文章信息
- 包振宗, 侯艳艳, 朱新萍, 赵成义, 胡保安, 贾宏涛, 徐晓龙
- BAO Zhen-zong, HOU Yan-yan, ZHU Xin-ping, ZHAO Cheng-yi, HU Bao-an, JIA Hong-tao, XU Xiao-long
- 干湿交替和模拟氮沉降对巴音布鲁克高寒湿地土壤CO2排放的影响
- Effect of alternating wetting and drying and simulated nitrogen deposition on soil CO2 emission in alpine wetlands of Bayinbulak
- 农业环境科学学报, 2018, 37(3): 598-604
- Journal of Agro-Environment Science, 2018, 37(3): 598-604
- http://dx.doi.org/10.11654/jaes.2017-1646
文章历史
- 收稿日期: 2017-11-30
- 录用日期: 2018-01-18
2. 新疆土壤与植物生态过程重点实验室, 乌鲁木齐 830052;
3. 中国科学院新疆生态与地理研究所, 乌鲁木齐 830011;
4. 新疆交通建设管理局, 乌鲁木齐 830049
2. Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Urumqi 830052, China;
3. Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
4. Xinjiang Communications Construction Administrative Bureau, Urumqi 830049, China
近年来,由于人类活动造成大气的氮沉降量显著增加,陆地和水生生态系统的碳、氮循环均受到了明显的影响[1]。湿地是介于陆地和水体间过渡的一种独特的生态系统,是陆地生态系统碳库最主要的组成部分之一[1],对全球碳平衡和气候变化起着极其重要的作用[2]。外源氮素输入明显改变陆地生态系统的碳、氮循环速率,进而影响整个生态系统的结构和功能[3]。目前大气氮素沉降的全球平均值为5 kg·hm-2·a-1[4],其中欧洲为10 kg·hm-2·a-1 [5],而新疆巴音布鲁克高寒湿地大气氮沉降量为8 kg·hm-2·a-1 [6]。土壤CO2排放对氮素输入的响应特征不尽一致,促进[7-8]、抑制[9-10]和无影响[11-12]的结果均存在。产生这种分歧的主要原因是土壤CO2排放的来源复杂,包括植物根系自养呼吸、根际微生物呼吸和土壤有机质分解等多个部分,同时土壤CO2排放还受土壤温度、土壤水分和有效养分等因素的影响[13]。氮素沉降进入土壤生态系统对以上因素均会产生不同程度的影响,因此开展外源性氮素输入对湿地土壤CO2排放速率的影响研究,有助于了解大气氮沉降增加背景下湿地碳库的潜在变化趋势。
在全球气候变化背景下,区域降水不平衡加剧,引起干湿变化频率增加,继而影响土壤理化性质、微生物活性和新陈代谢速率等,最后导致CO2通量变化差异。有研究认为干湿交替可通过破坏土壤团聚体,加快土壤碳的分解和矿化,释放出大量的活性有机碳氮,进而增加土壤CO2的排放[14],加速了全球气候暖化[15]。也有研究认为与恒湿处理相比较,干湿交替能降低土壤CO2排放量[16]。还有研究发现短期的土壤干湿交替并不一定会影响土壤CO2排放[17]。目前针对CO2对水分及氮沉降响应机制的研究还不完善,本文通过氮沉降和干湿交替模拟试验,研究氮素添加下高寒湿地土壤干湿交替对CO2排放的影响,为深入理解气候变化下高寒湿地土壤碳排放动态及碳循环模型提供基础,同时也为湿地保护与管理提供参考。
1 材料与方法 1.1 研究区域概况巴音布鲁克天鹅湖高寒湿地位于新疆维吾尔自治区和静县境内(82°59′~83°31′E,42°45′~43°00′N),是我国唯一的国家级天鹅自然保护区,被誉为“天山之肾”[18]。湿地主要包括大、小尤鲁都斯盆地之间的低洼地,面积约770 km2,海拔2300~3042 m,存在永久性积雪和冰川,属于典型的高寒气候。湿地水源主要来自于冰雪融水和地下潜水,地下水位埋深大约0.5~1.0 m,矿化度为1.54 g·L-1,年均温度-4.7 ℃,年均降水量265.7 mm;土壤类型为草甸沼泽土;湿地植被主要类型为苔草(Carextristachya)和早熟禾(Poapratensis)[19]。
1.2 试验设计2016年7月,在巴音布鲁克天鹅湖高寒湿地选取群落组成、结构、密度、长势相对一致的苔草和早熟禾草甸沼泽土为取样地,去除地面有机覆盖物后采集0~40 cm土壤,风干过2 mm筛后,准确称量40 g放入500 mL的培养瓶中。通过称重法设置土壤水分处理为100%、70%、50%、40%、25%土壤充水孔隙度(WFPS),各含水量处理下,硝酸铵添加水平为:N0(0 kg·hm-2·a-1)、N10(10 kg·hm-2·a-1)、N100(100 kg·hm-2·a-1)。一个不加土壤作为对照,各处理设置4个重复,共64个样品。室内培养期间瓶盖打开,当土壤水分降低至5%左右时(或气体排放趋于稳定时),视土壤已干,使用称重法重新加水至初始设计土壤水分,共3个干湿交替循环过程。
1.3 气样的采集和排放计算方法气体采样采用抽气法,干湿交替过程共3个循环,采样频率为每个干湿交替循环开始后的第1、2、3、5、7、9、12、15 d,采集气体50 mL,每次抽气后拧开瓶盖并轻轻煽动培养瓶上方空气,使其加速流动,静置5 min后,拧紧瓶盖继续置于培养箱中培养。使用气相色谱仪(Agilent7890A,USA)分析CO2的浓度[20]。
CO2气体累积排放量计算公式:

式中:E代表气体累积排放量,CO2-C-mg·kg-1;F代表气体排放量,CO2-C-mg·kg-1·d-1;i代表采样次数;t代表采样时间,h。
1.4 土壤理化性质测定方法控制试验结束后采集土壤样品,一份风干过2 mm筛,另一份在4 ℃下保存待测。土壤全氮采用凯氏定氮法测定;铵态氮采用2 mol·L-1 KCl浸提-靛酚蓝比色法测定;硝态氮采用酚二磺酸比色法测定;有机质采用重铬酸钾-浓H2SO4外加热法测定。详细测定方法参见鲁如坤的《土壤农化分析》[21]。
1.5 数据统计与分析采用Excel 10.0进行平均值和标准差计算,SPSS 19.0对数据进行方差齐次性检验,符合正态分布,进行方差分析,并进行显著性分析(Duncan)及Pearson相关性分析,Origin 8.0进行绘图。
2 结果与分析 2.1 氮素添加下高寒湿地土壤干湿交替对CO2排放的影响 2.1.1 土壤CO2的排放速率本试验条件下土壤由湿到干一个循环到平稳大约为15 d,湿地土壤CO2的排放速率随水分增加而增大,所有处理在添加氮素初期土壤CO2排放速率出现峰值,分别在第1、16 d和31 d,随循环的次数增加,高峰值依次降低(图 1至图 3)。
![]() |
图 1 N0处理干湿交替对湿地土壤CO2排放速率的影响 Figure 1 Effects of N0 treatment alternating wetting and drying on CO2 emission rate of wetland soil |
![]() |
图 2 N10处理干湿交替对湿地土壤CO2排放速率的影响 Figure 2 Effects of N10 treatment alternating wetting and drying on CO2 emission rate of wetland soil |
![]() |
图 3 N100处理干湿交替对湿地土壤CO2排放速率的影响 Figure 3 Effects of N100 treatment alternating wetting and drying on CO2 emission rate of wetland soil |
在第一个循环5个水分梯度下,第1 d CO2排放量最大,N0处理下CO2排放速率为35~104 mg C·kg-1·d-1,N10处理组CO2排放速率为33~94 mg C·kg-1·d-1,N100处理组CO2排放速率为39~94 mg C·kg-1·d-1,最大值出现在70%WFPS,8 d之后不同水分处理下的土壤CO2排放速率慢慢趋于下降,但100%、70%WFPS处理组土壤CO2排放速率显著大于50%、40%、25%WFPS。
2.1.2 土壤CO2的累积排放量对水氮的响应氮添加对高寒湿地土壤干湿交替下CO2累积排放量的影响具有一定的差异,由图 4得出,在相同水分条件下,氮素的添加量增加,土壤CO2累积排放量有所增加。在100%WFPS下,N100处理组与N0处理组土壤CO2累积排放量呈显著差异(P < 0.05),而与N10处理组无显著差异;70%WFPS下,N100处理组与N0、N10处理组土壤CO2累积排放量呈极显著差异(P < 0.01);40%WFPS下,N10、N100处理组与N0处理组土壤CO2累积排放量呈极显著差异(P < 0.01);50%与25%WFPS下各氮素处理组间土壤CO2累积排放量无显著差异。在相同氮素处理下,高寒湿地土壤CO2累积排放量随土壤水分增加而增加。由表 1可知,水分、氮素和水氮交互作用与土壤CO2累积排放量都呈极显著正相关关系(P < 0.01)。
![]() |
大写字母表示处理间差异极显著(P < 0.01),小写字母表示处理间差异显著(P < 0.05) The capital letter indicates highly significant differences among treatments(P < 0.01). The lowercase letterindicates highly significant differences among treatments(P < 0.05) 图 4 不同处理间CO2累积排放量 Figure 4 CO2 accumulation between different treatments |
![]() |
水分和氮沉降对土壤化学性质会产生一系列影响,由表 2可见,土壤TN、NO3--N、NH4+-N、SOC含量均随土壤湿度及氮添加量的增加而增加,土壤SON含量随土壤水分含量的增加而减少。在N100处理组100%WFPS下,土壤TN含量与其他水分处理组存在极显著差异(P < 0.01),土壤NO3--N含量与其他水分处理组存在显著差异(P < 0.05),而土壤NH4+-N、SOC则与其他水分处理组无差异。
![]() |
水分和氮沉降对土壤化学性质会产生一系列影响,继而会影响土壤CO2气体排放。由表 3可知,不同水分下土壤CO2气体排放速率与土壤TN、NO3--N和NH4+-N呈正相关,相关性随水分增加而减弱。由表 4可知,受氮素影响,土壤CO2气体排放速率主要受土壤TN、NO3--N含量的影响,与TN呈极显著正相关(P < 0.01),与NO3--N呈显著相关(P < 0.05)。CO2排放速率与土壤SON呈负相关。
![]() |
![]() |
在影响土壤CO2排放的非生物因素中,土壤水分变化是影响土壤CO2排放速率的重要因素[22]。水分通过改变土壤的透气度、氧化还原电位(Eh)、pH、微生物活性等而影响土壤呼吸。合适的土壤湿度有利于可溶性有机质含量的增加[24]。有研究表明在WFPS为60%时,土壤微生物活性最强,此时CO2排放最大[23]。但本研究发现,湿地土壤湿度在100%WFPS时土壤CO2排放量最高,可能因为土壤类型不同,湿度对CO2影响会有差异。整个培养过程中100%WEPS处理土壤CO2排放速率每个循环开始第1 d达到最大值,明显高于其他值,这可能是因为风干一段时间的土壤再湿润又重新达到相应土壤水分,一方面增强了土壤微生物的活性,促进了微生物的呼吸;另一方面又促进了土壤中可溶性有机碳分解,并产生一定的短期激发效应,因此CO2排放速率在短期内增加[25]。但是随着培养时间延长,反应底物不断减少且水分不足,土壤积累的CO2又会抑制土壤微生物呼吸,使CO2释放量减少[26]。
3.2 氮添加对土壤CO2排放速率的影响土壤CO2排放速率对外源性氮输入的响应不同可能与施氮引起的碳固定、分配以及土壤“氮饱和”程度有关[27-28]。适量的氮沉降可能会增加土壤中的氮源,增强了微生物活动,促进了土壤呼吸,但高氮沉降可能通过降低酶活性[12],改变微生物群落结构[29-30],来降低土壤呼吸,从而减弱对CO2排放速率的促进作用。本研究中发现N10和N100处理组对土壤CO2排放速率均为促进效应,可能是因为氮素增加改变了土壤C/N,影响了土壤中SOC和SON,这与白结冰等[31]对高寒草原的研究结果类似。但在更高的氮量处理下,是否会出现抑制土壤呼吸的现象,还需进一步开展相关研究。土壤呼吸受众多环境因子的影响,但各环境因子对CO2排放速率具有一定的交互作用,使得土壤呼吸的机理更为复杂,尤其在水氮耦合下湿地土壤对气候变化的响应方面还需做更多的工作。
4 结论(1) 在土壤湿度低于WFPS的情况下,土壤CO2排放速率随土壤湿度及氮添加剂量的增大而增大。
(2) 一个由干到湿的过程中,初期土壤CO2排放速率最高,由湿到干的过程中的动态变化表现为逐渐下降的规律,随着干湿交替循环次数增多,土壤CO2排放量增量逐渐减小。
(3) 水分增加会降低土壤SON含量,增加NO3--N含量;在土壤水分在70%WFPS以上,氮添加会增加土壤NO3--N和TN含量,水氮交互作用对CO2排放速率具有明显的影响。
在气候变化下,巴音布鲁克高寒湿地面临区域降雨增多,土壤干湿交替频率增多,冰雪融化加快以及人为干扰下氮沉降增多等多种作用,对高寒湿地碳库将会产生深远的影响,因此在湿地保护与管理中应给予重视。
[1] |
Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen cycle:Recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878): 889-892. DOI:10.1126/science.1136674 |
[2] |
胡保安, 贾宏涛, 朱新萍, 等. 巴音布鲁克高寒湿地夏季CO2和CH4通量日变化研究[J]. 干旱区资源与环境, 2016, 30(6): 167-172. HU Bao-an, JIA Hong-tao, ZHU Xin-ping, et al. Daily characteristics of summer CO2 and CH4 fluxes under different water conditions at Bayinbuluke alpine wetland[J]. Journal of Arid Land Resources and Environment, 2016, 30(6): 167-172. |
[3] |
朱天鸿, 程淑兰, 方华军, 等. 青藏高原高寒草甸土壤CO2排放对模拟氮沉降的早期响应[J]. 生态学报, 2011, 31(10): 2687-2696. ZHU Tian-hong, CHENG Shu-lan, FANG Hua-jun, et al. Early responses of soil CO2 emfission to simulating atmospheric nitrogen deposition in an alpine meadow on the Qinghai Tibetan plateau[J]. Acta Ecologica Sinica, 2011, 31(10): 2687-2696. |
[4] |
Galloway J N, Dentener F J, Capone D G, et al. Nitrogen cycles:Past, present and future[J]. Biogeochemistry, 2004, 70(2): 153-226. |
[5] |
Egmond K, Bresser T, Bouwman L. The European nitrogen case[J]. Ambio, 2002, 31(2): 72-78. DOI:10.1579/0044-7447-31.2.72 |
[6] |
Li K H, Liu X J, Song L, et al. Response of alpine grassland to elevated nitrogendeposition and water supply in China[J]. Oecologia, 2015, 177(1): 65-72. DOI:10.1007/s00442-014-3122-4 |
[7] |
Song Y Y, Song C C, Li Y C, et al. Short-term Effect of Nitrogen Addition on Litter and Soil Properties in Calamagrostis angustifolia, Freshwater Marshes of Northeast China[J]. Wetlands, 2013, 33(3): 505-513. DOI:10.1007/s13157-013-0407-z |
[8] |
Zhang L, Song C C, Nkrumah P N. Responses of ecosystem carbon dioxide exchange to nitrogen addition in a freshwater marshland in Sanjiang Plain, Northeast China[J]. Environmental Pollution, 2013, 180(8): 55. |
[9] |
Juutinen S, Bubier J L, Moore T R. Responses of Vegetation and Ecosystem CO Exchange to 9 Years of Nutrient Addition at MerBleue Bog[J]. Ecosystems, 2010, 13(6): 874-887. DOI:10.1007/s10021-010-9361-2 |
[10] |
Spence P L, Jordan S J. Effects of nitrogen inputs on freshwater wetland ecosystem services:A Bayesian network analysis[J]. Journal of Environmental Management, 2013, 124(2): 91-99. |
[11] |
Ma W K, Bedardhaughn A, Siciliano S D, et al. Relationship between nitrifier and denitrifier community composition and abundance in predicting nitrous oxide emissions from ephemeral wetland soils[J]. Soil Biology & Biochemistry, 2008, 40(5): 1114-1123. |
[12] |
Compton J E, Watrud L S, Porteous L A, et al. Response of soil microbial biomass and community composition to chronic nitrogen additions at Harvard forest[J]. Forest Ecology & Management, 2004, 196(1): 143-158. |
[13] |
Cheng S L, Fang H J, Yan M A. Effects of nitrogen input on sequestration and depletion of organic carbon of forest soils[J]. Journal of Soil & Water Conservation, 2007. |
[14] |
Park E J, Sul W J, Smucker A J M. Glucose additions to aggregates subjected to drying/wetting cyclespromotes carbon sequestration and aggregate stability[J]. Soil Biology and Biochemistry, 2007, 39(11): 2758-2768. DOI:10.1016/j.soilbio.2007.06.007 |
[15] |
Kiar T H, BeareM H, Meenken E D, et al. Soil organic and texture affect responses to dry/wet cycles; changes in soil organicmatter fractions and relationships with C and N mineralization[J]. SoilBiology and Biochemistry, 2014, 74(6): 50-60. |
[16] |
牛百成, 赵成义, 冯广龙, 等. 干湿交替对新疆绿洲农田土壤CO2排放的影响[J]. 水土保持通报, 2016, 36(3): 74-80. NIU Bai-cheng, ZHAO Cheng-yi, FENG Guang-long, et al. Effects of alternate drying and wetting on soil CO2 emissions in oasis farmland of Xinjiang Region[J]. Bulletin of Soil and Water Conservation, 2016, 36(3): 74-80. |
[17] |
Miller A E, Schimcl J P, Meixner T, et al. Episodic rewetting enhances carbon and nitrogen release from chaparral soils[J]. Soil Biology and Biochemistry, 2005, 37(12): 2195-2204. DOI:10.1016/j.soilbio.2005.03.021 |
[18] |
胡保安, 贾宏涛, 朱新萍, 等. 水位对巴音布鲁克天鹅湖高寒湿地土壤呼吸的影响[J]. 干旱区资源与环境, 2016, 30(7): 175-179. HU Bao-an, JIA Hong-tao, ZHU Xin-ping, et al. Effect of water level on the soil respiration in a Swan Lake Wetland at Bayanbulak[J]. Journal of Arid Land Resources and Environment, 2016, 30(7): 175-179. |
[19] |
杨磊. 巴音布鲁克天鹅湖高寒湿地CO2和CH4排放特征研究[D]. 乌鲁木齐: 新疆农业大学, 2015. YANG Lei.Research on CO2 and CH4 fluxe in Bayinbuluke Swan Lake Marsh Meadow[D]. Urumqi:Xinjiang Agricultural University, 2015. |
[20] |
牛百成, 赵成义, 俞永祥, 等. 棉花秸秆和氮肥对土壤CO2和N2O排放及碳氮排放系数的影响[J]. 干旱区研究, 2017, 34(6): 1323-1330. NIU Bai-cheng, ZHAO Cheng-yi, YU Yong-xiang, et al. Effects of cotton straw and nitrogen fertilizer on soil CO2 and N2O emissions and their coefficients[J]. Arid Zone Research, 2017, 34(6): 1323-1330. |
[21] |
鲁如坤. 土壤农化分析[M]. 北京: 中国农业科技出版社, 2000. LU Ru-kun. Soil agro-chemistrical analysis[M]. Beijing: China Agricultural Science and Technology Press, 2000. |
[22] |
邓东周, 范志平, 王红, 等. 土壤水分对土壤呼吸的影响[J]. 林业科学研究, 2009, 22(5): 722-727. DENG Dong-zhou, FAN Zhi-ping, WANG Hong, et al. Influencesof soil moistureon soil respiration[J]. Forest Research, 2009, 22(5): 722-727. |
[23] |
Linn D M, Doran J W. Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils[J]. Journal-Soil Science Society of America(USA), 1984, 48(6): 1267-1272. |
[24] |
孙晓涵, 贺康宁, 刘硕. 水分对侧柏林地土壤温室气体排放的影响[J]. 湖南农业科学, 2011(13): 139-142. SUN Xiao-han, HE Kang-ning, LIU Shuo. Influences of moisture content on greenhouse gases emission from Platycladus orieutaliswoodland soil[J]. Hunan Agricultural Sciences, 2011(13): 139-142. DOI:10.3969/j.issn.1006-060X.2011.13.041 |
[25] |
Orchard V A, Cook F J. Relationship between soil respiration and soil moisture[J]. Soil Biology & Biochemistry, 1983, 15(4): 447-453. |
[26] |
刘广深, 徐文彬, 汤洪业, 等. 土壤N2O释放通量季节变化的主要环境驱动因素的研究[J]. 矿物学报, 2002, 22(3): 229-234. LIU Guang-shen, XU Wen-bin, TANG Hong-ye, et al. A study of main environmental factors controlling seasonal variation of N2O flux from soil[J]. Acta Mineralogica Sinica, 2002, 22(3): 229-234. |
[27] |
窦晶鑫, 刘景双, 王洋, 等. 三江平原草甸湿地土壤有机碳矿化对C/N的响应[J]. 地理科学, 2009, 29(5): 773-778. DOU Jing-xin, LIU Jing-shuang, WANG Yang, et al. Effectsof amendmentC/N ratioon soil organic carbon mineralizationof meadow marshesinSanjiangPlain[J]. Scientia Geographica Sinica, 2009, 29(5): 773-778. |
[28] |
Bowden R D, Davidson E, Savage K, et al. Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest[J]. Forest Ecology & Management, 2004, 196(1): 43-56. |
[29] |
Yue H W, Wang M M, Wang S P, et al. The microbe-mediated mechanisms affecting topsoil carbon stock inTibetangrasslands[J]. Isme Journal Multidisciplinary Journal of Microbial Ecology, 2015, 9(9): 2012-2020. |
[30] |
袁颖红, 樊后保, 刘文飞, 等. 模拟氮沉降对杉木人工林(Cunninghamia lanceolata)土壤酶活性及微生物群落功能多样性的影响[J]. 土壤, 2013, 41(1): 120-128. YUAN Ying-hong, FAN Hou-bao, LIU Wen-fei, et al. Effects of simulated nitrogen deposition on soil enzyme activities and microbial community functional diversities in a chinese fir plantation[J]. Soils, 2013, 41(1): 120-128. DOI:10.11766/trxb201112290509 |
[31] |
白洁冰, 徐兴良, 宋明华, 等. 温度和氮素输入对青藏高原三种高寒草地土壤碳矿化的影响[J]. 生态环境学报, 2011, 20(5): 855-859. BAI Jie-bing, XU Xing-liang, SONG Ming-hua, et al. Effects of temperature and added nitrogen on carbon mineralization inalpine soils on the Tibet Plateau[J]. Ecology and Environment, 2011, 20(5): 855-859. |