快速检索        
  农业环境科学学报  2020, Vol. 39 Issue (4): 834-841  DOI: 10.11654/jaes.2020-0108
0

引用本文  

夏龙龙, 颜晓元, 蔡祖聪. 我国农田土壤温室气体减排和有机碳固定的研究进展及展望[J]. 农业环境科学学报, 2020, 39(4): 834-841.
XIA Long-long, YAN Xiao-yuan, CAI Zu-cong. Research progress and prospect of greenhouse gas mitigation and soil carbon sequestration in croplands of China[J]. Journal of Agro-Environment Science, 2020, 39(4): 834-841.

基金项目

国家重点研发计划项目(2017YFD0200100)

Project supported

The National Key R & D Program of China(2017YFD0200100)

通信作者

颜晓元  E-mail:yanxy@issas.ac.cn

作者简介

夏龙龙(1989-), 男, 山东安丘人, 博士后, 从事土壤碳氮循环与全球气候变化研究。E-mail:llxia@issas.ac.cn

文章历史

收稿日期: 2020-01-30
录用日期: 2020-03-27
我国农田土壤温室气体减排和有机碳固定的研究进展及展望
夏龙龙1 , 颜晓元1 , 蔡祖聪2     
1. 土壤与农业可持续发展国家重点实验室, 中国科学院南京土壤研究所, 南京 210008;
2. 南京师范大学地理科学学院, 南京 210023
摘要:作为世界上最大的水稻生产国以及氮肥消耗国,我国农业生产过程排放了大量温室气体甲烷(CH4)和氧化亚氮(N2O)。因此,减少农田土壤CH4和N2O排放以及提高土壤碳库储量(简称“固碳减排”)对于缓解全球气候变暖以及确保粮食安全至关重要。近20年来,我国在农田土壤固碳减排方面进行了大量研究,总结出了一系列行之有效的固碳减排措施。本文综述了我国目前针对农田土壤温室气体减排以及土壤有机碳固定的有效措施,并对未来农田土壤固碳减排方向进行了展望。
关键词农田    温室气体    固碳措施    减排措施    
Research progress and prospect of greenhouse gas mitigation and soil carbon sequestration in croplands of China
XIA Long-long1 , YAN Xiao-yuan1 , CAI Zu-cong2     
1. State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China;
2. School of Geography, Nanjing Normal University, Nanjing 210023, China
Abstract: As the largest crop-production and fertilizer-consumption country in the world, food production in China has emitted substantial greenhouse gases(methane, CH4; nitrous oxide, N2O) into the environment. Therefore, it is essential to mitigate the CH4 and N2O emissions and increase soil organic carbon sequestration (also known as "mitigation and sequestration")in croplands for retarding global warming and ensuring food security. During the past two decades, mountainous studies have conducted on this research area and have summarized a series of agricultural management practices, which are effective in mitigating CH4 and N2O emissions and increasing soil organic carbon sequestration in the cropland of China. This paper reviewed these effective "mitigation and sequestration" agricultural management practices and put forward prospects and suggestions on future studies regarding this research area in China.
Keywords: croplands    greenhouse gas    carbon sequestration options    mitigation options    

众所周知,提高土壤肥力,减少农田温室气体排放是世界各国确保粮食安全和应对全球气候变暖的重要战略[1-2]。作为世界上最大的农业国家之一,中国生产了全球30%的水稻,18%的小麦以及21%的玉米[3]。与此同时,作为世界上最大的氮肥生产国和消耗国,中国每年用于农作物生产的化学氮肥用量约占世界氮肥总量的30%[4]。水稻种植所需的淹水条件促进了温室气体甲烷(CH4)的大量排放。在一百年尺度下,单位质量CH4的全球增温潜势是二氧化碳(CO2)的28倍[5]。据估算,我国稻田CH4总排放量为7.7Tg·a-1, 约占世界稻田总排放量的30%,约占我国农业活动温室气体总排放量的20%[6]。除了CH4的大量排放以外,化学氮肥大量施用还促进了农田土壤(特别是旱地土壤)另一种温室气体氧化亚氮(N2O)的排放。在一百年的尺度下,单位质量N2O的全球增温潜势是CO2的265倍[5]。据估算,我国农田土壤N2O总排放量约为0.19~0.5 Tg·a-1,约占我国农业源温室气体总排放量的19%~25%[7-9]。因此,在确保粮食安全的前提下,制定合理的农田管理措施来有效减少我国农田土壤温室气体CH4和N2O排放,对于缓解全球气候变暖、实现我国的减排目标具有重要意义。除了CH4和N2O减排以外,提高农田土壤有机碳库储量(土壤肥力的基础)同样对于确保粮食产量和温室气体减排至关重要。根据我国第二次土壤普查的结果,我国学者估算出我国农田土壤(0~1 m)的碳库储量为85~95 Pg[10]。土壤碳库的微小变化也可能对大气CO2浓度产生强烈影响。本文系统总结我国农田温室气体减排以及土壤有机碳固定(简称“固碳减排”)的有效措施,对于未来固碳减排政策制定和推动可持续农业发展至关重要。

1 农田土壤CH4的减排

农田CH4排放是指土壤中产生的CH4经过氧化以及传输后的净效应[11-12]。众所周知,稻田是土壤CH4的重要排放源。稻田CH4产生是指在淹水形成的严格厌氧条件下(通常氧化还原电位低于-200 mV), 土壤中产甲烷菌作用于土壤腐殖质、水稻根系分泌物、土壤微生物残体以及施入有机物料等产甲烷基质的结果。土壤产生的CH4可以进一步在根系泌氧(根系周围)或在土壤表层的氧化层区域被甲烷氧化菌氧化而进一步转化为CO2和H2O。未被氧化的CH4则会通过植物通气组织、气泡以及液相扩散等形式向大气排放,其中以水稻通气组织输送为主。任何影响这3个过程的因素都会对稻田CH4排放产生影响。同样,任何能够减少产甲烷菌作用底物、破坏CH4产生所需的还原条件以及促进CH4氧化的农田管理措施都会减少稻田CH4排放。其中,优化水分管理模式以及有机物料还田方式是减少稻田CH4排放的关键。

水稻生长期采取持续淹水的方式会导致土壤极端厌氧,促进CH4大量排放;相反,采取中期烤田的水分管理方式(又称间歇灌溉)会大幅增加土壤通气性,破坏土壤极端还原条件,促进CH4氧化并抑制CH4产生。而且,采取中期烤田水分管理方式的稻田,即使在烤田结束覆水后仍能将CH4排放量保持在较低水平[12]。与持续淹水相比较,中期烤田可以将稻田CH4排放总量显著降低36%~77%[13-14]。据统计,我国常年处于淹水状态的稻田面积大约有27万~40万hm2,这部分稻田的年CH4排放量约为2.4 Tg,约占我国稻田总排放量的32%。Yan等[6]发现,如果将所有淹水稻田采取至少一次中期烤田的水分管理方式,我国稻田CH4总排放量会减少15.6%。烤田开始和持续时间以及烤田次数均会影响稻田CH4减排效果[15]。研究表明烤田开始越早,持续时间越长,稻田CH4排放量也会越低[16]。但是。中期烤田会促进土壤N2O大量排放。Nayak等[17]发现中期烤田显著减少了稻田CH4排放量30%,却同时增加土壤N2O的排放量48%。如果考虑CH4和N2O的综合温室效应(Global warming potential),Wang等[14]的研究结果表明,与持续淹水相比,中期烤田仍能够显著降低稻田综合温室效应,不论是否秸秆还田与施用氮肥。这表明中期烤田对稻田CH4的减排效应远大于对N2O排放的促进效应。此外,中期烤田能够抑制水稻无效分蘖,提高根系活力,有利于作物产量增加,从而能够降低稻田的温室气体排放强度(综合温室效应与产量的比值)。

除了水稻生长季水分管理的影响外,非水稻生长季(稻季前季作物)水分管理措施也会影响稻季CH4排放[12-13]。在相同气候条件下的单季稻轮作系统中,冬季淹水稻田CH4排放量通常要显著高于冬季排水稻田排放量[18-19]。而且,冬季土壤水分含量越高,稻季CH4排放量就越大[20]。此外,研究表明我国稻田CH4排放量与冬季降水量呈现出显著指数关系[21]。冬作物季排水可以大幅度减少土壤中产甲烷菌群数量,降低稻季CH4排放[22]。对于双季稻种植区,早稻上一季通常是旱地作物或是休耕。研究发现,早稻季CH4排放量通常较低[23]。晚稻通常是在早稻收获后土壤仍处于湿润状态时立即灌水插秧,与早稻季相比,晚稻季CH4排放量会显著增加。研究发现晚稻季CH4总排放量大约分别是单季稻和早稻排放量的2.3倍和1.5倍[24]

有机物料合理还田是稻田CH4减排的另一个关键措施。大量研究表明,各类有机物料施用均能够显著促进稻田CH4排放,原因在于有机物料为产甲烷菌提供了丰富的作用底物[25-27]。有机物料在淹水条件下快速分解会加速土壤氧化还原电位降低,为产甲烷菌生长提供充足的厌氧环境,进而促进CH4产生[14]。有机物料对稻田CH4排放的影响取决于其种类、施用方式、施用时间和用量。通过整合分析(Meta-analysis),Liu等[28]研究了秸秆还田对稻田CH4排放的综合影响,结果表明,与对照处理相比,秸秆还田显著促进了稻田CH4排放78%。同样,Xia等[29]结果表明,动物有机肥施用显著促进我国稻田CH4排放78%。Zhang等[30]的结果表明,动物有机肥部分代替化学氮肥施用显著促进我国稻田CH4排放48%~82%。Zhao等[31]整合分析的结果显示,动物有机肥和秸秆还田分别显著促进了我国单位水稻产量的CH4排放强度54%和107%。此外,长期秸秆还田对于稻田CH4排放的促进效应通常低于初期的还田促进效应[32]。有机肥对稻田CH4排放的促进效应则主要受到有机肥种类和用量的影响[33]

与新鲜有机物料相比较,经过堆置发酵后的有机物料,例如沼渣、厩肥等,对稻田CH4排放的促进效应会显著降低[34-35]。原因在于经过堆置发酵后,有机物料中的易分解成分以沼气(厌氧发酵)或CO2(好氧发酵)的形式散失,使发酵后的残渣不易被产甲烷菌利用,从而对CH4排放的促进效应降低。Khosa等[35]比较了不同有机物料对稻田CH4排放的影响,发现相比于新鲜小麦秸秆、绿肥以及农家肥,发酵后水稻秸秆残渣能显著降低CH4排放58%~84%。通过对我国大量田间数据进行分析,Xia等[29]发现,与新鲜的动物有机肥相比,发酵的有机肥能够大幅度降低对CH4排放的促进效应73.7%。有机物料的施用方式和时间也会影响稻田CH4排放。有研究表明,与墒沟埋草和条带状覆盖相比,小麦秸秆与表层土壤混施显著促进了稻田CH4排放,而将有机物料在非水稻季施用能显著降低稻田CH4排放。原因在于经过旱作物季的好氧分解,有机物料中的有机碳大多以大分子化合物的形式存在,其对CH4排放的促进效应较小[18]。此外,将有机物料在厌氧或者无氧条件下进行高温热分解后形成的生物质炭还田同样会影响稻田CH4排放。数据整合分析的结果表明,生物质炭还田能够平均减少我国稻田CH4排放6.9%,减少单位水稻产量CH4排放强度11.9%[31]。Feng等[36]的研究认为,生物质炭抑制稻田CH4排放的原因在于其能够显著增加甲烷氧化菌丰度并降低产甲烷菌和甲烷氧化菌的比值。

对于我国南部和西南部丘陵山区的常年淹水稻田,推广覆膜栽培技术是CH4减排的关键。覆膜栽培技术是指在稻田中开沟起厢,塑料膜覆盖在厢面上,然后在塑料膜上打孔以方便水稻移栽。灌溉时确保厢面无水,沟内有水,保持土壤湿润[37]图 1)。研究表明,与长期淹水相比,覆膜栽培能够在水稻保产的前提下显著降低CH4排放86%,并能够提高农民净经济收益[38]。虽然此技术能够同时促进N2O排放,但是其增加的温室效应显著低于减排CH4的温室效应[39]。目前覆膜栽培技术在我国推广的面积只有10万hm2 [37],因此进一步推广覆膜栽培技术是我国西南丘陵山区全年淹水稻田CH4减排的关键。此外,筛选推广良好的节水抗旱稻品种对CH4减排也具有良好效果。与常规水稻品种相比,节水抗旱稻需要灌溉水量较少,这可以有效缩短淹水期,进一步减少CH4产生。Sun等[40]的研究结果表明,与传统水稻品种相比,节水抗旱稻能够有效减少稻田CH4排放,而且能够在干旱年份保持水稻产量,从而能有效降低水稻的温室气体排放强度。优化水稻移栽密度、因地制宜地推广稻鸭共作模式同样对CH4减排具有良好效果[12-13]

图 1 水稻覆膜栽培技术 Figure 1 The plastic film mulching technique in southwest China

相对于淹水稻田,旱地土壤的好氧状况通常会促进甲烷氧化菌对大气CH4的氧化,因此被认为是大气CH4的弱吸收汇。研究表明,旱地土壤对CH4的吸收(氧化)速率约为1.8~7.8 kg CH4·hm-2·a-1,具体受农田管理措施、土壤类型以及气候条件影响[10]。研究表明尿素等铵态氮肥施用后水解形成的NH4+与CH4具有相似的空间分子结构。CH4单加氧酶能够与NH4+结合并发生反应,减少对于CH4的氧化,促进CH4排放[41]。然而,整合分析的研究结果显示,氮肥施用对于旱地土壤CH4吸收没有显著影响[42]。同样,有机肥和秸秆施用对旱地土壤CH4吸收效果的影响也不显著[28-29]。据估算,我国旱地土壤CH4吸收量约为0.22Tg·a-1,仅占稻田CH4总排放(8 Tg·a-1)的2.8%[6, 43]。因此,通过调整农田管理措施促进旱地土壤CH4氧化来减少农田土壤CH4排放的意义不大。

2 农田土壤N2O的减排

土壤N2O产生主要来源于微生物对氮素硝化和反硝化作用的结果[44-45]。硝化作用是指在土壤好氧区域中微生物将铵(NH4+)或者氨(NH3)氧化为亚硝酸根(NO2-)、硝酸根(NO3-)或氧化态氮的过程,具体分为自养硝化和异养硝化作用。土壤(生物)反硝化作用是指厌氧条件下异养反硝化微生物将NO3-逐步还原为N2的过程。N2O是反硝化过程的中间产物,可以进一步被还原为N2。据估算,我国农田土壤N2O的总排放量约为288 Gg N,其中旱地土壤排放总量约为253 Gg, 稻田土壤排放总量约为33 Gg[7-9]

化学氮肥施用是影响土壤N2O排放最重要的因素,因为其可以直接为硝化和反硝化微生物提供作用底物。大量田间试验表明,土壤N2O排放与氮肥施用量呈线性或者指数的函数关系[46-48]。我国是世界上最大的肥料生产国和消耗国,化学氮肥大量施用以及不合理的氮肥管理措施导致我国氮肥利用率显著低于世界平均水平。即使考虑氮肥在土壤中的残留效应,近年来我国的平均氮肥利用率也只有43%[49]。这意味着大部分施入土壤中的氮肥会通过N2O以及其他活性氮的形式(氨挥发以及氮淋溶和径流)进入大气或者水体[50]。推广氮肥优化管理措施、提高氮肥利用率、降低氮肥用量,是减少旱地和稻田土壤N2O排放以及其他氮损失的关键。氮肥优化管理措施主要是指氮肥施用的“4R”原则:合理的肥料用量(Right rate)、正确的肥料施用时间(Right time)、正确的肥料施用位置(Right place)以及正确的肥料施用种类(Right source)[51-52]

合理的肥料用量(Right rate)是指通过配方施肥等方法确定氮肥用量,即根据土壤供氮能力与作物氮素需求量确定氮肥用量。Xia等[52]整合分析的结果显示,与传统施肥量相比,根据配方施肥法确定氮肥用量能够显著提高我国主粮作物产量1.3%和氮肥利用率48.2%,显著降低土壤N2O排放31.2%、氨挥发30.7%、氮淋溶35.3%和氮径流27.6%。配方施肥方法确定氮肥用量还能够显著提高农民净收益2.9%。

正确的肥料施用时间(Right time)主要是指根据作物需肥阶段施用氮肥,具体指增加氮肥施用次数或者是减少基肥施用比例。土壤N2O排放及其他活性氮损失通常发生在作物生长初期,因为此时作物根系对于养分的吸收能力有限[53]。减少(氮肥)基肥施用比例及增加氮肥施用次数能够避免在作物生长初期的高量施肥,增加作物生长后期对于氮素的大量吸收,从而有效降低各种活性氮损失。研究发现,减少(氮肥)基肥施用比例以及增加氮肥施用次数能够分别显著提高我国主粮作物产量4.1%和5.9%,提高氮肥利用率8%和30%,显著降低N2O等活性氮损失13.6%~61.5%和5.4%~16.5%,同时能够显著提高农民净经济收益4.1%~5.8%[52]

正确的肥料施用位置(Right place)是指采取氮肥深施。与氮肥的传统表施相比,氮肥深施能够促进作物根系对氮素的吸收,降低稻田表面水层及旱地土壤表层中NH4+和NO3-的浓度,减少土壤N2O排放。相较于传统的氮肥表施,氮肥深施能够显著提高我国主粮作物产量6.9%,提高化学氮肥利用率28.5%,显著降低土壤N2O排放14.6%,同时能够显著提高农民的净经济收益6.6%[52]

正确的肥料施用种类(Right source)是指采用高效氮肥品种,例如配施硝化抑制剂、脲酶抑制剂或采用控释氮肥。硝化抑制剂能抑制硝化细菌活性,从而抑制硝化过程减少土壤N2O排放。大量田间试验以及整合分析的研究均表明,硝化抑制剂对于农田土壤N2O减排十分有效,而且有利于提高作物生产力[54-57]。Akiyama等[55]的整合分析研究发现,硝化抑制剂能够显著降低农田土壤N2O排放38%。Qiao等[57]的整合分析发现,硝化抑制剂在显著减少土壤N2O排放20%的同时,显著提高了作物吸氮量58%以及作物产量9%。Xia等[52]的结果显示,硝化抑制剂能够显著提高我国主粮作物产量10%,提高氮肥利用率26.5%,显著降低土壤N2O排放39.8%,同时能够提高农民净经济收益12.6%。虽然硝化抑制剂能够有效降低土壤N2O排放,但其也能同时促进土壤NH3挥发。原因在于硝化抑制剂增加了NH4+在土壤中的滞留时间。Yang等[58]的研究表明,硝化抑制剂促进了土壤NH3挥发12.8%。Xia等[52]研究结果表明,硝化抑制剂显著促进了土壤NH3挥发27.5%。而且,硝化抑制剂促进NH3挥发所引起的N2O间接排放,能够在很大程度上抵消其对N2O的减排效果[59]。因此,采用硝化抑制剂来减少农田N2O排放需要配合其他NH3减排措施,例如施用脲酶抑制剂。脲酶抑制剂能够有效抑制氨水解,减少N2O排放以及土壤NH3挥发。研究发现,脲酶抑制剂能够显著提高我国主粮作物产量7.1%,提高氮肥利用率31.3%,降低土壤N2O排放27.8%,降低NH3挥发50.0%, 同时能够显著提高农民净经济收益5.9%[52]。此外,施用控释氮肥能够更好地协调作物氮素需求和土壤氮素供应关系,提高作物氮素吸收,减少N2O等各种活性氮损失[54]。研究发现,控释氮肥能够显著提高我国主粮作物产量8%,提高氮肥利用率34.4%,降低土壤N2O排放38.3%,降低NH3挥发60.8%, 降低氮淋溶17.3%和径流31.7%, 同时能够显著提高农民净经济收益7.8%[52]。生物质炭施用同样会影响农田土壤N2O排放。数据整合分析的结果表明,生物质炭施用可以减少54%的土壤N2O排放[60]。生物质炭较大的氧化还原能力及其对土壤pH值的增加可以促进土壤N2O还原酶的活性,进而促进N2O到N2的还原过程。

3 农田土壤固碳措施

根据我国第二次土壤普查结果,我国学者估算出我国农田土壤(0~1 m)碳库储量约为85~95 Pg[10]。大量研究表明,我国农田土壤碳库在过去30年里(1980s至2000s)明显增加。通过对全国范围内采集的1394个土壤样品进行土壤有机碳含量测定,并与第二次全国土壤普查结果相比较,Yan等[61]发现我国农田表层土壤(0~20 cm)平均有机碳含量从1979—1982年的11.95 g · kg-1增加到2007—2008年的12.67 g·kg-1, 年平均增长率为0.22%。其中,有机碳增加最大的土壤类型是位于黄河流域的钙化冲积土以及我国南部地区的水稻土。东北地区的黑土则呈现出了明显的土壤有机碳损失[61]。Zhao等[62]最新的研究结果表明,1980—2011年间,我国农田表层土壤(0~20 cm)有机碳储量的平均增长速率为140 kg C· hm-2·a-1,其中秸秆还田的贡献约为40%。土壤有机碳含量变化是土壤原有碳库分解以及新添加外源碳净平衡的结果。我国土壤有机碳库的增加主要归因于农作物产量提高引起的外源碳增加。得益于氮肥用量的增加以及作物育种技术的成熟,在1980—2007年间,我国水稻、小麦以及玉米产量分别增加了53%、76%和153%。因此,根系分泌物以及作物秸秆还田引起的碳投入量明显增加[61]。此外,在1980s,作物秸秆大多用于动物饲料以及家用燃料,很少一部分会被直接还田。伴随着商用化燃料以及饲料在农村地区的大面积推广,农作物秸秆开始被逐渐还田,从而增加了土壤碳库和肥力。据估算,1999年有25.5%的作物秸秆被直接还田,2000年该比例增加到了37.3%[10]

继续推广秸秆还田是增加我国农田土壤碳库的优选措施。整合分析的结果显示,秸秆还田能够显著提高农田表层土壤有机碳含量12.8%~14.9%。Lu[63]的研究结果表明,秸秆还田能够显著提高我国表层土壤(0~20 cm)有机碳储量12%。Lu等[64]估算出2000s我国农田秸秆还田面积为17万hm2,每年因为秸秆还田引起的表层土壤(0~20 cm)有机碳固定量为9.76 Tg。如果进一步增加秸秆还田面积到606万hm2,则土壤固碳量增加量会达到34.4 Tg。需要引起注意的是,淹水稻田施用秸秆会在增加土壤碳库的同时大幅度促进CH4排放。基于太湖地区水稻-小麦轮作的长期秸秆还田试验,Xia等[65]发现,秸秆还田引起CH4排放所造成的温室效应要比土壤固碳所减少的温室效应高3~4倍。就全球增温潜势而言,在淹水稻田中,将秸秆还田促进了温室气体的净排放。根据IPCC的方法,如果将我国50%的水稻秸秆在稻季还田会增加土壤碳库10.48 Tg, 而增加的CH4排放量高达3.32 Tg,这部分增加的CH4温室效应是固碳效应的2.2倍[10]。因此,对于稻田生态系统而言,秸秆应优先在旱地作物季还田,或者在好氧发酵以后还田,从而减少对稻田CH4排放的促进效应。

免耕技术会通过减少土壤本底碳库的分解来增加有机碳的积累。Zhao等[66]整合分析的结果表明,如果将传统耕作措施改为免耕并结合秸秆还田则可以将我国农田表层土壤(0~30 cm)有机碳储量提高0.97 Mg·hm-2。Lu[63]估算出2000s我国农田土壤每年因免耕所引起的表层土壤(0~20 cm)固碳量为0.8 Tg。如果进一步推广这一技术,则会将年土壤固碳量提高到4.6Tg。然而有研究表明,免耕措施会导致农作物减产[67]。因此在推广免耕措施的同时需要配合采用作物增产措施(例如氮肥优化管理4R措施)。氮肥优化管理措施可以通过提高作物产量,增加作物根系分泌物量及秸秆产量,促进土壤碳库积累。Lu[63]的研究结果表明,如果在全国范围内推广氮肥优化管理措施则可以将我国农田土壤碳库固定量从5.96 Tg·a-1增加到12.1 Tg·a-1

增加动物有机肥还田比例从而替代化学氮肥同样可以促进土壤固碳。Xia等[29]的结果显示,动物有机肥部分替代化学氮肥能够显著提高我国农田表层土壤(0~20 cm)固碳速率439~675 kg C·hm-2·a-1。采用发酵后的有机肥还田会进一步增加固碳速率,同时减少对稻田CH4排放的促进效应。然而,动物有机肥还田利用存在一定风险,例如可能引起土壤中铜、铅等重金属累积,可能增加土壤中抗生素的数量,从而增加环境风险。因此,其综合的生态环境效应需要进一步评估。此外,施用生物质炭同样可以促进农田土壤有机碳积累。利用整合分析方法,Liu等[68]发现生物质炭可以显著提高我国农田表层土壤(0~20 cm)有机碳含量。然而,由于生物质炭制作成本较高,而且其烧制过程会产生二噁英和焦油等有毒物质,所以这项固碳技术的推广应用同样需进一步评价。

4 我国农田土壤固碳减排研究的展望

近20年来,我国在农田土壤固碳减排方面取得了丰硕成果。未来研究需要更加全面合理地评价各种减排措施对于土壤CH4、N2O、有机碳变化以及粮食安全和生态环境的综合效应。任何减排措施都不应以损失粮食产量为前提。如果可能,需要运用生命周期评价方法,即碳足迹的方法,全面评价各种固碳减排措施对碳排放和作物产量的综合影响。此外,需要更加注重考虑各种固碳减排措施对于温室气体减排之间,或者是温室气体减排与土壤固碳效果之间的“此消彼长”关系(Trade-off relationship)。例如稻田秸秆还田促进了土壤有机碳累积的同时大幅度增加了CH4排放。针对这种“此消彼长”关系需要集合多种固碳减排措施进行综合减排,而不是采用单一的减排措施。例如,Xia等[69]的研究结果显示, 与传统农业管理措施相比较,通过3种固碳减排措施的集合(氮肥合理减量、秸秆好氧发酵后还田以及轮作制度优化),能够将太湖地区水稻−小麦轮作系统周年碳足迹显著减少26%,活性氮足迹减少29%,温室气体和活性氮排放所造成的总环境损失降低42%,农民净经济收益提高23%,而且这些集合措施不会影响水稻产量。因此,未来农田土壤固碳减排需要更加注重各种有效减排措施的集合运用。此外,评价固碳减排措施效果时要考虑对于农民经济收益的影响,因为经济收益是驱动农民改变他们田间管理方式的主要因素之一。未来的研究还需要进一步将农田土壤固碳减排措施的效果与对于活性氮排放的影响结合评价,要更加全面地评价我国农业生产对于生态环境的综合影响,从而推动农业源温室气体和活性氮的综合减排以及可持续农业的发展。

参考文献
[1]
Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen cycle:Recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878): 889-892.
[2]
Smith P, Haberl H, Popp A, et al. How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals?[J]. Global Change Biology, 2013, 19(8): 2285-2302.
[3]
Ray D K, Ramankutty N, Mueller N D, et al. Recent patterns of crop yield growth and stagnation[J]. Nature Communications, 2012, 3: 1293. DOI:10.1038/ncomms2296
[4]
FAO. FAOSTAT Database-Agriculture Production[R]. Rome: Food and Agriculture Organization of the United Nations, 2011.
[5]
Myhre G, Shindell D, Brton F M, et al. Anthropogenic and natural radiative forcing[C]//Stocker T F, Qin D, Plattner G K, et al(eds). Climate Change 2013: The Physical Science Basis. Contribution of Working Group Ⅰ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2013.
[6]
Yan X Y, Akiyama H, Yagi K, et al. Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines[J]. Global Biogeochemical Cycles, 2009, 23: GB2002. DOI:10.1029/2008GB003299
[7]
Zheng X, Han S, Huang Y, et al. Re-quantifying the emission factors based on field measurements and estimating the direct N2O emission from Chinese croplands[J]. Global Biogeochemical Cycles, 2004, 18: GB2018. DOI:10.1029/2003GB002167
[8]
张强, 巨晓棠, 张福锁. 应用修正的IPCC2006方法对中国农田N2O排放量重新估算[J]. 中国生态农业学报, 2010, 18(1): 7-13.
ZHANG Qiang, JU Xiao-tang, ZHANG Fu-suo. Re-estimation of direct nitrous oxide emission from agricultural soils of China via revised IPCC2006 guideline method[J]. Chinese Journal of Eco-Agriculture, 2010, 18(1): 7-13.
[9]
Yue Q, Wu H, Sun J, et al. Deriving emission factors and estimating direct nitrous oxide emissions for crop cultivation in China[J]. Environmental Science & Technology, 2019, 53: 10246-10257.
[10]
Cai Z C, Yan X Y. Understanding greenhouse gas emissions from croplands in China[M]. Washington, D C: American Chemical Society, 2011: 91-120.
[11]
Cai Z C. A category for estimate of CH4 emission from rice paddy fields in China[J]. Nutrient Cycling in Agroecosystems, 1997, 49(1/2/3): 171-179.
[12]
蔡祖聪, 徐华, 马静. 稻田生态系统CH4和N2O排放[M]. 合肥: 中国科学技术大学出版社, 2009.
CAI Zu-cong, XU Hua, MA Jing. Methane and nitrous oxide emissions from rice-based ecosystems[M]. Hefei: University of Science and Technology of China Press, 2009.
[13]
Zou J W, Huang Y, Jiang J, et al. A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China:Effects of water regime, crop residue, and fertilizer application[J]. Global Biogeochemical Cycles, 2005, 19: GB2021. DOI:10.1029/2004GB002401
[14]
Wang J Y, Zhang X X, Xiong Z Q, et al. Methane emissions from a rice agroecosystem in south China:Effects of water regime, straw incorporation and nitrogen fertilizer[J]. Nutrient Cycling in Agroecosystems, 2012, 93(1): 103-112.
[15]
Towprayoon S, Smakgahn K, Poonkaew S. Mitigation of methane and nitrous oxide emissions from drained irrigated rice fields[J]. Chemosphere, 2005, 59: 1547-1556.
[16]
李香兰, 徐华, 曹金留, 等. 水分管理对水稻生长期CH4排放的影响[J]. 土壤, 2007, 39(2): 238-242.
LI Xiang-lan, XU Hua, CAO Jin-liu, et al. Effects of water management on CH4 emissions during rice-growing fields[J]. Soils, 2007, 39(2): 238-242.
[17]
Nayak D R, Saetnan E, Cheng K, et al. Management opportunities to mitigate greenhouse gas emissions from Chinese agriculture[J]. Agriculture, Ecosystems and Environment, 2015, 209: 108-124.
[18]
Xu H, Cai Z C, Jia Z J, et al. Effect of land management in winter crop season on CH4 emission during the following flooded and rice-growing period[M]. Methane Emissions from Major Rice Ecosystems in Asia. Springer Netherlands, 2001: 327-332.
[19]
Xu H, Cai ZC, Jia Z J. Effect of soil water contents in the non-rice growth season on CH4 emissions during the following rice-growing period[J]. Nutrient Cycling in Agroecosystems, 2002, 64(1): 101-110.
[20]
Kang G D, Cai Z C, Feng X Z. Importance of water regime during the non-rice growing period in winter in regional variation of CH4 emissions from rice fields during following rice growing period in China[J]. Nutrient Cycling in Agroecosystems, 2002, 64(1): 95-100.
[21]
徐华, 蔡祖聪, 八木一行. 水稻土甲烷产生、氧化和排放过程的相互影响:以水分历史处理为例[J]. 土壤, 2006, 38(6): 671-675.
XU Hua, CAI Zu-cong, YAGI Kazuyuki. Interactions among CH4 production, oxidation and emission in paddy soil:A case study of soils with different water history[J]. Soils, 2006, 38(6): 671-675.
[22]
Jia Z J, Cai Z C, Tsuruta H. Effect of rice cultivar on CH4 production potential of rice soil and CH4 emission in a pot experiment[J]. Soil Science and Plant Nutrition, 2006, 52(3): 341-348.
[23]
Shang Q Y, Yang X X, Gao C M, et al. Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems:A 3-year field measurement in long-term fertilizer experiments[J]. Global Change Biology, 2011, 17(6): 2196-2210.
[24]
Yan X Y, Cai Z C, Ohara T, et al. Methane emission from rice fields in mainland China:Amount and seasonal and spatial distribution[J]. Journal of Geophysical Research Atmospheres, 2003, 108(16). DOI:10.1029/2002JD003182
[25]
Wassmann R, Schütz H, Papen H, et al. Quantification of methane emissions from Chinese rice fields(Zhejiang Province)as influenced by fertilizer treatment[J]. Biogeochemistry, 1993, 20(2): 83-101.
[26]
Bhatia A, Pathak H, Jain N, et al. Global warming potential of manure amended soils under rice-wheat system in the Indo-Gangetic plains[J]. Atmospheric Environment, 2005, 39(37): 6976-6984.
[27]
Ma Y C, Kong X W, Yang B, et al. Net global warming potential and greenhouse gas intensity of annual rice-wheat rotations with integrated soil-crop system management[J]. Agriculture, Ecosystems and Environment, 2013, 164: 209-219.
[28]
Liu C, Lu M, Cui J, et al. Effects of straw carbon input on carbon dynamics in agricultural soils:A meta-analysis[J]. Global Change Biology, 2014, 20(5): 1366-1381.
[29]
Xia L L, Lam S K, Yan X Y, et al. How does recycling of livestock manure in agroecosystems affect crop productivity, reactive nitrogen losses, and soil carbon balance?[J]. Environmental Science & Technology, 2017, 51(31): 7450-7457.
[30]
Zhang X, Fang Q, Zhang T, et al. Benefits and trade-offs of replacing synthetic fertilizers by animal manures in crop production in China:A meta-analysis[J]. Global Change Biology, 2019, 26(2): 1-13.
[31]
Zhao X, Pu C, Ma S T, et al. Management-induced greenhouse gases emission mitigation in global rice production[J]. Science of the Total Environment, 2019, 649: 1299-1306.
[32]
Jiang Y, Qian H Y, Huang S, et al. Acclimation of methane emissions from rice paddy fields to straw addition[J]. Science Advances, 2019, 5(1): eaau9038. DOI:10.1126/sciadv.aau9038
[33]
Yan X Y, Yagi K, Akiyama H, et al. Statistical analysis of the major variable controlling methane emission from rice fields[J]. Global Change Biology, 2005, 11(7): 1131-1141.
[34]
Yagi K, Minami K. Effect of organic matter application on methane emission from some Japanese paddy fields[J]. Soil Science and Plant Nutrition, 1990, 36(4): 599-610.
[35]
Khosa M K, Sidhu B, Benbi D. Effect of organic materials and rice cultivars on methane emission from rice field[J]. Journal of Environmental Biology, 2010, 31(3): 281-285.
[36]
Feng Y, Xu Y, Yu Y, et al. Mechanisms of biochar decreasing methane emission from Chinese paddy soils[J]. Soil Biology & Biochemistry, 2012, 46: 80-88.
[37]
颜晓元, 夏龙龙. 中国稻田温室气体的排放与减排[J]. 中国科学院院刊, 2015, 30(增刊1): 186-193.
YAN Xiao-yuan, XIA Long-long. Emission and mitigation of greenhouse gas from paddy fields in China[J]. Bulletin of the Chinese Academy of Sciences, 2015, 30(Suppl 1): 186-193.
[38]
张怡, 吕世华, 马静, 等. 水稻覆膜节水综合高产技术对稻田CH4排放的影响[J]. 生态环境学报, 2013, 22(6): 935-941.
ZHANG Yi, LÜ Shi-hua, MA Jing, et al. Effect of high-yield rice planting technique integrated with plastic mulching for water saving on methane emission from rice fields[J]. Ecology and Environmental Science, 2013, 22(6): 935-941.
[39]
宋开付, 于海洋, 张广斌, 等. 川中丘陵区覆膜再生稻田N2O排放规律研究[J]. 农业环境科学学报, 2019, 38(6): 1381-1387.
SONG Kai-fu, YU Hai-yang, ZHANG Guang-bin, et al. N2O emissions from ratoon paddy fields covered with plastic film mulching in the hilly area of central Sichuan, China[J]. Journal of Agro-Environment Science, 2019, 38(6): 1381-1387.
[40]
Sun H F, Zhou S, Song X F, et al. CH4 emission in response to watersaving and drought-resistance rice(WDR) and common rice varieties under different irrigation managements[J]. Water Air and Soil Pollution, 2016, 227(2): 47.
[41]
Banger K, Tian H Q, Lu C K. Do nitrogen fertilizers stimulate or inhibit methane emissions from rice fields?[J]. Global Change Biology, 2012, 18(10): 3259-3267.
[42]
Aronson E L, Helliker B R. Methane flux in non-wetland soils in response to nitrogen addition:A meta-analysis[J]. Ecology, 2010, 91(11): 3242-3251.
[43]
Cai Z C. Greenhouse gas budget for terrestrial ecosystems in China[J]. Science China Earth Sciences, 2012, 2: 173-182.
[44]
Firestone M K, Davidson E A. Microbiological basis of NO and N2O production and consumption in soil[J]. Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere, 1989, 47: 7-21.
[45]
Butterbach-Bahl K, Baggs E M, Dannenmann M, et al. Nitrous oxide emissions from soils:How well do we understand the processes and their controls?[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2013, 368(1621): 20130122.
[46]
Cui Z L, Wang G L, Yue S C, et al. Closing the N-use efficiency gap to achieve food and environmental security[J]. Environmental Science & Technology, 2014, 48: 5780-5787.
[47]
Shcherbak I, Millar N, Robertson G P. Global metaanalysis of the nonlinear response of soil nitrous oxide(N2O)emissions to fertilizer nitrogen[J]. Proceedings of the National Academy of Sciences, 2014, 111(25): 9199-9204.
[48]
van Groenigen J W, Velthof G L, Oenema O, et al. Towards an agronomic assessment of N2O emissions:A case study for arable crops[J]. European Journal of Soil Science, 2010, 61(6): 903-913.
[49]
Xia L L, Xia Y Q, Ma S T, et al. Greenhouse gas emissions and reactive nitrogen releases from rice production with simultaneous incorporation of wheat straw and nitrogen fertilizer[J]. Biogeosciences Discussions, 2016, 40(13): 1-39.
[50]
Yan X Y, Ti C P, Vitousek P M, et al. Fertilizer nitrogen recovery efficiencies in crop production systems of China with and without consideration of the residual effect of nitrogen[J]. Environmental Research Letters, 2014, 9: 095002. DOI:10.1088/1748-9326/9/9/095002
[51]
Zhu Z L, Chen D L. Nitrogen fertilizer use in China:Contributions to food production, impacts on the environment and best management strategies[J]. Nutrient Cycling in Agroecosystems, 2002, 63(2): 117-127.
[52]
Xia L L, Lam S K, Chen D L, et al. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis[J]. Global Change Biology, 2017, 23: 1917-1925.
[53]
Zhang F S, Cui Z L, Chen X P, et al. Integrated nutrient management for food security and environmental quality in China[J]. Advances in Agronomy, 2012, 116: 1-40.
[54]
Chen X, Cui Z, Vitousek P M, et al. Integrated soil-crop system management for food security[J]. Proceedings of the National Academy of Sciences, 2011, 108(16): 6399-6404.
[55]
Akiyama H, Yan X, Yagi K. Evaluation of effectiveness of enhancedefficiency fertilizers as mitigation options for N2O and NO emissions from agricultural soils:Meta-analysis[J]. Global Change Biology, 2010, 16(6): 1837-1846.
[56]
Linquist B A, Liu L, van Kessel C, et al. Enhanced efficiency nitrogen fertilizers for rice systems:Meta-analysis of yield and nitrogen uptake[J]. Field Crops Research, 2013, 154: 246-254.
[57]
Qiao C L, Liu L L, Hu S J, et al. How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input[J]. Global Change Biology, 2015, 21(3): 1249-1257.
[58]
Yang M, Fang Y T, Sun D, et al. Efficiency of two nitrification inhibitors(dicyandiamide and 3, 4-dimethypyrazole phosphate)on soil nitrogen transformations and plant productivity:A meta-analysis[J]. Scientific Reports, 2016, 6: 22075. DOI:10.1038/srep22075
[59]
Lam S K, Suter H, Mosier A R, et al. Using nitrification inhibitors to mitigate agricultural N2O emission:A double-edged sword?[J]. Global Change Biology, 2016, 23(2): 485-489.
[60]
Cayuela M L, Oenema O, Kuikman P J, et al. Bioenergy by-products as soil amendments? Implications for carbon sequestration and greenhouse gas emissions[J]. GCB Bioenergy, 2010, 2(4): 201-213.
[61]
Yan X Y, Cai Z C, Wang S W, et al. Direct measurement of soil organic carbon content change in the croplands of China[J]. Global Change Biology, 2011, 17(3): 487-1496.
[62]
Zhao Y, Wang M, Hu S, et al. Economics-and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(16): 4045-4050.
[63]
Lu F. How can straw incorporation management impact on soil carbon storage? A meta-analysis[J]. Mitigation and Adaptation Strategies for Global Change, 2015, 20(8): 1545-1568.
[64]
Lu F, Wang X, Han B, et al. Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China's cropland[J]. Global Change Biology, 2009, 15(2): 281-305.
[65]
Xia L L, Wang S W, Yan X Y. Effects of long-term straw incorporation on the net global warming potential and the net economic benefit in a rice-wheat cropping system in China[J]. Agriculture, Ecosystems and Environment, 2014, 197: 118-127.
[66]
Zhao X, Zhang R, Xue J, et al. Management-induced changes to soil organic carbon in China:A meta-analysis[J]. Advances in Agronomy, 2015, 134: 1-50.
[67]
Pittelow C M, Liang X Q, Linquist B A, et al. Productivity limits and potentials of the principles of conservation agriculture[J]. Nature, 2015, 517: 365-368.
[68]
Liu S W, Zhang Y J, Zong Y J, et al. Response of soil carbon dioxide fluxes, soil organic carbon and microbial biomass carbon to biochar amendment:A meta-analysis[J]. GCB Bioenergy, 2016, 8(2): 392-406.
[69]
Xia L L, Xia Y Q, Li B L, et al. Integrating agronomic practices to reduce greenhouse gas emissions while increasing the economic return in a rice-based cropping system[J]. Agriculture, Ecosystems and Environment, 2016, 231: 24-33.