快速检索        
  农业环境科学学报  2020, Vol. 39 Issue (10): 2143-2150  DOI: 10.11654/jaes.2020-0187
0

引用本文  

范晶晶, 许超, 王辉, 等. 3种有机物料对土壤镉有效性及水稻镉吸收转运的影响[J]. 农业环境科学学报, 2020, 39(10): 2143-2150.
FAN Jing-jing, XU Chao, WANG Hui, et al. Effects of three organic materials on the availability of cadmium in soil and cadmium accumulation and translocation in rice plants[J]. Journal of Agro-Environment Science, 2020, 39(10): 2143-2150.

基金项目

国家重点研发计划项目(2017YFD0801005);博士后基金项目(2014M562110);湖南省自然科学基金项目(2015JJ2081);农业部财政部科研专项(农办财函[2016]6号)

Project supported

National Key R & D Program of China(2017YFD0801005);China Postdoctoral Science Foundation(2014M562110);The Natural Science Foundation of Hunan Province(2015JJ2081);Special Funds for Scientific Research of Ministry of Agriculture and Ministry of Finance (Ministry of Agriculture Union Letter No.6[2016])

通信作者

黄道友  E-mail:dyhuang@isa.ac.cn

作者简介

范晶晶(1994-), 女, 河南济源人, 硕士研究生, 从事土壤与环境生态研究。E-mail:1069606321@qq.com

文章历史

收稿日期: 2020-02-24
录用日期: 2020-04-17
3种有机物料对土壤镉有效性及水稻镉吸收转运的影响
范晶晶1,2 , 许超1 , 王辉1 , 朱捍华1 , 朱奇宏1 , 张泉1 , 黄凤球3 , 黄道友1     
1. 中国科学院亚热带农业生态研究所, 亚热带农业生态过程重点实验室, 长沙 410125;
2. 中国科学院大学, 北京 100049;
3. 湖南省土壤肥料研究所, 长沙 410125
摘要:种植绿肥、秸秆还田和施用有机肥是稻田土壤有机质提升的主要途径,明确其对土壤镉(Cd)有效性及水稻吸收积累Cd的影响,对于我国南方Cd污染稻田的安全利用具有重要指导意义。采用田间小区试验,设置等量(2 250 kg·hm-2,干质量)紫云英、油菜秆和有机肥施用处理,通过测定二乙烯三胺五乙酸提取态Cd (DTPA-Cd)、根表铁膜Cd含量和水稻各部位Cd含量,结合土壤理化指标和酶活性变化,对比分析3种有机物料对Cd在土壤-水稻系统迁移转运的影响并探讨其机理。结果表明:3种有机物料提高了土壤溶解性有机碳(DOC)、有机质含量和水稻产量,增强了土壤过氧化氢酶和纤维素酶活性,在一定程度上增加了根表铁膜量及其Cd吸附量。与CK相比,紫云英、油菜秆和有机肥处理水稻根对Cd的吸收分别增加4.22%、16.99%和38.27%(P < 0.05),Cd由水稻根向稻谷的转运系数和叶向稻谷的转运系数均明显提高,水稻稻谷Cd含量分别显著增加32.67%、39.60%和54.46%(P < 0.05)。在Cd污染土壤上施用有机物料虽能提升土壤肥力,但会促进水稻根系对Cd的吸收和向稻谷的转运。因此在南方Cd污染稻田应谨慎施用有机物料,防止由此导致的稻米Cd积累风险。
关键词有机物料        水稻    土壤    根表铁膜    
Effects of three organic materials on the availability of cadmium in soil and cadmium accumulation and translocation in rice plants
FAN Jing-jing1,2 , XU Chao1 , WANG Hui1 , ZHU Han-hua1 , ZHU Qi-hong1 , ZHANG Quan1 , HUANG Feng-qiu3 , HUANG Dao-you1     
1. Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Soil and Fertilizer Institute of Hunan Province, Changsha 410125, China
Abstract: Planting green manure, returning crop straw, and applying organic manure are the main methods for improving the soil organic matter in paddy fields. Clarification of their effects on soil Cd availability and the accumulation and translocation of Cd in rice may be useful for the safe utilization of Cd-contaminated paddy fields in south China. A plot field experiment with the application of equal amounts (2 250 kg·hm-2; dry weight)of milk vetch, rape stalk, and organic fertilizer was conducted to measure the diethylenetriamine pentaacetic acid-extractable Cd, measure the Cd concentrations in iron plaque on roots and rice tissue, study the changes in the soil physical and chemical indexes and enzyme activities, and comparatively analyze the effects and the mechanisms of these three organic materials on the transport of Cd in soil-rice systems. The concentrations of dissolved organic carbon and organic matter in the soil and the yield of rice grains increased after applying these three types of organic materials. The activities of soil catalase and cellulase were also increased by applying organic materials. The concentrations of Fe, Mn, and Cd in iron plaque on the rice roots increased with the application of milk vetch, rape stalk, and organic fertilizer. Compared with that in the control, the Cd concentrations in the rice roots increased by 4.22%, 16.99%, and 38.27%(P < 0.05)with the application of milk vetch, rape stalk, and organic fertilizer, respectively. The transport coefficients of Cd from root to grain and from leaf to grain significantly increased. Furthermore, the concentrations of Cd in the rice grains significantly increased by 32.67%, 39.60%, and 54.46% with the application of milk vetch, rape stalk, and organic fertilizer, respectively. In conclusion, the application of organic materials can enhance the absorption of Cd by rice roots and the accumulation of Cd in grains; therefore, organic materials should be carefully applied to Cd-contaminated paddy soil in south China in order to prevent the risk of Cd accumulation in rice.
Keywords: organic materials    cadmium    rice    soil    iron plaque    

《全国土壤污染状况调查公报》[1]显示,Cd是我国土壤点位超标率最高的污染物,达到7%,且主要分布在我国南方稻作区,对稻米质量安全构成严重威胁[2]。农业管理措施对稻田土壤Cd植物有效性的影响已得到广泛证实[3-4]。种植绿肥、秸秆还田和施用有机肥是提升稻田土壤有机质含量、改善土壤肥力的常用措施[5-6],其单一类型施用对水稻吸收Cd的影响已有较丰富研究。然而,系统比较这3种有机物料对污染稻田土壤-水稻系统Cd迁移转运的影响研究较少,其结果对于我国南方Cd污染稻田的安全生产具有重要指导意义。近年来,有机物料施用改善土壤质量和提升作物产量等效应已得到广泛证实[7-9],但有机物料对土壤中Cd有效性的影响还存在较大不确定性;有研究结果显示[10-11],施用有机物料可以通过提高土壤pH值,促进土壤中Cd向有效性低的形态转化和提高根表铁膜对Cd的固定来抑制水稻对Cd的吸收和累积,从而达到显著降低稻米Cd含量的效果[12-14]。也有研究发现,在Cd污染土壤上施用有机物料会促进Cd与溶解性有机碳(DOC)复合物的形成,增强Cd的迁移和有效性[15-17]。还有有机物料施用对稻田土壤中Cd的有效性以及水稻吸收积累Cd均无明显影响的报道[18-19]。以上研究结果的不一致可能与研究土壤类型、污染程度及有机物料的组成和性质差异等有关。前期研究多采取盆栽、培养等手段研究特定有机物调控Cd植物有效性的效应,但对3类有机物料的对比分析,尤其大田研究有待加强。为指导生产实践,本研究选取湘东典型酸性Cd污染水稻土为研究对象,采用田间小区试验,系统比较种植绿肥、秸秆还田和施用有机肥对土壤性质、水稻生长及其对Cd的吸收与转运的影响,从根表铁膜形成方面探讨这3种有机物料对土壤-水稻系统Cd运移的作用机理,以期为南方酸性稻田的安全生产提供指导。

1 材料与方法 1.1 供试材料

田间试验位于湖南省长沙县北山镇某Cd污染稻田,土壤类型为花岗岩发育的潴育型水稻土。供试水稻品种为株两优189(两系杂交早稻),由湖南希望种业有限公司提供。供试有机物料包括紫云英、油菜秆(均取自试验所在地)和当地农资市场购买的有机粪肥(以下简称有机肥)。供试土壤及有机物料的基本性质如表 1所示。

表 1 供试土壤和有机物料基本性质 Table 1 Basic properties of tested soil and organic materials
1.2 试验设计

试验设4个处理:(1)对照(CK),不施有机物料;(2)施用紫云英(T1)22 500 kg·hm-2(鲜质量,鲜紫云英含水量为90%);(3)施用油菜秆(T2)2 250 kg·hm-2 (干质量);(4)施用有机肥(T3)2 250 kg·hm-2(干质量)。每处理3次重复,随机区组排列,每个小区面积27 m2。有机物料在水稻移栽前一周施入。在水稻秧苗移栽前1 d施入美佛罗复合肥(N-P2O5-K2O,总养分≥40%,18:10:12)750 kg·hm-2作基肥,水稻秧苗移栽后14 d追施98 kg·hm-2尿素。水分管理与当地农民的耕作制度保持一致。2018年4月24日移栽水稻秧苗,2018年7月16日收获水稻,并测产。

1.3 样品采集与处理

水稻成熟期采集各小区长势均匀的6株代表性植株样,先用自来水洗净后再用去离子水清洗。清洗后的水稻植株分为根、茎、叶和稻谷,根提取根表铁膜后与茎、叶和稻谷一起于105 ℃下杀青30 min,70 ℃烘干至恒质量。水稻各器官样品用不锈钢粉碎机(FW-80,北京市永光明医疗仪器有限公司)粉碎后装袋备用。

在水稻成熟期采集各小区表层(0~20 cm)土壤样品,剔除杂物后混合均匀,于4 ℃冰箱内保存,进行DOC含量测定,部分样品室内自然风干后过20目和100目尼龙筛后保存至封口塑料袋中备用。

1.4 测定指标及方法

有机物料pH值采用上海雷兹pH计(pHs-3C)测定,物水比为1:10(m:V);有机物料有机碳含量测定采用重铬酸钾容量-外加热法测定;有机物料用硫酸-过氧化氢消煮法消解后,全N含量用凯氏定氮法测定,有机物料全P含量用钒钼黄比色法测定[20]

土壤pH值采用上海雷兹pH计(pHs-3C)测定,土水比为1:2.5;土壤有机质含量测定采用重铬酸钾容量-外加热法[21];土壤DOC采用0.5 mol·L-1 K2SO4浸提,过滤后用有机碳分析仪(湿法)(Vwp,岛津)测定[21];土壤用硫酸-过氧化氢消煮法消解后,全N含量用凯氏定氮法测定,土壤全P含量采用钼锑抗比色法测定[21]。取过20目筛的风干土样用脲酶、过氧化氢酶和纤维素酶试剂盒(南京建成生物科技有限公司)进行相应酶活性的测定。土壤有效态Cd用DTPA[土水比1:2.5(m:V)]提取2 h后过滤[22],土壤Cd全量用王水-高氯酸消解法消解[21],定容过滤,用电感耦合等离子光谱发生仪(ICP-OES 5110,美国安捷伦)测定滤液中Cd含量。

水稻根表铁膜采用连二亚硫酸钠-柠檬酸钠-碳酸氢钠(DCB,dithionite-citrate-bicarbonate)法进行提取[23]。称取1.00 g鲜根加入40 mL DCB(0.03 mol · L-1Na3C6H5O7·2H2O-0.125 mol·L-1NaHCO3)溶液,使根系全部浸没于溶液中,10 min后加入1.00 g保险粉(Na2S2O4),混合均匀,继续浸泡1 h后洗入100 mL容量瓶中,定容,摇匀过滤,过滤液用ICP-OES测定根膜Cd(DCB-Cd)、Fe(DCB-Fe)和Mn(DCB-Mn)含量。

有机物料以及水稻根、茎、叶和稻谷中Cd含量测定采用混合酸溶液(HNO3:H2O,体积比为8:1)微波消解法消解[24],赶酸后定容至10 mL过滤,用ICPOES 5110测定滤液中Cd含量。

1.5 数据处理

Cd转运系数(Translocation factor,TF)=水稻上一部位Cd含量/下一部位Cd含量[25]。用Excel 2010软件进行试验数据的处理和作图,统计软件SPSS 21.0对试验数据进行多重比较和LSD显著性检验,Pearson法进行相关性分析。

2 结果与分析 2.1 有机物料对土壤pH、有效态Cd、可溶性有机碳和有机质含量的影响

施用紫云英、油菜秆和有机肥对土壤pH值和DTPA-Cd含量无明显影响,提高了土壤DOC和有机质含量(表 2)。与CK相比,紫云英、油菜秆和有机肥处理土壤DOC含量分别增加16.59%(P < 0.05)、9.45%和12.56%,土壤有机质含量虽略有增加但无显著性差异。

表 2 土壤pH、DTPA-Cd、DOC和有机质含量 Table 2 Soil pH, and the concentration of available Cd, DOC and organic matter
2.2 有机物料对土壤酶活性的影响

不同有机物料施用对土壤过氧化氢酶和纤维素酶活性影响显著,而对土壤脲酶活性无显著影响(表 3)。有机物料施用提高了土壤过氧化氢酶活性,紫云英、油菜秆和有机肥处理过氧化氢酶活性比CK分别提高6.96%、13.74%和17.76%(P < 0.05)。有机物料施用在一定程度上提高了土壤纤维素酶活性,油菜秆处理土壤纤维素酶活性比CK显著高37.93%(P < 0.05),施用紫云英和有机肥土壤纤维素酶活性略有增加,但无显著差异。

表 3 土壤酶活性(mg·g-1·d-1) Table 3 Soil enzymes activities(mg·g-1·d-1)
2.3 有机物料对水稻DCB-Fe、DCB-Mn及Cd固定量的影响

有机物料施用在一定程度上促进了水稻根表铁膜的形成,提高了其对Cd的固定量(图 1)。与CK相比,紫云英和油菜秆处理水稻DCB-Fe含量分别提高25.07%(P < 0.05)和22.71%(P < 0.05);油菜秆和有机肥处理DCB-Mn含量分别显著提高26.71%(P < 0.05)和24.04%(P < 0.05);施用紫云英、油菜秆和有机肥水稻DCB-Cd含量均有不同程度的提高,但未达到显著性差异。3种有机物料的施用促进了水稻根表铁膜的生成,提高了根表铁膜对Cd的固定。

不同字母表示处理间差异显著(P < 0.05) Different letters mean significant differences among treatments at 0.05 level 图 1 DCB-Fe、DCB-Mn和DCB-Cd含量 Figure 1 Fe, Mn, and Cd concentrations in DCB extraction
2.4 有机物料对水稻产量及水稻各部位Cd含量的影响

施用紫云英、油菜秆和有机肥对水稻稻谷产量无显著影响(表 4)。有机物料施用对水稻各部位Cd含量的影响不同(表 4)。与CK相比,紫云英、油菜秆和有机肥处理水稻根Cd含量分别提高4.22%、16.99% (P < 0.05)和38.27%(P < 0.05),茎Cd含量分别显著提高34.33%、46.58%和62.00%(P < 0.05),有机肥处理叶Cd含量显著增加22.01%(P < 0.05)、紫云英处理叶Cd含量显著降低16.86%(P < 0.05),紫云英、油菜秆和有机肥处理水稻稻谷Cd含量分别显著提高32.67%、39.60%和54.46%(P < 0.05)。可见,施用紫云英、油菜秆和有机肥提高了水稻根对Cd的吸收和稻谷中Cd的积累。

表 4 水稻产量和各部位Cd含量 Table 4 Rice yield and cadmium concentration in different parts of rice

与CK相比,紫云英、油菜秆和有机肥处理Cd由水稻根向茎的转运系数(TF茎/根)分别显著提高26.09%、21.74%和13.04%(P < 0.05),茎向叶Cd转运系数(TF叶/茎)分别显著降低38.67%、29.33%和25.33%(P < 0.05),叶向谷Cd转运系数(TF谷/叶)分别增加58.33%(P < 0.05)、33.33%(P < 0.05)和25.00%,Cd根向谷转运系数(TF谷/根)分别增加27.50%(P < 0.05)、20.00%(P < 0.05)和12.50%(表 5)。紫云英施用促进了Cd从水稻根向茎及根和叶向稻谷的转运、降低了Cd从茎向叶的转运,油菜秆施用促进了Cd从根和叶向稻谷的转运、降低了Cd从茎向叶的转运,有机肥施用促进了Cd从根向茎及根和叶向稻谷的转运、降低了Cd从茎向叶的转运。

表 5 水稻Cd转运系数 Table 5 The translocation coefficients of cadmium in rice
2.5 土壤有效态Cd、水稻吸收Cd与土壤理化性质及根表铁膜的关系

进一步分析了土壤相关指标及根表铁膜Cd与水稻各部位Cd含量的相关性(表 6),土壤DTPA提取态Cd含量与pH值、DOC和有机质含量之间的相关性并未达到显著水平(P>0.05)。稻谷Cd含量与水稻根Cd及茎Cd含量呈现极显著正相关关系(P < 0.01),但与水稻叶部Cd含量却无显著相关性(P>0.05)。此外,水稻各部位Cd含量与土壤pH值、DOC、有机质以及DTPA提取态Cd的相关性也均未达到显著水平(P> 0.05)。然而,稻谷和水稻茎秆Cd含量与根表铁膜Cd含量呈显著正相关关系(P < 0.05)。

表 6 水稻各部位Cd含量与pH、DOC、有机质、DTPA-Cd和DCB-Cd的相关性 Table 6 Correlation coefficients of cadmium concentrations in different parts of rice with pH, DOC, organic matter, DTPA-Cd and DCB-Cd concentrations
3 讨论

本研究结果显示,3种有机物料的施用对水稻成熟期土壤DTPA-Cd含量均无显著影响,王阳等[12]和薛毅等[14]研究结果也显示施用相似用量的绿肥和有机肥对当季水稻成熟期土壤有效态Cd含量无显著影响。然而,张庆沛等[13]发现油菜秸秆还田量为9.6 t· hm-2时会促进稻田土壤交换态Cd向有机结合态Cd转化。Guo等[16]研究表明,施用商品有机肥明显提高了土壤CaCl2提取态Cd含量。土壤pH值是影响Cd形态最为重要的环境因子之一,但本研究和前期大量试验结果均表明,较低用量有机物料施用后对当季成熟期土壤pH值的影响非常有限[12-14, 16],可以推测其对Cd形态的影响也较小。而有机物料施用后主要通过形成腐殖质和生成DOC,与Cd发生螯合或络合作用,进而影响Cd的赋存形态。从本试验结果来看,一方面由于有机物料施用量相对较低(2.25 t·hm-2),土壤有机质含量无明显变化,DOC含量略有增幅,可能难以显著改变土壤中Cd的有效性。另一方面可能与本试验采用的有效态Cd提取方法有关,DTPA法用于酸性土壤时,除可以提取水溶性和交换态Cd外,还能提取出部分碳酸盐、铁锰氧化物和有机结合态Cd[22],从而掩盖有机物料施用后的土壤Cd形态变化。这也导致了DTPA-Cd与土壤理化性质之间无明显相关性的研究结果。此外,供试水稻土每公顷Cd总量约为2 835 g(按土壤2 250 t·hm-2计),其DTPA-Cd占比高达60%,而紫云英、油菜秆和有机肥输入的Cd量分别为0.77、0.56 g·hm-2和1.85 g·hm-2,仅占土壤全Cd量的0.03%、0.02%和0.06%,不足以带来二次污染风险及影响土壤DTPA-Cd含量。可见,在供试土壤上,施用2.25 t·hm-2的绿肥、秸秆和有机粪肥对土壤DTPA-Cd含量均难以产生明显的影响。

根表铁膜是由于土壤中含铁锰物质经过植物根际的氧化还原过程沉积在根表形成的,对Cd等重金属具有较强的吸附能力,在水稻等湿地植物吸收重金属的过程中扮演着重要的角色[18, 26]。供试3种有机物料的施用有效促进了水稻根表铁膜的形成和对Cd的吸附,这与Zhang等[18]的研究结果相似。可能是因为施用有机物料为土壤中的微生物提供了可有效利用的碳源,能够提高微生物的活性,尤其是参与铁氧化还原功能微生物(如铁的异化还原菌)活性的提高会促进根表铁膜的形成[18]。这也可以从施用有机物料后,土壤中纤维素酶和过氧化氢酶活性的提升得到侧面的证实。此外,有机物料的施用,还可以为土壤中铁锰物质的氧化还原过程提供更多的电子供体[27]

虽然3种有机物料的施用并未影响水稻成熟期土壤DTPA-Cd含量,但显著提高了水稻各部位Cd的含量,这与Guo等[16]和Zhang等[18]研究结果基本一致。相关性分析结果进一步表明(表 6),施用有机物料后水稻对Cd的吸收增加受土壤中Cd有效性的变化影响较小,而与根表铁膜及其Cd固定量的增加有关。根表铁膜在植物吸收Cd的过程中既有可能起到障碍层(抑制)的作用,也有可能扮演储存库(促进)的角色,这取决于根表铁膜的厚度和老化程度,而其厚度和老化程度则与植物自身特性以及生长的环境条件直接相关[28]。本课题前期研究结果证明,在本研究的供试土壤上,根表铁膜对水稻吸收Cd主要起促进作用[18, 24],而施用有机物料后DCB-Fe和DCB-Mn显著升高,DCB-Cd也呈增加趋势,可能是导致水稻吸收Cd增加的重要原因。此外,施用3种有机物料后,Cd由根部向茎和稻谷的转运系数也显著升高,也可能是导致稻谷Cd含量升高的重要原因。前人在施用较高量绿肥和秸秆时也观察到相似的转运增强现象[12, 19],而江巧君等[29]则发现施用有机肥后Cd在水稻植株内的分配和转运因水稻品种不同,Cd由根部向地上部的转运既可能出现增强,也可能出现减弱的现象。Cd在水稻植株内的运移过程受到土壤氧化还原条件、pH、养分供应状况以及水稻品种等多种因素的共同作用[30],因此施用有机物料促进Cd由根部向地上部转运的作用机制有待进一步研究。

本研究的结果明确表明,施用绿肥、油菜秸秆和有机粪肥均提升了稻米Cd积累风险,表明在南方酸性Cd污染稻田采取施用有机物料培肥措施的选择过程需要更为慎重。然而,这并不能完全否定有机培肥措施,南方稻田土壤类型、污染程度和主栽水稻品种多样,有机物料施用后的效应是否会受到影响?长期施用有机物料对Cd在土壤-水稻系统运移的效应有待明确,有机物料施用后Cd在水稻体内转运发生变化的作用机制尚不清晰。因此,需要对更多稻田土壤类型和更广泛有机物料种类开展研究,尤其是长期定位试验研究,以便为南方酸性Cd污染稻田的安全生产提供更为系统的理论依据。

4 结论

(1) 在酸性Cd污染稻田上采取施用有机物料的方式对当季水稻成熟期土壤pH值、有机质和有效态Cd含量的影响较小,略有增产效应。

(2) 绿肥、秸秆和有机粪肥均可有效促进水稻根表铁膜的生成及其对Cd的吸附,提升Cd由水稻根部向地上部的转运,显著提高水稻各部位Cd含量。

(3) 在南方酸性Cd污染稻田建议谨慎使用有机物料,或在施用有机物料培肥的同时配合有效阻控水稻吸收Cd的技术措施,防止可能由此导致的稻米Cd累积风险。

参考文献
[1]
中华人民共和国环境保护部.全国土壤污染状况调查公报[R].北京: 中华人民共和国环境保护部, 2014.
Ministry of Environmental Protection of the People's Republic of China. Report on the national general survey of soil contamination[R]. Beijing: Ministry of Environmental Protection of the People's Republic of China, 2014.
[2]
Liu T T, Huang D Y, Zhu Q H, et al. Increasing soil moisture faciliates the outcomes of exogenous sulfate rather than element sulfur in reducing cadmium accumulation in rice(Oryza sativa L.)[J]. Ecotoxicology and Environmental Safety, 2020, 191: 110200. DOI:10.1016/j.ecoenv.2020.110200
[3]
黄道友, 朱奇宏, 朱捍华, 等. 重金属污染耕地农业安全利用研究进展与展望[J]. 农业现代化研究, 2018, 39(6): 1030-1043.
HUANG Dao-you, ZHU Qi-hong, ZHU Han-hua, et al. Advances and prospects of safety agro-utilization of heavy metal contaminated farmland soil[J]. Research of Agricultural Modernization, 2018, 39(6): 1030-1043.
[4]
Zhao F J, Ma Y, Zhu Y G, et al. Soil contamination in China:Current status and mitigation strategies[J]. Environmental Science and Technology, 2015, 49: 750-759. DOI:10.1021/es5047099
[5]
周兴, 廖育林, 鲁艳红, 等. 减量施肥下紫云英与稻草协同利用对双季稻产量和经济效益的影响[J]. 湖南农业大学学报(自然科学版), 2017, 43(5): 469-474.
ZHOU Xing, LIAO Yu-lin, LU Yan-hong, et al. Effects of Chinese milk vetch and rice straw synergistic dispatching on grain yield and economic benefit of double cropping rice system under fertilizer reduction[J]. Journal of Hunan Agricultural University(Natural Sciences), 2017, 43(5): 469-474.
[6]
陈贵, 张红梅, 沈亚强, 等. 猪粪与牛粪有机肥对水稻产量、养分利用和土壤肥力的影响[J]. 土壤, 2018, 50(1): 59-65.
CHEN Gui, ZHANG Hong-mei, SHEN Ya-qiang, et al. Application effects of swine and cow manures on rice yield, nutrient uptakes and use efficiencies and soil fertility[J]. Soils, 2018, 50(1): 59-65.
[7]
练成燕, 王兴祥, 李奕林. 种植花生、施用尿素对红壤酸化作用及有机物料的改良效果[J]. 土壤, 2010, 42(5): 822-827.
LIAN Cheng-yan, WANG Xing-xiang, LI Yi-lin. Effects of planting peanut and applying urea and organic materials on acidity of red soil[J]. Soils, 2010, 42(5): 822-827.
[8]
Ok Y S, Usman A R A, Lee S S, et al. Effects of rapeseed residue on lead and cadmium availability and uptake by rice plants in heavy metal contaminated soil[J]. Chemosphere, 2011, 85: 677-682. DOI:10.1016/j.chemosphere.2011.06.073
[9]
Moe K, Moh S M, Htwe A Z, et al. Effects of integrated organic and inorganic fertilizers on yield and growth parameters of rice varieties[J]. Rice Science, 2019, 26(5): 309-318. DOI:10.1016/j.rsci.2019.08.005
[10]
Yin B K, Zhou L Q, Yin B, et al. Effects of organic amendments on rice(Oryza sativa L.)growth and uptake of heavy metals in contaminated soil[J]. Journal of Soils and Sediments, 2016, 16: 537-546. DOI:10.1007/s11368-015-1181-8
[11]
Yang W T, Zhou H, Gu J F, et al. Influence of rapeseed cake on iron plaque formation and Cd uptake by rice(Oryza sativa L.)seedlings exposed to excess Cd[J]. Bulletin of Environmental Contamination and Toxicology, 2017, 99: 601-606. DOI:10.1007/s00128-017-2151-1
[12]
王阳, 刘恩玲, 王奇赞, 等. 紫云英还田对水稻镉和铅吸收积累的影响[J]. 水土保持学报, 2013, 27(2): 189-193.
WANG Yang, LIU En-ling, WANG Qi-zan, et al. Effects of milk vetch on cadmium and lead accumulation in rice[J]. Journal of Soil and Water Conservation, 2013, 27(2): 189-193.
[13]
张庆沛, 李冰, 王昌全, 等. 秸秆还田配施无机改良剂对稻田土壤镉赋存形态及生物有效性的影响[J]. 农业环境科学学报, 2016, 35(12): 2345-2352.
ZHANG Qing-pei, LI Bing, WANG Chang-quan, et al. Effects of combined application of straw and inorganic amendments on cadmium speciation and bioavailability in paddy soil[J]. Journal of AgroEnvironment Science, 2016, 35(12): 2345-2352.
[14]
薛毅, 尹泽润, 盛浩, 等. 连续4 a施有机肥降低紫泥田镉活性与稻米镉含量[J]. 环境科学, 2020, 41(4): 1880-1887.
XUE Yi, YIN Ze-run, SHENG Hao, et al. Reduction of soil cadmium activity and rice cadmium content by 4-consecutive-year application of organic fertilizer[J]. Environmental Science, 2020, 41(4): 1880-1887.
[15]
Wang W, Lai D Y E, Wang C, et al. Effects of rice straw incorporation on active soil organic carbon pools in a subtropical paddy field[J]. Soil and Tillage Research, 2015, 152: 8-16. DOI:10.1016/j.still.2015.03.011
[16]
Guo F Y, Ding C F, Zhou Z G, et al. Effects of combined amendments on crop yield and cadmium uptake in two cadmium contaminated soils under rice-wheat rotation[J]. Ecotoxicology and Environmental Safety, 2018, 148: 303-310. DOI:10.1016/j.ecoenv.2017.10.043
[17]
贾乐, 朱俊艳, 苏德纯. 秸秆还田对镉污染农田土壤中镉生物有效性的影响[J]. 农业环境科学学报, 2010, 29(10): 1992-1998.
JIA Le, ZHU Jun-yan, SU De-chun. Effects of crop straw return on soil cadmium availability in different cadmium contaminated soil[J]. Journal of Agro-Environment Science, 2010, 29(10): 1992-1998.
[18]
Zhang Q, Zhang L, Liu T T, et al. The influence of liming on cadmium accumulation in rice grains via iron-reducing bacteria[J]. Science of the Total Environment, 2018, 645: 109-118. DOI:10.1016/j.scitotenv.2018.06.316
[19]
段桂兰, 王芳, 岑况, 等. 秸秆还田对水稻镉积累及其亚细胞分布的影响[J]. 环境科学, 2017, 38(9): 3927-3936.
DUANG Gui-lan, WANG Fang, CEN Kuang, et al. Effects of straw incorporation on cadmium accumulation and subcellular distribution in rice[J]. Environmental Science, 2017, 38(9): 3927-3936.
[20]
中华人民共和国农业部.有机肥料: NY 525-2012[S].北京: 中国农业出版社出版, 2012.
Ministry of Agriculture of PRC. Organic fertilize: NY 525-2012[S]. Beijing: China Agriculture press, 2012.
[21]
鲍士旦. 土壤农化分析[M]. 三版. 北京: 中国农业出版社, 2000.
BAO Shi-dan. Soil and agricultural chemistry analysis[M]. 3rd Edition. Beijing: China Agriculture Pres, 2000.
[22]
熊婕, 朱奇宏, 黄道友, 等. 南方典型稻区稻米镉累积量的预测模型研究[J]. 农业环境科学学报, 2019, 38(1): 22-28.
XIONG Jie, ZHU Qi-hong, HUANG Dao-you, et al. Prediction model for the accumulation of cadmium in rice in typical paddy fields of south China[J]. Journal of Agro-Environment Science, 2019, 38(1): 22-28.
[23]
胡莹, 黄益宗, 黄艳超, 等. 不同生育期水稻根表铁膜的形成及其对水稻吸收和转运Cd的影响[J]. 农业环境科学学报, 2013, 32(3): 432-437.
HU Ying, HUANG Yi-zong, HUANG Yan-chao, et al. Formation of iron plaque on root surface and its effect on Cd uptake and translocation by rice(Oryza sativa L.)at different growth stages[J]. Journal of Agro-Environment Science, 2013, 32(3): 432-437.
[24]
Zhang Q, Chen H F, Huang D Y, et al. Water managements limit heavy metal accumulation in rice:Dual effects of iron-plaque formation and microbial communities[J]. Science of the Total Environment, 2019, 687: 790-799. DOI:10.1016/j.scitotenv.2019.06.044
[25]
蔡秋玲, 林大松, 王果, 等. 不同类型水稻镉富集与转运能力的差异分析[J]. 农业环境科学学报, 2016, 35(6): 1028-1033.
CAI Qiu-ling, LIN Da-song, WANG Guo, et al. Differences in cadmium accumulation and transfer capacity among different types of rice cultivars[J]. Journal of Agro-Environment Science, 2016, 35(6): 1028-1033.
[26]
Zhang X, Zhang F, Mao D. Effect of iron plaque outside roots on nutrient uptake by rice(Oryza sativa L.)zinc uptake by Fe-deficient rice[J]. Plant and Soil, 1998, 202: 33-39. DOI:10.1023/A:1004322130940
[27]
朱同彬, 张金波, 蔡祖聪. 淹水条件下添加有机物料对蔬菜地土壤硝态氮及氮素气体排放的影响[J]. 应用生态学报, 2012, 23(1): 109-114.
ZHU Tong-bin, ZHANG Jin-bo, CAI Zu-cong. Effects of organic material amendment on vegetable soil nitrate content and nitrogenous gases emission under flooding condition[J]. Chinese Journal of Applied Ecology, 2012, 23(1): 109-114.
[28]
刘文菊, 朱永官. 湿地植物根表的铁锰氧化物膜[J]. 生态学报, 2005, 25(2): 358-363.
LIU Wen-ju, ZHU Yong-guan. Iron and Mn plaques on the surface of roots of wetland plants[J]. Acta Ecologica Sinica, 2005, 25(2): 358-363.
[29]
江巧君, 周琴, 韩亮亮, 等. 有机肥对镉胁迫下不同基因型水稻镉吸收和分配的影响[J]. 农业环境科学学报, 2013, 32(1): 9-14.
JIANG Qiao-jun, ZHOU Qin, HAN Liang-liang, et al. Effects of organic manure on uptake and distribution of cadmium in different rice genotypes under cadmium stress[J]. Journal of Agro-Environment Science, 2013, 32(1): 9-14.
[30]
Li H, Luo N, Li Y W, et al. Cadmium in rice:transport mechanisms, influencing factors, and minimizing measures[J]. Environmental Pollution, 2017, 224: 622-630. DOI:10.1016/j.envpol.2017.01.087