标图分析早稻稻米镉含量的基因型与环境互作效应[J]. 生态环境学报, 2016, 25(4): 692–697. TENG Zhen-ning, ZHANG Yu-zhu, FANG Bao-hua, et al. AMMI-Biplot analysis of genotypic and environmental effects on cadmium content in early rice[J]. Ecology and Environmental Sciences, 2016, 25(4): 692–697. |
[11] | 张标金, 罗林广, 魏益华, 等. 不同基因型水稻镉积累动态差异分析[J]. 中国农学通报, 2015, 31(9): 25–30. ZHANG Biao-jin, LUO Lin-guang, WEI Yi-hua, et al. Analysis of cadmium accumulation dynamics in rice with distinct genotypes[J]. Chinese Agricultural Science Bulletin, 2015, 31(9): 25–30. |
[12] | 曾卉, 周航, 邱琼瑶, 等. 施用组配固化剂对盆栽土壤重金属交换态含量及在水稻中累积分布的影响[J]. 环境科学, 2014, 35(2): 727–732. ZENG Hui, ZHOU Hang, QIU Qiong-yao, et al. Effects of group matching curing agent on exchangeable Pb, Cd, Zn contents in the potted soils and their accumulation in rice plants[J]. Environmental Science, 2014, 35(2): 727–732. |
[13] | 杨忠芳, 陈岳龙, 钱鑂, 等. 土壤pH对镉存在形态影响的模拟实验研究[J]. 地学前缘, 2005, 12(1): 252–260. YANG Zhong-fang, CHEN Yue-long, QIAN Xun, et al. A study of the effect of soil pH on chemical species of cadmium by simulated experiments[J]. Earth Science Frontiers, 2005, 12(1): 252–260. |
[14] | 王美娥, 彭驰, 陈卫平. 水稻品种及典型土壤改良措施对稻米吸收镉的影响[J]. 环境科学, 2015, 36(11): 4283–4290. WANG Mei-e, PENG Chi, CHEN Wei-ping. Effects of rice cultivar and typical soil improvement measures on the uptake of Cd in rice grains[J]. Environmental Science, 2015, 36(11): 4283–4290. |
[15] | Liu J G, Qian M, Cai G L, et al. Uptake and translocation of Cd in different rice cultivars and the relation with Cd accumulation in rice grain[J]. Journal of Hazardous Materials, 2007, 143(1/2): 443–447. |
[16] | 陈喆, 张淼, 叶长城, 等. 富硅肥料和水分管理对稻米镉污染阻控效果研究[J]. 环境科学学报, 2015, 35(12): 4003–4011. CHEN Zhe, ZHANG Miao, YE Chang-cheng, et al. Mitigation of Cd accumulation in rice (Oryza sativa L.) with Si fertilizers and irrigation managements[J]. Acta Scientiae Circumstantiae, 2015, 35(12): 4003–4011. |
[17] | 邹佳玲, 辜娇峰, 杨文弢, 等.不同pH值灌溉水对土壤Cd生物有效性及稻米Cd含量的影响[J/OL].环境科学学报, 2016[2016-10-07].http://www.cnki.net/kcms/detail/11.1843.X.20160715.1531.003.html ZOU Jia-ling, GU Jiao-feng, YANG Wen-tao, et al. Effects of different pH values of irrigation water on soil Cd bioavailability and Cd content in rice[J/OL]. Acta Scientiae Circumstantiae, 2016[2016-10-07]. http://www.cnki.net/kcms/detail/11.1843.X.20160715.1531.003.html |
[18] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. LU Ru-kun. Analytical methods of soil and agro-chemistry[M]. Beijing: China Agricultural Science and Technology Press, 2000. |
[19] | 曾勇军, 周庆红, 吕伟生, 等. 土壤酸化对双季早、晚稻产量的影响[J]. 作物学报, 2014, 40(5): 899–907. ZENG Yong-jun, ZHOU Qing-hong, LÜ Wei-sheng, et al. Effects of soil acidification on the yield of double season rice[J]. Acta Agronomica Sinica, 2014, 40(5): 899–907. DOI:10.3724/SP.J.1006.2014.00899 |
[20] | 步金宝, 赵宏伟, 刘化龙, 等. 盐碱胁迫对寒地粳稻产量形成机理的研究[J]. 农业现代化研究, 2012, 33(4): 485–488. BU Jin-bao, ZHAO Hong-wei, LIU Hua-long, et al. Study on yield formation mechanism of salinity and alkalinity stress in japonica rice of cold region[J]. Research of Agricultural Modernization, 2012, 33(4): 485–488. |
[21] | 杨福, 梁正伟, 王志春, 等. 水稻耐盐碱品种 (系) 筛选试验与省区域试验产量性状的比较[J]. 吉林农业大学学报, 2007, 29(6): 596–600. YANG Fu, LIANG Zheng-wei, WANG Zhi-chun, et al. Comparison of yield characters between screening test of saline alkali tolerant rice varieties and regional experiment[J]. Journal of Jilin Agricultural University, 2007, 29(6): 596–600. |
[22] | 王丽红, 孙飞, 陈春梅, 等. 酸化土壤铝和镉对水稻幼苗根系生长的复合影响[J]. 农业环境科学学报, 2013, 32(12): 2511–2512. WANG Li-hong, SUN Fei, CHEN Chun-mei, et al. Combined effects of aluminum and cadmium in acidified soil on root growth in rice seedlings[J]. Journal of Agro-Environment Science, 2013, 32(12): 2511–2512. |
[23] | 曾庆玲, 黄晓华, 周青. 酸雨对水稻、小麦和油菜种子萌发的影响[J]. 环境科学, 2005, 26(1): 181–184. ZENG Qing-ling, HUANG Xiao-hua, ZHOU Qing. Effect of acid rain on seed germination of rice, wheat and rape[J]. Environmental Science, 2005, 26(1): 181–184. |
[24] | 单胜道, 俞劲炎, 于伟. 酸雨与土壤生态系统[J]. 生态农业研究, 2000, 8(2): 20–23. SHAN Sheng-dao, YU Jin-yan, YU Wei. Acid rain and soil ecosystem[J]. Eco-agriculture Research, 2000, 8(2): 20–23. |
[25] | Kabata-Pendias A, Pendias H. Trace elements in soils and plants[M]. Third Edition. Boca Raton: CSC Press, 2001. |
[26] | 潘杨, 赵玉杰, 周其文, 等. 南方稻区土壤pH变化对稻米吸收镉的影响[J]. 安徽农业科学, 2015, 43(16): 235–238. PAN Yang, ZHAO Yu-jie, ZHOU Qi-wen, et al. Influence of soil pH on cadmium absorption by rice in main rice production region of south China[J]. Journal of Anhui Agricultural Sciences, 2015, 43(16): 235–238. |
[27] | 廖启林, 刘聪, 王轶, 等. 水稻吸收Cd的地球化学控制因素研究——以苏锡常典型区为例[J]. 中国地质, 2015, 42(5): 1621–1632. LIAO Qi-lin, LIU Cong, WANG Yi, et al. Geochemical characteristics of rice uptake of cadmium and its main controlling factors:A case study of the Suxichang (Suzhou-Wuxi-Changzhou) typical area[J]. Geology in China, 2015, 42(5): 1621–1632. |
[28] | 吴玺, 梁婵娟. 模拟酸雨对水稻根系激素含量与生长的影响[J]. 环境化学, 2016, 35(3): 568–574. WU Xi, LIANG Chan-juan. Effects of simulated acid rain on hormone concentration and growth of rice roots[J]. Environmental Chemistry, 2016, 35(3): 568–574. |
[29] | 张会民, 徐明岗, 吕家珑, 等. pH对土壤及其组分吸附和解吸镉的影响研究进展[J]. 农业环境科学学报, 2005, 24(Suppl): 320–324. ZHANG Hui-min, XU Ming-gang, LÜ Jia-long, et al. A review of studies on effects of pH on cadmium sorption and desorption in soil[J]. Journal of Agro-Environment Science, 2005, 24(Suppl): 320–324. |
[30] | 刘文菊, 张西科, 尹君, 等. 镉在水稻根际的生物有效性[J]. 农业环境保护, 2000, 19(3): 184–187. LIU Wen-ju, ZHANG Xi-ke, YIN Jun, et al. Cadmium bioavailability in rhizosphere of paddy soil[J]. Agro-Environmental Protection, 2000, 19(3): 184–187. |
[31] | 仲维功, 杨杰, 陈志德, 等. 水稻品种及其器官对土壤重金属元素Pb、Cd、Hg、As积累的差异[J]. 江苏农业学报, 2006, 22(4): 331–338. ZHONG Wei-gong, YANG Jie, CHEN Zhi-de, et al. Differences in accumulation and distribution of Pb, Cd, Hg and As in rice cultivars and their organs (Oryza sativa L.)[J]. Jiangsu Journal of Agricultural Sciences, 2006, 22(4): 331–338. |
[32] | 曾翔, 张玉烛, 王凯荣, 等. 不同品种水稻糙米含镉量差异[J]. 生态与农村环境学报, 2006, 22(1): 67–69, 83. ZENG Xiang, ZHANG Yu-zhu, WANG Kai-rong, et al. Genotype difference of brown rices in Cd content[J]. Journal of Ecology and Rural Environment, 2006, 22(1): 67–69, 83. |
[33] | 张磊, 杨惟薇, 张超兰, 等. 不同水稻类型对镉的耐性、累积性与转运性质研究[J]. 西南农业学报, 2013, 26(6): 2185–2188. ZHANG Lei, YANG Wei-wei, ZHANG Chao-lan, et al. Cadmium tolerance, accumulation and translocation between 'super' rice, hybrid rice and conventional rice[J]. Southwest China Journal of Agricultural Sciences, 2013, 26(6): 2185–2188. |
[34] | Kashiwagi T, Shindoh K, Hirotsu N, et al. Evidence for separate translocation pathways in determining cadmium accumulation in grain and aerial plant parts in rice[J]. BMC Plant Biology, 2009. DOI:10.1186/1471-2229-9-8 |
[35] | Kim D Y, Bovet L, Maeshima M, et al. The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance[J]. Plant Journal, 2007, 50(2): 207–218. DOI:10.1111/j.1365-313X.2007.03044.x |
[36] | 朴钟泽, 韩龙植, 高熙宗, 等. 水稻干物质量和氮素利用效率性状的配合力分析[J]. 中国水稻科学, 2005, 19(6): 527–532. PIAO Zhong-ze, HAN Long-zhi, KOH Hee-jeong, et al. Analysis on combining ability of dry weight and nitrogen use efficiency in rice[J]. Chinese Journal of Rice Science, 2005, 19(6): 527–532. |