2. 河北农业大学资源与环境科学学院, 河北 保定 071001;
3. 南方现代林业协同创新中心, 南京林业大学林学院, 南京 210037;
4. 土壤与农业可持续发展国家重点实验室, 中国科学院南京土壤研究所, 南京 210008;
5. 华中农业大学资源与环境学院, 武汉 430070;
6. 南京师范大学地理科学学院, 南京 210023;
7. 江苏省地理信息资源开发与利用协同创新中心, 南京 210023
2. College of Resources & Environmental Sciences, Hebei Agricultural University, Baoding 071001, China;
3. Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China;
4. State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China;
5. College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China;
6. School of Geography, Nanjing Normal University, Nanjing 210023, China;
7. Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
在我国,水果已成为继粮食、蔬菜之后的第三大农业种植产业,产量和种植面积多年稳居全球首位[1-2]。据不完全统计,全球每2个苹果中就有1个产自中国[3]。水果产业的迅速发展在保障城乡居民水果供应,振兴乡村经济中发挥了极为重要的作用。随着农业集约化生产水平提高,水果产业的高产出、高收益刺激了农民的高投入,特别是盲目高量的化肥投入十分明显,尤其是氮肥。早在2009年,全国性问卷调查已表明果园年平均化学氮肥投入量高达550 kg N·hm-2,远高于水稻、小麦和玉米等大宗粮食作物(< 250 kg N·hm-2)和蔬菜(383 kg N·hm-2)[4]。从果树种类来看,栽培面积居于我国前两位的苹果和柑橘的年平均施氮量均处在490 kg N · hm-2以上的高线上[5-6],辽宁省和黄土高原苹果主产区年平均化学氮肥投入量甚至分别高达694 kg N·hm-2和1100 kg N· hm-2 [7-8]。肥料投入呈两极分化趋势,众所周知果园施用有机肥能够提高土壤有机质含量,起到保水保肥、提高肥料利用率的作用,并且可以改善土壤结构。然而,实际生产上有机肥投入总体偏低,许多地方甚至出现投入严重不足的现象。以我国主产区柑橘园为例,有机肥施用带入的纯氮量不足总量的10%[6]。尽管如此,当前的氮肥投入量已经远超果树的最佳适宜施氮量,这必然导致大量的氮损失和严重的生态环境问题,如温室气体氧化亚氮(N2O)排放增加、地下水硝酸盐累积、地表水体富营养化等。N2O不仅具有较高的增温潜势,还可以破坏臭氧层,因而其一直受到国际社会的高度关注。一般而言,旱地土壤中以N2O形式损失的氮量占氮肥施用量的比例(即N2O排放系数)为1%[9],但是基于全球尺度的统计分析结果却表明,这一数值在高氮输入下(>200 kg N·hm-2)过于保守[10]。由此可见,与粮食作物相比,果园土壤N2O的单位面积排放量可能较高,排放系数较大。然而,国内外有关果园土壤N2O排放的研究报道十分稀缺,据初步统计,全球仅有31篇文献报道了果园土壤N2O排放的原位观测研究[11],这极大地限制了我们对果园土壤N2O排放特征及其控制因子的认识。基于此,本文系统讨论了果园土壤N2O排放的复杂性,在此基础上阐明了如何形成有效的监测系统,并利用现有技术认识了N2O排放规律,探讨了特定减排技术和手段下的减排效果,旨在为果园系统土壤N2O减排提供科学依据。
1 果树种植土壤N2O排放监测的复杂性与大田和蔬菜作物不同,果树为多年生植物,生命周期长,少则二三十年,长则数百年仍能结果。在不同的生育期和物候期,果树的不同营养特点决定了不同的施肥特征。不同的生育期施肥量通常不一致,例如未成年果树的施肥量常低于成年果树,且施肥区域也不尽相同。因此,研究果树种植土壤N2O排放需要考虑果树生长、结果、更新和衰老等变化过程。然而,当前关于果园土壤N2O排放监测的研究对象主要是处于盛果期的成年果树,而且监测周期均较短,不能真实反映果树整个生命周期的N2O排放规律[11]。此外,果树的施肥方法多样,常见的如环状沟施法、放射状沟施法、条状沟施法、穴施法、叶面喷肥法、灌水施肥法、直接撒施以及交替使用。不同的施肥方法决定了施肥区域的差异性,再加上果树树盘面积以及与之关联的施肥区域因果树类型而有明显差异,如何综合考虑施肥区域和非施肥区域进而准确估算果园土壤N2O排放是研究者必须面对的问题。最后,不同的树龄、树势、产量、品种、土壤和气候亦会影响施肥量和施肥区域进而增加监测的难度。近些年来,我国设施果树栽培发展迅速,占比较大的如桃、草莓和葡萄等[12],但由于设施栽培对气体扩散的阻隔作用,箱式法测定的含氮气体排放通量只能反映棚内土壤界面处气体的释放速率,而不一定能够反映其向棚外大气的扩散速率[13]。因此,如何准确测定设施果树栽培土壤N2O排放亦是未来亟待解决的问题。
2 如何形成有效的N2O监测系统?准确测定果树种植土壤N2O排放的关键在于确定果树的种植密度和施肥区域。常见的施肥方法如环状沟施、放射状沟施、条状沟施、穴施,其施肥区面积一般小于非施肥区。因此,最理想的监测方法是在施肥区和非施肥区均设置采样点或者采样点权衡了施肥和非施肥区域,已发表文献中均遵循了该采样规则[11]。具体来说,要求根据果树树形大小、施肥方式、位置以及其他田间环境等的不同,科学合理地布设采样点数量。例如,对陕西黄土高原苹果园进行土壤N2O监测时采样点分别设置在距离果树2.5 m(两排苹果树中间,相当于非施肥区)、1.5 m(3月施肥的施肥坑上)和0.5 m(6月施肥的施肥坑上)处(图 1a)[14]。在研究蓄水坑灌条件下山西苹果园土壤N2O排放时,考虑到蓄水坑是沿树干呈环形分布,采样点设置在树干沿坑中心及沿相邻两个坑中间两个方向上,每个方向上距离果树40、75、110 cm和145 cm处分别设置了采样点(图 1b)[15]。针对一些环形施肥的果园,也可设置三角形采样箱以便能一次性覆盖施肥区和非施肥区(图 1c,未发表数据)。总体而言,必须根据果树的树盘面积、施肥区域、管理方式等条件因地制宜地设计静态箱的摆放位置,以求最真实地反映果园系统土壤N2O排放。
![]() |
图 1 陕西黄土高原苹果园(a)[14]、山西苹果园(b)[15]和江苏水蜜桃园(c)土壤N2O排放静态箱布设示意图 Figure 1 Diagrams of the static closed-chamber used for measuring N2O emissions from apple orchards in Loess Plateau in Shaanxi Province (a) [14] and Shanxi Province (b) [15], and peach orchard in Jiangsu Province(c) |
在全球范围内,施肥果园土壤N2O年排放量变化范围在-0.12~26.00 kg N·hm-2,平均值和中位数分别为3.06 kg N·hm-2和1.12 kg N·hm-2(表 1)。最高排放出现在我国华东地区的水蜜桃园[18],该地属亚热带季风气候,年施氮量高达1007 kg N·hm-2。最低排放出现在西班牙的橄榄种植园[30],该地属地中海式气候,N2O排放量只有0.11 kg N·hm-2,年施氮量仅为50 kg N·hm-2,并且在混施硝化抑制剂条件下,出现了N2O负排放。全球范围内果园土壤N2O排放量与施氮量呈极显著正相关[11]。从肥料类型看,施用有机肥(包括粪肥、堆肥、绿肥等)较化肥平均提高了果园N2O损失率(即N2O排放量占施氮量的百分比)约25%,其原因可能是有机肥为反硝化微生物提供了丰富的有机碳底物以及厌氧微域,促进了N2O排放[46]。然而,在对地中海式气候区葡萄园[41]连续两年的观测却发现了相反的结果,这可能是由于堆肥碳氮比较高(约为20),微生物在分解有机质过程中需要从土壤环境中同化无机氮满足自身生长的需求,从而限制了硝化、反硝化微生物活动[46]。有机肥施用对N2O排放的影响取决于其对土壤氮素循环关键过程的综合作用效果。N2O直接排放系数变化范围为-0.44%~2.7%,平均值和中位数分别为1.15%和1.37%(n=25),进一步对N2O排放量与施氮量进行回归分析发现,全球果园土壤N2O排放系数为1.36%±0.16%[11]。这表明果园土壤N2O排放系数高于IPCC默认值1%[9]。但是,受样本数量的限制,该排放系数在全球范围内难具代表性。例如,温带气候区内的果园尚未有直接排放系数的报道[11]。从气候区域来看,热带果园土壤排放系数最高,应作为N2O排放管理的重点对象,而亚热带地区果园背景排放量最高,对区域N2O排放总量的贡献较大。而在地中海式气候区,N2O排放量始终低于5 kg N·hm-2,且与施氮量无显著相关性,这可能与发达国家果园施氮量较低且多为节水型灌溉有关(表 1)。因此,在估算全球或区域果园N2O排放总量时,应考虑不同气候类型间排放系数和背景排放的差异。
![]() |
表 1 全球果园土壤N2O排放观测 Table 1 Soil N2O emission from fertilized fruit orchards across the globe |
整合分析研究[11]表明,施用硝化抑制剂能够显著降低73%的果园土壤N2O排放。与采用滴灌技术的果园相比,采用微喷灌或地下滴灌技术的果园土壤N2O排放量显著降低了63%。这主要是由于滴灌喷头下土壤水分含量和反硝化微生物丰度均较高[30, 32, 45],有利于反硝化过程的发生和N2O的排放。但是节水灌溉系统下果园土壤N2O排放量整体较低(< 1.74 kg N·hm-2)[11],这是由于节水条件下灌水量低,灌水附近的湿润区域土壤孔隙含水率低于传统漫灌,使得土壤硝化作用强于反硝化作用,从而降低土壤N2O排放。当前在发展中国家的干旱、半干旱地区,漫灌仍然是一种普遍的农田管理措施,极大地促进了粮食旱作土壤反硝化速率和N2O排放[47-48],但在果园中尚未有相关研究报道。相对于漫灌,节水灌溉能否降低果园土壤N2O排放仍需进一步的观测研究。此外,生草或者土壤覆盖是果园常见的管理方式,但这并不能显著降低土壤N2O排放[11],由于生草或覆盖材料种类繁多且管理方式多样,还需进一步评估其对土壤N2O排放的影响。
4 结语与展望随着果树科学的发展和生产的提高,不断涌现出了新的问题及与之关联的研究课题和方法。如何准确定量果树种植土壤的N2O排放,揭示其排放规律,研发针对性的减排措施以及建立N2O排放估算模型是当前亟待解决的关键问题。未来将重点开展以下几方面的研究。
(1)针对果树特定的生长规律和管理模式,制定不同种类果树种植下土壤N2O排放监测标准,从而形成可比较、可复制、可推广的监测模式,为将来准确定量果树种植土壤N2O排放提供依据。
(2)针对不同气候区域,研发果树系统不同施肥模式(如有机肥、化学肥、有机无机配施)、不同灌溉模式(如滴灌、喷灌、漫灌)、不同土壤管理制度(如清耕、生草覆盖)下土壤N2O减排技术。
(3)加强与N2O排放相关联的氮素转化过程的研究。从土壤氮素各个关键转化过程以及与之相关联的微生物出发,解析环境因子和调控措施对果树土壤N2O排放的影响及其作用机理。
(4)构建果树种植系统土壤氮素平衡和N2O排放模型。
[1] |
中华人民共和国国家统计局. 中国统计年鉴2019[M]. 北京: 中国统计出版社, 2019. National Bureau of Statistics of the People's Republic of China. China statistical yearbook 2019[M]. Beijing: China Statistics Press, 2019. |
[2] |
中华人民共和国国家统计局. 国际统计年鉴2018[M]. 北京: 中国统计出版社, 2018. National Bureau of Statistics of the People's Republic of China. China statistical yearbook 2018[M]. Beijing: China Statistics Press, 2018. |
[3] |
United States Department of Agriculture(USDA). Fresh apples, grapes, and pears: World markets and trade[R]. USA: United States Department of Agriculture, 2019: 1-10.
|
[4] |
Zhang W, Dou Z, He P, et al. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110: 8375-8380. |
[5] |
葛顺峰, 朱占玲, 魏绍冲, 等. 中国苹果化肥减量增效技术途径与展望[J]. 园艺学报, 2017, 44(9): 1681-1692. GE Shun-feng, ZHU Zhan-ling, WEI Shao-chong, et al. Technical approach and research prospect of saving and improving efficiency of chemical fertilizers for apple in China[J]. Acta Horticulturae Sinica, 2017, 44(9): 1681-1692. |
[6] |
雷靖, 梁珊珊, 谭启玲, 等. 我国柑橘氮磷钾肥用量及减施潜力[J]. 植物营养与肥料学报, 2019, 25(9): 1504-1513. LEI Jing, LIANG Shan-shan, TAN Qi-ling, et al. NPK fertilization rates and reducing potential in the main citrus producing regions of China[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(9): 1504-1513. |
[7] |
李燕青, 丁文涛, 李壮, 等. 辽宁省苹果主产区果园施肥状况调查与评价[J]. 中国果树, 2017(6): 94-98. LI Yan-qing, DING Wen-tao, LI Zhuang, et al. Investigation and evaluating the situation of fertilization in the major apple production area of Liaoning province[J]. China Fruits, 2017(6): 94-98. |
[8] |
陈翠霞, 刘占军, 陈竹君, 等. 黄土高原新老苹果产区施肥现状及土壤肥力状况评价[J]. 土壤通报, 2018, 49(5): 1144-1149. CHEN Cui-xia, LIU Zhan-jun, CHEN Zhu-jun, et al. Evaluating the situation of fertilization and soil fertility in new and old apple orchards of the loess plateau[J]. Chinese Journal of Soil Science, 2018, 49(5): 1144-1149. |
[9] |
Eggleston H S, Buendia L, Miwa K, et al. 2006 IPCC guidelines for national greenhouse gas inventories[M]//Klein C D, Novoa R S A, Ogle S, et al. Chapter 11: N2O emissions from managed soils, and CO2 emissions from lime and urea application. National greenhouse gas inventories programme, IPCC/IGES, Miura, Japan, 2006: 1-54.
|
[10] |
Shcherbak I, Millar N, Robertson G P. Global metaanalysis of the nonlinear response of soil nitrous oxide(N2O)emissions to fertilizer nitrogen[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(25): 9199-9204. |
[11] |
Gu J X, Nie H H, Guo H J, et al. Nitrous oxide emissions from fruit orchards:A review[J]. Atmospheric Environment, 2019, 201: 166-172. |
[12] |
张英杰, 焦雪辉, 王舒藜, 等. 中国设施果树区域发展[J]. 温室园艺, 2010(8): 94-100. ZHANG Ying-jie, JIAO Xue-hui, WANG Shu-li, et al. Regional development of protected fruits in China[J]. Greenhouse & Horticulture, 2010(8): 94-100. |
[13] |
蔡祖聪. 我国设施栽培养分管理中待解的科学和技术问题[J]. 土壤学报, 2019, 56(1): 36-43. CAI Zu-cong. Scientific and technological issues of nutrient management under greenhouse cultivation in China[J]. Acta Pedologica Sinica, 2019, 56(1): 36-43. |
[14] |
Pang J, Wang X, Mu Y, et al. Nitrous oxide emissions from an apple orchard soil in the semiarid Loess Plateau of China[J]. Biology and Fertility of Soils, 2009, 46(1): 37-44. |
[15] |
刘浩.蓄水坑灌条件下果园土壤氨挥发与氧化亚氮排放的试验研究[D].太原: 太原理工大学, 2013. LIU Hao. Study on ammonia volatilization and nitrous oxide emissions at the orchard soil under water storage pit irrigation[D]. Taiyuan: Taiyuan University of Technology, 2013. |
[16] |
Pang J, Wang X, Peng C, et al. Nitrous oxide emissions from soils under traditional cropland and apple orchard in the semi-arid Loess Plateau of China[J]. Agriculture, Ecosystems and Environment, 2019, 269: 116-124. |
[17] |
Ge S, Jiang Y, Wei S. Gross nitrification rates and nitrous oxide emissions in an apple orchard soil in northeast China[J]. Pedosphere, 2015, 25(4): 622-630. |
[18] |
Cheng Y, Xie W, Huang R, et al. Extremely high N2O but unexpectedly low NO emissions from a highly organic and chemical fertilized peach orchard system in China[J]. Agriculture, Ecosystems and Environment, 2017, 246: 202-209. |
[19] |
Lin S, Iqbal J, Hu R, et al. Differences in nitrous oxide fluxes from red soil under different land uses in mid-subtropical China[J]. Agriculture, Ecosystems and Environment, 2012, 146: 168-178. |
[20] |
Lin S, Iqbal J, Hu R, et al. N2O emissions from different land uses in mid-subtropical China[J]. Agriculture, Ecosystems and Environment, 2010, 136: 40-48. |
[21] |
Wu X, Liu H, Fu B, et al. Effects of land-use change and fertilization on N2O and NO fluxes, the abundance of nitrifying and denitrifying microbial communities in a hilly red soil region of southern China[J]. Applied Soil Ecology, 2017, 120: 111-120. |
[22] |
Wu X, Liu H, Zheng X, et al. Responses of CH4 and N2O fluxes to land-use conversion and fertilization in a typical red soil region of southern China[J]. Scientific Reports, 2017, 7: 10571. DOI:10.1038/s41598-017-10806-z |
[23] |
Liu H, Zhao P, Lu P, et al. Greenhouse gas fluxes from soils of different land-use types in a hilly area of south China[J]. Agriculture, Ecosystems and Environment, 2008, 124(1/2): 125-135. |
[24] |
Zhu T, Zhang J, Huang P, et al. N2O emissions from banana plantations in tropical China as affected by the application rates of urea and a urease/nitrification inhibitor[J]. Biology and Fertility of Soils, 2015, 51(6): 673-683. |
[25] |
Okuda H, Noda K, Sawamoto T, et al. Emission of N2O and CO2 and uptake of CH4 in soil from a satsuma mandarin orchard under mulching cultivation in central Japan[J]. Journal of the Japanese Society for Horticultural Science, 2007, 76(4): 279-287. |
[26] |
Tsuruta H. Emission rates of methane from rice paddy fields and nitrous oxide from fertilized upland fields estimated from intensive field measurement for three years(1992-1994)all over Japan[J]. NIAES Study Rep. Branch Manage, Res. Ecosyst, 1998, 13: 101-130. |
[27] |
Rowlings D W, Grace P R, Scheer C, et al. Influence of nitrogen fertiliser application and timing on greenhouse gas emissions from a lychee (Litchi chinensis)orchard in humid subtropical Australia[J]. Agriculture, Ecosystems and Environment, 2013, 179: 168-178. |
[28] |
Swarts N, Montagu K, Oliver G, et al. Benchmarking nitrous oxide emissions in deciduous tree cropping systems[J]. Soil Research, 2016, 54(5): 500-511. |
[29] |
Huang X, Grace P, Weier K, et al. Nitrous oxide emissions from subtropical horticultural soils:A time series analysis[J]. Soil Research, 2012, 50(7): 596-606. |
[30] |
Maris S C, Teira-Esmatges M R, Arbonés A, et al. Effect of irrigation, nitrogen application, and a nitrification inhibitor on nitrous oxide, carbon dioxide and methane emissions from an olive(Olea europaea L.) orchard[J]. Science of the Total Environment, 2015, 538: 966-978. |
[31] |
Marques F J M, Pedroso V, Trindade H, et al. Impact of vineyard cover cropping on carbon dioxide and nitrous oxide emissions in Portugal[J]. Atmospheric Pollution Research, 2018, 9(1): 105-111. |
[32] |
Alsina M M, Fanton-Borges A C, Smart D R. Spatiotemporal variation of event related N2O and CH4 emissions during fertigation in a California almond orchard[J]. Ecosphere, 2013, 4(1). DOI:10.1890/ES12-00236.1 |
[33] |
Decock C, Garland G, Suddick E C, et al. Season and location-specific nitrous oxide emissions in an almond orchard in California[J]. Nutrient Cycling in Agroecosystems, 2017, 107: 139-155. |
[34] |
Wolff M W., Hopmans J W, Stockert C M, et al. Effects of drip fertigation frequency and N-source on soil N2O production in almonds[J]. Agriculture, Ecosystems and Environment, 2017, 238: 67-77. |
[35] |
Wolff M W, Alsina M M, Stockert C M, et al. Minimum tillage of a cover crop lowers net GWP and sequesters soil carbon in a California vineyard[J]. Soil and Tillage Research, 2018, 175: 244-254. |
[36] |
Garland G M, Suddick E, Burger M, et al. Direct N2O emissions from a Mediterranean vineyard:Event-related baseline measurements[J]. Agriculture, Ecosystems and Environment, 2014, 195: 44-52. |
[37] |
Steenwerth K L, Belina K M. Vineyard weed management practices influence nitrate leaching and nitrous oxide emissions[J]. Agriculture, Ecosystems and Environment, 2010, 138(1/2): 127-131. |
[38] |
Verhoeven E, Six J. Biochar does not mitigate field-scale N2O emissions in a Northern California vineyard:An assessment across two years[J]. Agriculture, Ecosystems and Environment, 2014, 191: 27-38. |
[39] |
Schellenberg D L, Alsina M M, Muhammad S, et al. Yield-scaled global warming potential from N2O emissions and CH4 oxidation for almond(Prunus dulcis)irrigated with nitrogen fertilizers on arid land[J]. Agriculture, Ecosystems and Environment, 2012, 155: 7-15. |
[40] |
Fentabil M M, Nichol C F, Jones M D, et al. Effect of drip irrigation frequency, nitrogen rate and mulching on nitrous oxide emissions in a semi-arid climate:An assessment across two years in an apple orchard[J]. Agriculture, Ecosystems and Environment, 2016, 235: 242-252. |
[41] |
Fentabil M M, Nichol C F, Neilsen G H, et al. Effect of micro-irrigation type, N-source and mulching on nitrous oxide emissions in a semi-arid climate:An assessment across two years in a Merlot grape vineyard[J]. Agricultural Water Management, 2016, 171: 49-62. |
[42] |
Veldkamp E, Keller M. Nitrogen oxide emissions from a banana plantation in the humid tropics[J]. Journal of Geophysical Research-Atmospheres, 1997, 102(D13): 15889-15898. |
[43] |
Weitz A M, Linder E, Frolking S, et al. N2O emissions from humid tropical agricultural soils:Effects of soil moisture, texture and nitrogen availability[J]. Soil Biology and Biochemistry, 2001, 33(7/8): 1077-1093. |
[44] |
Crill P M, Keller M, Weitz A, et al. Intensive field measurements of nitrous oxide emissions from a tropical agricultural soil[J]. Global Biogeochem Cycles, 2000, 14(1): 85-95. |
[45] |
Palm C A, Alegre J C, Arevalo L, et al. Nitrous oxide and methane fluxes in six different land use systems in the Peruvian Amazon[J]. Global Biogeochemical Cycles, 2002, 16(4). DOI:10.1029/2001GB001855 |
[46] |
王敬, 程谊, 蔡祖聪, 等. 长期施肥对农田土壤氮素关键转化过程的影响[J]. 土壤学报, 2016, 53(2): 292-304. WANG Jing, CHENG Yi, CAI Zu-cong, et al. Effects of long-term fertilization on key processes of soil nitrogen cycling in agricultural soil:A review[J]. Acta Pedologica Sinica, 2016, 53(2): 292-304. |
[47] |
Gu J, Yuan M, Liu J, et al. Trade-off between soil organic carbon sequestration and nitrous oxide emissions from winter wheat-summer maize rotations:implications of a 25-year fertilization experiment in northwestern China[J]. Science of the Total Environment, 2017, 595: 371-379. |
[48] |
Scheer C, Grace P R, Rowlings D W, et al. Nitrous oxide emissions from irrigated wheat in Australia:Impact of irrigation management[J]. Plant and Soil, 2012, 359(1/2): 351-362. |