文章信息
- 彭碧莲, 刘铭龙, 隋凤凤, 潘志平, 李恋卿, 潘根兴, 程琨
- PENG Bi-lian, LIU Ming-long, SUI Feng-feng, PAN Zhi-ping, LI Lian-qing, PAN Gen-xing, CHENG Kun
- 生物质炭对小白菜吸收多环芳烃的影响
- Effects of biochar on polycyclic aromatic hydrocarbons (PAHs) bioaccumulation in Chinese cabbage
- 农业环境科学学报, 2017, 36(4): 702-708
- Journal of Agro-Environment Science, 2017, 36(4): 702-708
- http://dx.doi.org/10.11654/jaes.2016-1564
文章历史
- 收稿日期: 2016-12-06
多环芳烃 (PAHs) 是环境中普遍存在的一类持久性有机污染物 (POPs), 主要源于化石燃料的不完全燃烧。PAHs可通过大气沉降和污水灌溉进入土壤而被植物吸收, 进而通过食物链进入人体。PAHs具有较强的“三致”(致癌、致畸、致突变) 作用[1-2], 会对人体健康造成严重威胁, 治理PAHs污染土壤以减少PAHs在作物体内的累积已成为大家关注的热点[3-5]。生物质炭 (Biochar) 是生物质在限氧条件下, 250~750℃之间发生热裂解作用而得到的固态物质[6]。生物质炭具有的特殊的多孔性结构赋予了其较强的吸附性能, 作为一种新型环境修复材料已广泛应用于重金属及有机污染物的修复[7-8]。目前已有很多关于生物质炭用于多环芳烃吸附的研究, 如史兵方等[9]研究了麻疯树籽壳生物质炭对4种PAHs的吸附效果及机理, 结果表明在25℃、添加生物质炭0.15 g、吸附时间60 min的条件下, 萘、蒽、芘和菲的去除率均高达90%以上。Beesley等[10]研究发现, 经过60 d场地试验, 加入生物质炭吸附后土壤中PAHs生物有效性含量显著降低。目前, 虽然已有一些关于生物质炭抑制植物对多环芳烃吸收的研究, 如花莉等[11]研究发现生物质炭的输入使黑麦草中多环芳烃的累积量显著减少了27%~34%。但此类研究多是将一种或几种有机污染物人为添加到土壤中进行的[12-13], 而长期污染的土壤中多环芳烃的迁移转化特性与人为添加的短期效应存在着很大的差别[14-15], 且不同原料的生物质炭对多环芳烃的吸附能力也存在差异[16-17]。孙璇等[18]研究发现, 玉米秸秆炭对芘的饱和吸附量分别是麦秸炭和花生壳炭的2.3倍和4.5倍。因此, 本文选取作物秸秆、畜禽粪便及污泥等不同种类的生物质原料, 以工业区周边长期污染土壤为对象, 通过盆栽试验研究麦秸炭、猪粪炭和污泥炭对小白菜生长及富集PAHs的影响, 以期为降低污染土壤中作物PAHs吸收提供有效途径。
1 材料与方法 1.1 供试材料供试土壤于4月中旬在南京市郊某工业园区周边菜地采集, GPS定位点为31°54´21″N, 118°37´37″E, 采土深度为0~20 cm。采集的土壤于室内自然风干, 剔除植物残根、砂石后, 粉碎过5 mm筛混匀备用。土壤为黄棕壤, 土壤pH 8.36, 有机质37.07 g·kg-1, 全氮1.11 g·kg-1, 速效磷24.09 mg·kg-1, 速效钾161.55 mg·kg-1。土壤中PAHs总含量为2.57 mg·kg-1, 其中萘 (Nap) 301.38 μg·kg-1、苊 (Ace) 315.67 μg·kg-1、芴 (Flu) 4.00 μg·kg-1、菲 (Phe) 162.85 μg·kg-1、蒽 (Ant) 41.17 μg·kg-1、荧蒽 (Fla) 352.82 μg·kg-1、芘 (Pyr) 379.00 μg·kg-1、䓛(Chry) 141.33 μg·kg-1、苯并 (b) 荧蒽 (BbF) 191.33 μg·kg-1、苯并 (k) 荧蒽 (BkF) 177.81 μg·kg-1、苯并 (a) 芘 (BaP) 99.2 μg·kg-1、二苯并 (a, h) 蒽 (DahA) 214.03 μg·kg-1、茚并 (1, 2, 3-c, d) 芘 (InP) 191.09 μg·kg-1。
根据Maliszewska[19]对土壤PAHs污染状况的分级方法, 供试土壤属于严重污染土壤。三种生物质炭分别由小麦秸秆、猪粪、污泥在450℃下便携式炭化机中 (编号:SSBP-5000, 江苏银鼎生物质科技有限公司) 限氧热裂解而成, 分别标记为WBC、PBC、SBC, 其基本性质见表 1。
试验共设七个处理, 每个处理三个重复。将粉碎后过20目筛的三种生物质炭分别按0%、1%、2%比例与土壤混合均匀, 每盆装土2 kg。各处理分别标记为CK、1%WBC、2%WBC、1%SBC、2%SBC、1%PBC、2%PBC。装盆结束后, 沿盆壁加入去离子水, 使得土壤湿度达到最大田间持水量, 静置24 h后播种。本试验在南京农业大学资源与环境学院温室大棚中进行, 供试小白菜品种为四月蔓。2016年5月2日播种, 待出苗一周后间苗, 每盆保留5株, 45 d后采收。小白菜生长期间定时浇水, 使之保持在田间持水量的70%左右。随机调整盆栽摆放位置。
1.3 试剂和仪器Waters 1525高效液相色谱仪, 配备Waters-PAHs专用色谱柱C18(4.6×250 mm, 5 μm) 及Waters 474FLD、Waters 2487UVD双检测器。KH-300DB医用数控超声波清洗器, RE52-98旋转浓缩蒸发仪。
试剂二氯甲烷、正己烷、丙酮均为分析纯, 乙腈为色谱纯。多环芳烃标准物质为美国EPA要求的16种优先检测的PAHs混合标样, 包括萘 (Nap)、苊 (Ace)、苊烯 (Acy)、芴 (FI)、菲 (Phe)、蒽 (Ant)、荧蒽 (Fla)、芘 (Pyr)、苯并 (a) 蒽 (BaA)、䓛(Chry)、苯并 (b) 荧蒽 (BbF)、苯并 (k) 荧蒽 (BkF)、苯并 (a) 芘 (BaP)、二苯并 (a, h) 蒽 (DahA)、苯并 (g, h, i) 芘 (BghiP) 和茚并 (1, 2, 3-c, d) 芘 (InP), 购自美国Supelco公司。
1.4 分析项目和方法小白菜生物量采取直接称量法, 生物质炭灰分含量的测定参照农业行业标准NY/T 1881.5-2010[20], 土壤、其余生物质炭性质测定按鲍士旦推荐方法[21]。土壤、小白菜中PAHs的提取、纯化参见文献[22-23]。在样品分析过程中进行方法空白、平行样以及加标回收率测定, 土壤加标回收率为79%~112%(萘为64%), 植物加标回收率为70%~104%, 符合样品分析要求。高效液相色谱分析条件参见文献[23], 流动相为乙腈和水, 初始乙腈:水=60:40, 经15 min后变为100:0, 再经6 min后又回到初始状态。紫外检测器检测波长设置为254 nm。荧光检测器程序设置为0~6.5 min:λEx=270 nm, λEm=330 nm; 6.5~14.5 min:λEx=245 nm, λEm=390 nm; 14.5~26 min:λEx=290 nm, λEm=430 nm。
1.5 数据分析采用软件Microsoft Excel 2013对试验数据进行统计处理, 采用SPSS 13.0进行单因素方差分析和多重比较 (LSD检验), 显著性检验在α=0.05概率水平下进行。
2 结果与分析 2.1 生物质炭对小白菜生物量的影响各处理小白菜生长45 d后每盆生物量在49.71~61.19 g之间 (图 1), 三种供试生物质炭对盆栽小白菜生物量的影响与其施用量有关。与CK比较, 施炭量在1%水平下, 三种供试生物质炭对小白菜生物量均无显著性影响, 施用2%的麦秸炭和猪粪炭小白菜的生物量分别提高20.03%和22.28%, 而施用污泥炭没有显著性差异。
![]() |
图 1 不同生物质炭处理对小白菜生物量的影响 Figure 1 Effect of different biochar treatments on cabbage biomass 图中不同小写字母代表各处理间差异显著 (P<0.05)。下同 Different lowercase letters indicate significant differences (P < 0.05) among different treatments. The same below |
不同生物质炭及施用量对小白菜吸收PAHs总量的影响见图 2。与CK相比, 施用生物质炭可显著降低小白菜中∑PAHs含量, 降低幅度为13.92%~49.41%。不同类型和施用量的生物质炭对小白菜PAHs吸收的影响不同。施用量在1%水平时, 麦秸炭对小白菜PAHs吸收的降低幅度最大, 达33.21%;猪粪炭和污泥炭则分别显著降低21.35%及17.24%, 二者之间无显著差异。与1%的施用量相比, 2%施用量的麦秸炭和猪粪炭对小白菜PAHs吸收分别降低了24.26%和30.57%, 而污泥炭不同施用量处理间小白菜PAHs的吸收无显著差异。
![]() |
图 2 不同生物质炭处理对小白菜ΣPAHs含量的影响 Figure 2 Effects of biochar treatments on cabbage ΣPAHs content |
生物质炭对小白菜吸收不同种类PAHs的影响不同 (图 3、表 2)。生物质炭施用量在1%水平时, 麦秸炭、猪粪炭对小白菜吸收所有环类的PAHs均显著降低, 其中麦秸炭、猪粪炭和污泥炭对五环类PAHs的抑制率均为最高, 分别达67.13%、56.14%和50.03%。麦秸炭和猪粪炭对二环、三环、四环和六环的抑制率分别在23.91%~37.44%和10.83%~27.69%之间; 污泥炭显著降低小白菜中四环芳烃含量达32.41%, 而对二环、三环、六环没有显著影响。施用量在2%水平时, 麦秸炭、猪粪炭对四环、五环类PAHs的抑制率相对较高, 分别为72.43%、57.16%和68.30%、63.50%, 对二环、三环、六环的抑制范围分别为28.53%~41.27%和19.25%~48.00%。污泥炭对四环、五环降低率分别为29.82%、46.51%, 对二、三、六环类PAHs烃均无显著影响。
![]() |
图 3 不同生物质炭处理对小白菜不同环类PAHs的影响 Figure 3 Effects of biochar treatments on cabbage PAHs content of different species |
![]() |
从不同的PAHs来看, 1%和2%麦秸炭处理下小白菜的二环芳烃Nap含量较对照分别降低23.85%及34.27%, 而对于Ace, 仅在2%麦秸炭处理下, 小白菜中Ace的含量较对照显著降低72.53%, 其余处理则均无显著差异。
从三环芳烃来看, 与CK相比, 生物质炭对Fl、Phe和Ant的吸收抑制率分别为0~52.94%、0~16.94%和0~81.98%。1%和2%的猪粪炭处理下小白菜Ant含量显著降低31.63%和85.55%;1%和2%污泥炭处理下Fl含量显著降低45.00%和52.94%;1%和2%麦秸炭处理下小白菜的Phe、Ant含量分别降低15.34%、77.34%和16.94%、78.52%。
从四环芳烃来看, 生物质炭对Fla、Pyr和Chr的吸收抑制率分别为0~71.45%、0~85.55%和49.48%~83.02%。三种生物质炭中麦秸炭对小白菜Fla和Chr吸收的抑制效果较好, 施用量为1%和2%条件下小白菜中Fla和Chr含量较对照分别显著降低48.80%、71.45%和33.96%、76.10%。猪粪炭对小白菜Pyr吸收有较好的抑制效果, 施用1%和2%猪粪炭Pyr的含量显著降低61.79%和81.98%。
从五环芳烃来看, 生物质炭对小白菜BbF、BkF、BaP、DahA和IcdP的吸收与CK相比分别降低55.19%~83.92%、0~45.17%、31.35%~93.73%、0~64.83%和0~35.59%。三种生物质炭处理下小白菜BbF含量均显著降低, 其中猪粪炭抑制率最高, 1%和2%处理水平小白菜BbF含量显著降低75.50%和83.92%。1%麦秸炭小白菜的BkF含量降低最高, 达45.16%。三种生物质炭对小白菜吸收BaP的抑制能力为麦秸炭>猪粪炭>污泥炭, 其中施用1%和2%麦秸炭小白菜BaP含量显著降低93.73%和79.20%。
从六环芳烃来看, 施用1%和2%麦秸炭小白菜DahA的含量较CK降低程度最高, 分别为57.12%和64.83%。猪粪炭施用量为1%和2%时小白菜IcdP的含量分别显著降低35.59%和39.01%。
3 讨论目前已有很多文献报道生物质炭可提高作物的产量[24-25]和品质[26-27]。本试验发现, 在2%施用量下, 小麦秸秆炭及猪粪炭均能显著提高小白菜的生物量, 可能是由于生物质炭能改善土壤理化性质[28], 如降低土壤容重、增强土壤通透性、提高保水功能及养分有效性等[29-30], 且生物质炭本身可提供植物部分营养物质, 从而可促进作物生长, 增加作物的产量。
本研究结果显示, 生物质炭可有效抑制污染土壤中小白菜对多环芳烃的吸收。Brennan等[31]研究也发现添加玉米茬生物质炭和活性炭均能有效降低玉米根对土壤中多环芳烃的富集, Waqas等[32]研究也表明添加污泥炭后, 黄瓜中的PAHs含量显著减少。这可能是因为生物质炭具有发达的孔隙结构和巨大的比表面积, 对芳香性物质有较高的亲和力[33-34], 从而可通过吸附和固定作用大幅提高PAHs在土壤体系中的固液分配系数, 降低其生物可利用度, 减少PAHs在植物体内的富集[35-36]。
本研究结果表明, 小白菜中PAHs含量随生物质炭施用量的增加而降低。Khan等[37]在研究花生壳生物质炭等四种生物质炭对污染土壤中PAHs生物有效性的影响时发现, 5%的施炭量比2%能更有效地降低萝卜中PAHs的含量。这可能与施用量增大可加强生物质炭对PAHs的吸附有关。Kumari等[38]研究发现生物质炭对菲的吸附强度随用量的增加而增强, 原因可能是与生物质炭和土壤矿物之间的相互作用有关。Liang等[39]研究表明, 土壤中的矿物可能会与生物质炭相互作用, 遮蔽其吸附位点, 因而在较高的施用量下, 生物质炭可用于吸附的空位点的数目会更高, 吸附作用会更强。此外, 不同原料的生物质炭对小白菜吸收PAHs的影响存在差异。生物质炭对PAHs的吸附过程受多种因素的影响[40-42], 有机碳含量及表面特性是主要影响因素。有研究[43]表明, 吸附剂的有机碳含量决定了吸附剂对疏水性吸附质的吸附作用。本试验三种生物质炭中以麦秸炭有机碳含量最高, 因此麦秸炭中有机碳对土壤中PAHs的吸附贡献可能要高于猪粪炭和污泥炭。生物质炭比表面积的大小一定程度上也影响了其吸附污染物的能力[44]。徐仁扣等[45]研究发现4种生物质炭吸附亚甲基蓝能力的大小顺序为稻草炭>大豆秸秆炭>花生秸秆炭>稻壳炭, 并且这一顺序与生物质炭表面负电荷数量和生物质炭比表面的大小顺序基本一致。本研究中麦秸和猪粪生物质炭的比表面积远高于污泥炭, 对于降低小白菜吸收PAHs起着重要的作用。此外, 生物质炭表面灰分的存在可能会严重影响生物质炭的表面结构特性及吸附能力。王月瑛等[46]研究玉米秸秆生物质炭酸洗处理去除表面灰分表明, 酸洗能有效去除附着在生物质炭表面的无机盐、焦油等物质, 增加生物质炭的表面吸附位点, 显著提高生物质炭的吸附性能。供试生物质炭中的污泥炭灰分含量远高于麦秸炭和猪粪炭, 可能也是污泥炭对小白菜吸收PAHs抑制效率较低的影响原因。
本研究还表明, 生物质炭对小白菜吸收高分子量PAHs的抑制大于低分子量PAHs。Waqas等[47]也曾报道, 施加污泥炭后西红柿对高分子量PAHs累积的降低幅度比低分子量的高。低分子量PAHs一般由两个或三个苯环组成, 亲脂性较低, 而高分子量PAHs一般由3~6个苯环组成, 油水分配系数更高, 依据相似相溶的原理, 高分子量PAHs可能更容易与土壤中的生物质炭结合, 从而降低其在土壤中的生物有效性[48]。此外, Colombo等[49]指出多种混合物同时存在时, PAH之间产生的协同或拮抗作用会促进或抑制其他组分的生物降解速率。因此, 本研究的供试土壤中多种PAHs之间的复杂作用也可能是引起小白菜对不同种类PAHs吸收存在差异的原因之一。综上, 土壤中PAHs组分在植物中的富集作用不仅取决于生物质炭类型, 同时与PAHs以及土壤自身理化性质等诸多因素有关[50-51]。
4 结论三种生物质炭均可有效抑制小白菜吸收PAHs污染物 (14.53%~49.41%), 明显降低PAHs污染土壤利用的风险。麦秸炭、猪粪炭2%施用量处理比1%处理下抑制小白菜吸收PAHs效果更显著, 三种生物质炭抑制能力的大小顺序总体表现为麦秸炭>猪粪炭>污泥炭。相对于2~3环的低分子量PAHs, 生物质炭对小白菜中4~6环的高分子量PAHs普遍具有更好的降低效果。此外, 2%的麦秸和猪粪炭可提高作物生物量, 促进蔬菜作物生长。因此, 施用生物质炭为污染土壤中保障作物产量、降低作物PAHs吸收提供了有效的技术途径。
[1] | Madhavan N D, Naidu K A. Polycyclic aromatic hydrocarbons in placenta, maternal blood, umbilical cord blood and milk of Indian women[J]. Human & Experimental Toxicology, 1995, 14(6): 503–506. |
[2] | Gondek K, Kopec M, Chmiel M, et al. Response of Zea maize and microorganisms to soil pollution with polycyclic aromatic hydrocarbons (PAHs)[J]. Polish J Environ Stud, 2008, 17(6): 875–880. |
[3] | Lamichhane S, Krishna K C B, Sarukkalige R. Polycyclic aromatic hydrocarbons (PAHs) removal by sorption:A review[J]. Chemosphere, 2016, 148: 336–353. DOI:10.1016/j.chemosphere.2016.01.036 |
[4] | Smol M, Włodarczykmakuła M, Włóka D. Adsorption of polycyclic aromatic hydrocarbons (PAHs) from aqueous solutions on different sorbents[J]. Civil & Environmental Engineering Reports, 2014, 13(2): 87–96. |
[5] | Abdel-Shafy H I, Mansour M S M. A review on polycyclic aromatic hydrocarbons:Source, environmental impact, effect on human health and remediation[J]. Egyptian Journal of Petroleum, 2016, 25(1): 107–123. DOI:10.1016/j.ejpe.2015.03.011 |
[6] | 潘根兴, 李恋卿, 刘晓雨, 等. 热裂解生物质炭产业化:秸秆禁烧与绿色农业新途径[J]. 科技导报, 2015, 33(13): 92–101. PAN Gen-xing, LI Lian-qing, LIU Xiao-yu, et al. Industrialization of biochar from biomass pyrolysis:A new option for straw burning ban and green agriculture of China[J]. Science & Technology Review, 2015, 33(13): 92–101. DOI:10.3981/j.issn.1000-7857.2015.13.015 |
[7] | Ogbonnaya U, Semple K T. Impact of biochar on organic contaminants in soil:A tool for mitigating risk?[J]. Semigroup Forum, 2013, 3(2): 349–375. |
[8] | Beesley L, Moreno-Jiménez E, Gomez-Eyles J L, et al. A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils[J]. Environmental Pollution, 2011, 159(12): 3269–3282. DOI:10.1016/j.envpol.2011.07.023 |
[9] | 史兵方, 仝海娟, 左卫元, 等. 麻疯树籽壳生物质炭的制备及其吸附水中PAHs性能研究[J]. 中国环境科学, 2016, 36(4): 1059–1066. SHI Bing-fang, TONG Hai-juan, ZUO Wei-yuan, et al. Biochar prepared by the husk ash of Jatropha curcas seeds and its sorption ability for polycyclic aromatic hydrocarbons in water[J]. China Environmental Science, 2016, 36(4): 1059–1066. |
[10] | Beesley L, Moreno-Jiménez E, Gomez-Eyles J L. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil[J]. Environmental Pollution, 2010, 158(6): 2282–2287. DOI:10.1016/j.envpol.2010.02.003 |
[11] | 花莉, 陈英旭, 吴伟祥, 等. 生物质炭输入对污泥施用土壤-植物系统中多环芳烃迁移的影响[J]. 环境科学, 2009, 30(8): 2419–2424. HUA Li, CHEN Ying-xu, WU Wei-xiang, et al. Effect of biochar on the trans of polycyclic aromatic hydrocarbons in soil-plant system with composted sludge application[J]. Environmental Science, 2009, 30(8): 2419–2424. |
[12] | 史明, 胡林潮, 黄兆琴, 等. 生物质炭的加入对土壤吸附菲能力以及玉米幼苗对菲吸收量的影响[J]. 农业环境科学学报, 2011, 30(5): 912–916. SHI Ming, HU Lin-chao, HUANG Zhao-qin, et al. The influence of bio-char inputting on the adsorption of phenanthrene by soils and by maize seedlings[J]. Journal of Agro-Environment Science, 2011, 30(5): 912–916. |
[13] | Cao Y, Yang B, Song Z, et al. Wheat straw biochar amendments on the removal of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil[J]. Ecotoxicology & Environmental Safety, 2016, 130: 248–255. |
[14] | Smith M J, Flowers T H, Duncan H J, et al. Effects of polycyclic aromatic hydrocarbons on germination and subsequent growth of grasses and legumes in freshly contaminated soil and soil with aged PAHs residues[J]. Environmental Pollution, 2006, 141(3): 519–525. DOI:10.1016/j.envpol.2005.08.061 |
[15] | Bourceret A, Cébron A, Tisserant E, et al. The bacterial and fungal diversity of an aged PAH-and heavy metal-contaminated soil is affected by plant cover and edaphic parameters[J]. Microbial Ecology, 2016, 71(3): 711–724. DOI:10.1007/s00248-015-0682-8 |
[16] | Holm T R, Machesky M L, Scott J W.Sorption of polycyclic aromatic hydrocarbons (PAHs) to biochar and estimates of PAH bioavailability[R].Champaign IL:Illinois Sustainable Technology Center, 2014. |
[17] | Xu R K, Xiao S C, Yuan J H, et al. Adsorption of methyl violet from aqueous solutions by the biochars derived from crop residues[J]. Bioresource Technology, 2011, 102(22): 10293–10298. DOI:10.1016/j.biortech.2011.08.089 |
[18] | 孙璇, 李恋卿, 潘根兴, 等. 不同作物原料生物质炭对溶液芘的吸附特性[J]. 农业环境科学学报, 2014, 33(8): 1637–1643. SUN Xuan, LI Lian-qing, PAN Gen-xing, et al. Adsorption of pyrene from aqueous solution by biochars produced from different crop residues[J]. Journal of Agro-Environment Science, 2014, 33(8): 1637–1643. DOI:10.11654/jaes.2014.08.024 |
[19] | Maliszewska K B. Polycyclic aromatic hydrocarbons in agricultural soils in Poland:Preliminary proposals for criteria to evaluate the level of soil contamination[J]. Applied Geochemistry, 1996, 11(2): 121–127. |
[20] | 中华人民共和国农业部. NY/T1881. 5-2010生物质固体成型燃料试验方法第5部分: 灰分[S]. 北京: 中国标准出版社, 2010. Ministry of Agriculture of the PRC.NY/T1881.5-2010 Densified biofuel-test methods Part 5:Ash content[S].Beijing:China Standard Press, 2010. |
[21] | 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000. BAO Shi-dan. Soil and agro-chemistry analysis[M]. Beijing: China Agricultural Press, 2000. |
[22] | 王海翠, 胡林林, 李敏, 等. 多环芳烃 (PAHs) 对油菜生长的影响及其积累效应[J]. 植物生态学报, 2013, 37(12): 1123–1131. WANG Hai-cui, HU Lin-lin, LI Min, et al. Growth effects and accumulations of polycyclic aromatic hydrocarbons (PAHs) in rape[J]. Chinese Journal of Plant Ecology, 2013, 37(12): 1123–1131. |
[23] | 韩晓君, 李恋卿, 潘根兴, 等. 生活垃圾堆填区周边农田土壤中多环芳烃的污染特征[J]. 生态环境学报, 2009, 18(4): 1251–1255. HAN Xiao-jun, LI Lian-qing, PAN Gen-xing, et al. Pollution characteristics of polycyclic aromatic hydrocarbons in soils from farmland around the domestic refuse dump[J]. Ecology and Environment, 2009, 18(4): 1251–1255. |
[24] | Graber E R, Harel Y M, Kolton M, et al. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media[J]. Plant & Soil, 2010, 337(1/2): 481–496. |
[25] | 孙雪, 刘琪琪, 郭虎, 等. 猪粪生物质炭对土壤肥效及小白菜生长的影响[J]. 农业环境科学学报, 2016, 35(9): 1756–1763. SUN Xue, LIU Qi-qi, GUO Hu, et al. Effects of swine manure biochar on soil fertility and cabbage (Brassicachinensis) growth[J]. Journal of Agro-Environment Science, 2016, 35(9): 1756–1763. DOI:10.11654/jaes.2016-0180 |
[26] | Major J, Rondon M, Molina D, et al. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol[J]. Plant & Soil, 2010, 333(1): 117–128. |
[27] | Liu Y, Lu H, Yang S, et al. Impacts of biochar addition on rice yield and soil properties in a cold waterlogged paddy for two crop seasons[J]. Field Crops Research, 2016, 191: 161–167. DOI:10.1016/j.fcr.2016.03.003 |
[28] | Vanja Alling, Hale S E, Martinsen V, et al. The role of biochar in retaining nutrients in amended tropical soils[J]. Journal of Plant Nutrition & Soil Science, 2014, 177(5): 671–680. |
[29] | Zhang A, Bian R, Pan G, et al. Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy:A field study of 2 consecutive rice growing cycles[J]. Field Crops Research, 2012, 127: 153–160. DOI:10.1016/j.fcr.2011.11.020 |
[30] | Jeffery S, Abalos D, Spokas K, et al.Biochar Effects on crop yield[M]//Biochar for Environmental management, Science, Technology and Implementation, 2015. |
[31] | Brennan A, Alburquerque J A, Knapp C W, et al. Effects of biochar and activated carbon amendment on maize growth and the uptake and measured availability of polycyclic aromatic hydrocarbons (PAHs) and potentially toxic elements (PTEs)[J]. Environmental Pollution, 2014, 193: 79–87. DOI:10.1016/j.envpol.2014.06.016 |
[32] | Waqas M, Khan S, Qing H, et al. The effects of sewage sludge and sewage sludge biochar on PAHs and potentially toxic element bioaccumulation in Cucumis sativa L.[J]. Chemosphere, 2014, 105(3): 53–61. |
[33] | Liu L, Chen P, Sun M, et al. Effect of biochar amendment on PAH dissipation and indigenous degradation bacteria in contaminated soil[J]. Journal of Soils & Sediments, 2015, 15(2): 313–322. |
[34] | Kookana R S. The role of biochar in modifying the environmental fate, bioavailability, and efficacy of pesticides in soils:A review[J]. Australian Journal of Soil Research, 2010, 48(7): 627–637. DOI:10.1071/SR10007 |
[35] | Oleszczuk P, Zielińska A, Cornelissen G. Stabilization of sewage sludge by different biochars towards reducing freely dissolved polycyclic aromatic hydrocarbons (PAHs) content[J]. Bioresource Technology, 2014, 156: 139–145. DOI:10.1016/j.biortech.2014.01.003 |
[36] | Hale S E, Elmquist M, Brändli R, et al. Activated carbon amendment to sequester PAHs in contaminated soil:A lysimeter field trial[J]. Chemosphere, 2012, 87(2): 177–184. DOI:10.1016/j.chemosphere.2011.12.015 |
[37] | Khan S, Waqas M, Ding F, et al. The influence of various biochars on the bioaccessibility and bioaccumulation of PAHs and potentially toxic elements to turnips (Brassica rapa L.)[J]. Journal of Hazardous Materials, 2015, 300: 243–253. DOI:10.1016/j.jhazmat.2015.06.050 |
[38] | Kumari K, Moldrup P, Paradelo M, et al. Phenanthrene sorption on biochar-amended soils:Application rate, aging, and physicochemical properties of soil[J]. Water Air & Soil Pollution, 2014, 225(9): 1–13. |
[39] | Liang B, Lehmann J, Solomon D, et al. Stability of biomass-derived black carbon in soils[J]. Geochimica Et Cosmochimica Acta, 2008, 72(24): 6069–6078. DOI:10.1016/j.gca.2008.09.028 |
[40] | 周尊隆, 卢媛, 孙红文. 菲在不同性质黑炭上的吸附动力学和等温线研究[J]. 农业环境科学学报, 2010, 29(3): 476–480. ZHOU Zun-long, LU Yuan, SUN Hong-wen. Sorption kinetics and isotherms of phenanthrene in charcoals with different properties[J]. Journal of Agro-Environment Science, 2010, 29(3): 476–480. |
[41] | Chen B, Yuan M. Enhanced sorption of polycyclic aromatic hydrocarbons by soil amended with biochar[J]. Journal of Soils and Sediments, 2011, 11(1): 62–71. DOI:10.1007/s11368-010-0266-7 |
[42] | Sun K. Impact of deashing treatment on biochar structural properties and potential sorption mechanisms of phenanthrene[J]. Environmental Science & Technology, 2013, 47(20): 11473–11481. |
[43] | Garcíajaramillo M, Cox L, Cornejo J, et al. Effect of soil organic amendments on the behavior of bentazone and tricyclazole[J]. Science of the Total Environment, 2014, 466/467(1): 906–913. |
[44] | Wang Z, Han L, Sun K, et al. Sorption of four hydrophobic organic contaminants by biochars derived from maize straw, wood dust and swine manure at different pyrolytic temperatures[J]. Chemosphere, 2015, 144: 285–291. |
[45] | 徐仁扣, 赵安珍, 肖双成, 等. 农作物残体制备的生物质炭对水中亚甲基蓝的吸附作用[J]. 环境科学, 2012, 33(1): 142–146. XU Ren-kou, ZHAO An-zhen, XIAO Shuang-cheng, et al. Adosorption of methylene blue from water by biochars generated from crop residues[J]. Environmental Science, 2012, 33(1): 142–146. |
[46] | 王月瑛, 吕贻忠. 酸洗处理对生物质炭表面吸附特性及光谱特性的影响[J]. 光谱学与光谱分析, 2016, 36(10): 3292–3296. WANG Yue-ying, LÜ Yi-zhong. Effect of acid elution on the surface structure characteristics and spectral characteristics of biochars[J]. Spectroscopy and Spectral Analysis, 2016, 36(10): 3292–3296. |
[47] | Waqas M, Li G, Khan S, et al. Application of sewage sludge and sewage sludge biochar to reduce polycyclic aromatic hydrocarbons (PAH) and potentially toxic elements (PTE) accumulation in tomato[J]. Environmental Science & Pollution Research, 2015, 22(16): 12114–12123. |
[48] | Arp H P H, Azzolina N A, Cornelissen G, et al. Predicting pore water EPA-34 PAH concentrations and toxicity in pyrogenic-impacted sediments using pyrene content[J]. Environmental Science & Technology, 2011, 45(12): 5139–5146. |
[49] | Colombo M, Cavalca L, Bernasconi S, et al. Bioremediation of polyaromatic hydrocarbon contaminated soils by native microflora and bioaugmentation with Sphingobium chlorophenolicum strain C3R:A feasibility study in solid-and slurry-phase microcosms[J]. International Biodeterioration & Biodegradation, 2011, 65(1): 191–197. |
[50] | Wilcke W. Polycyclic aromatic hydrocarbons (PAHs) in soil:A review[J]. Journal of Plant Nutrition & Soil Science, 2000, 163(3): 229–248. |
[51] | Chiou C T, And M G, Kile D E. Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments[J]. Environmental Science & Technology, 1998, 32(2): 264–269. |