快速检索        
  农业环境科学学报  2020, Vol. 39 Issue (4): 923-932  DOI: 10.11654/jaes.2020-0104
0

引用本文  

曹玉博, 张陆, 王选, 等. 畜禽废弃物堆肥氨气与温室气体协同减排研究[J]. 农业环境科学学报, 2020, 39(4): 923-932.
CAO Yu-bo, ZHANG Lu, WANG Xuan, et al. Synergistic mitigation of ammonia and greenhouse gas emissions during livestock waste composting[J]. Journal of Agro-Environment Science, 2020, 39(4): 923-932.

基金项目

国家重点研发计划项目(2018YFC0213300);国家自然科学基金项目(31872403,31801941);大气重污染成因与治理攻关项目(DQGG0208);中国科学院重点部署项目(ZDRW-ZS-2016-5);中国科学院STS项目(KFJ-STS-ZDTP-053);河北省杰出青年基金项目(D2017503023);河北省现代农业产业技术体系奶牛产业创新团队项目(HBCT2018120206)

Project supported

The National Key Research and Development Program of China(2018YFC0213300); The National Natural Science Foundation of China (31872403, 31801941); The Chinese State Key Special Program on Severe Air Pollution Mitigation "Agricultural Emission Status and Enhanced Control Plan"(DQGG0208); Key Research Program of the Chinese Academy Sciences(ZDRW-ZS-2016-5); Science and Technology Service Network Initiative(KFJ-STS-ZDTP-053); Distinguished Young Scientists Project of Natural Science Foundation of Hebei(D2017503023); He-bei Dairy Cattle Innovation Team of Modern Agroindustry Technology Research System(HBCT2018120206)

通信作者

马林, E-mail:malin1979@sjziam.ac.cn

作者简介

曹玉博(1992-), 男, 山东聊城人, 博士研究生, 从事农业生态学研究。E-mail:CaoYubo2016@163.com

文章历史

收稿日期: 2020-01-30
录用日期: 2020-02-27
畜禽废弃物堆肥氨气与温室气体协同减排研究
曹玉博1,2 , 张陆1,2 , 王选1 , 马林1     
1. 中国科学院遗传与发育生物学研究所农业资源研究中心/河北省土壤生态学重点实验室/中国科学院农业水资源重点实验室, 石家庄 050021;
2. 中国科学院大学, 北京 100049
摘要:畜禽废弃物堆肥过程氨气与温室气体排放机理及减排技术是国内外学者的研究热点。堆肥过程中碳氮转化与氨气和温室气体的排放是相互关联的,而目前的研究主要关注氨气减排,尚缺乏对氨气与温室气体协同减排的系统性研究。因此,本研究通过系统梳理已发表的文献,分析了畜禽废弃物堆肥过程中氨气和温室气体的产排机制和协同关系,阐述了影响因素、调控策略和减排潜力,探讨了氨气和温室气体协同减排的技术途径,展望了氨气和温室气体协同减排机理与策略研究的重点和方向,旨在为畜禽废弃物堆肥过程中氨气和温室气体的协同减排提供理论依据和技术途径。研究表明,畜禽废弃物堆肥过程中氨气和温室气体的协同减排机理和调控途径尚不清楚,应加强在调节物料性质和优化供气策略的基础上,通过使用物理、化学和生物添加剂以实现堆肥过程氨气和温室气体的协同减排机理和技术研究。
关键词畜禽废弃物    堆肥    氨气    温室气体    协同减排    
Synergistic mitigation of ammonia and greenhouse gas emissions during livestock waste composting
CAO Yu-bo1,2 , ZHANG Lu1,2 , WANG Xuan1 , MA Lin1     
1. Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract: Research on the mechanisms and mitigation technologies of ammonia and greenhouse gas emissions during livestock waste composting are hot topics for domestic and foreign scholars in the past 30 years. The conversion of carbon and nitrogen and emissions of ammonia and greenhouse gas during the composting process are interrelated. Previous studies mainly focus on ammonia volatilization, however, a systematic research on the synergistic mitigation of ammonia and greenhouse gas emissions is lack. Here, this paper conducted a systematic analysis on the published papers, to analyze the emission mechanism and synergetic relationship of ammonia and greenhouse gas emissions during livestock waste composting; to elaborate the influencing factor, regulation pathway and mitigation potential of mitigation technology; to explore the technical pathway of synergistic mitigation of gas emissions; to provide the outlook for synergistic mitigation mechanism and mitigation strategy. To date, synergistic mitigation mechanism and regulation pathway of ammonia and greenhouse gas during livestock waste composting are unclear. In the future, chemical additives, physical additives and microbial additives should be applied on the basis of adjusting material properties and optimizing gas supply strategies.
Keywords: livestock waste    composting    ammonia    greenhouse gases    mitigation strategies    

好氧堆肥是畜禽废弃物无害化和资源化的有效途径之一,但因堆肥过程高温、高pH以及好氧/厌氧微域共存的特性,氨(NH3)挥发和温室气体(氧化亚氮N2O、甲烷CH4)排放量较高。氨挥发是堆肥过程氮损失的主要途径,占初始总氮的16.1%~22.6%[1];N2O和CH4排放也是重要的碳氮损失途径,其中N2O排放量占初始总氮的0.1%~4.2%[1-2],CH4排放量占初始总碳的0.2%~3.2%[1]。已有大量试验分析了堆肥过程氨气和温室气体的排放特征,也有很多研究报道了氨气减排技术,但这些技术对N2O和CH4排放的影响尚不清楚,且目前也缺乏氨气和温室气体产排机理和协同减排的系统分析。因此,本文通过对国内外研究结果的综述和分析:阐述堆肥过程中氨气和温室气体产排的影响因素和协同关系;梳理堆肥过程中氨气和温室气体排放的调控策略,并探讨协同减排的技术途径;分析和展望今后氨气和温室气体协同减排研究的重点和方向,旨在为畜禽废弃物堆肥过程中氨气和温室气体的协同减排提供理论依据。

1 堆肥过程中氨气与温室气体的产排机理

好氧堆肥又称高温堆肥,是微生物在有氧条件下降解有机质,代谢产生CO2、水和热的过程。堆肥过程分为四个阶段,即升温期、高温期、降温期和腐熟期,每个阶段理化环境、微生物代谢强度和群落结构不同[3],因此氨气和温室气体的排放在不同阶段呈现不同特征。

堆肥过程氨挥发受物料NH4+含量和pH的影响(图 1)。由于具有高温和高pH的特性,高温期是堆肥过程中氨挥发的主要时期。进入腐熟期后,由于NH3的挥发以及NH4+的同化和硝化,物料NH4+含量降低,氨挥发也显著降低[4]

图 1 堆肥过程中氨气与温室气体产生关联过程及影响因素 Figure 1 Correlation between ammonia and greenhouse gas emissions and influencing factors during composting

堆体内氧气分布不均[5],堆肥过程产生的N2O同时来源于硝化途径和反硝化途径。Maeda等[6-8]结合优先点位值(SP)和生物抑制剂法追溯堆肥过程N2O的来源,发现N2O主要产生于堆体表面的反硝化细菌,且nirKnirS起着更加重要的作用。同时也有研究指出,硝化作用是堆肥中温期N2O产生的主要途径,且氨氧化细菌比氨氧化古菌起着更加重要的作用[9]。由于堆肥物料由复杂的团聚体组成,颗粒内部厌氧区和表层好氧区的组成[10]决定了N2O的产排机制。Ge等[11]借助荧光原位杂交和激光扫描共聚焦显微镜技术,从颗粒尺度解析了堆肥过程N2O的产生机制,结果表明N2O的产生与堆肥颗粒内部氨氧化细菌的反硝化有关。目前,堆肥过程N2O产生途径的研究已有一些定性结论,然而缺乏定量分析,且尚存在未知的产生途径,还需在后续研究中发现和证实。

堆肥过程产生的CH4是堆体内产甲烷菌在厌氧环境下的代谢产物。产甲烷菌主要聚集于堆肥颗粒的内部厌氧区[12]。堆肥过程CH4的排放不仅取决于CH4的产生,还取决于甲烷氧化菌对CH4的氧化(图 1)。因此,今后CH4产排机理研究应同时关注堆体结构以及颗粒的粒度粒形、孔隙结构和厌氧半径。堆肥升温期和高温期是CH4排放的主要时期,主要因为:①有机质降解剧烈,可利用底物充足;②O2消耗形成利于产甲烷菌生存的厌氧环境;③产生大量的热,CH4和O2的溶解性随温度的升高而降低,进而抑制甲烷氧化菌的生长。随着堆肥的进行,可利用碳底物被耗尽,堆肥过程CH4排放量显著降低[4]

堆肥过程中氨挥发与N2O和CH4排放并不是独立发生,而是相互关联的,与碳氮转化过程及其影响因素密切相关。如图 1所示:①有机质降解时消耗堆体内O2,改变堆体内O2分布和厌氧/好氧微域组成,同时影响CH4的产生和氧化、有机氮的矿化、硝化反硝化过程以及N2O的产生和还原;②随着堆肥的进行,pH和含水率等物料性质发生变化,从而影响氨气和温室气体的产生和排放;③碳底物的可利用性影响CH4的产生,同时碳作为微生物的能源物质,也影响氮的矿化、同化以及硝化反硝化,进而影响氨气和N2O的产生;④NH4+与CH4皆可被甲烷氧化菌利用,因此存在底物竞争关系,NH4+的存在一定程度上抑制CH4氧化[13]

2 堆肥过程中氨气和温室气体排放的影响因素及协同调控策略

目前的堆肥过程气体减排策略主要针对氨挥发。堆肥过程氨挥发主要受物料NH4+含量和pH的影响,基于此,堆肥过程氨气减排和调控主要围绕以下机制:①促进NH4+的微生物同化或硝化;②增强NH4+和NH3的物理吸附;③增加NH4+的化学固定;④抑制氨气向空气扩散。本文系统梳理以往氨气减排文献,将氨气减排策略归类为:物料性质调节、供气策略优化和添加剂减排,并进一步分析了这些策略对N2O和CH4排放的协同影响。

2.1 物料性质调节 2.1.1 碳氮比

一般认为,堆肥碳氮比越低,氨挥发越严重[14]。畜禽粪便的碳氮比通常较低,如:牛粪为15左右,猪粪和鸡粪更低。因此,堆肥时加入秸秆等高碳物质,可以提高物料碳氮比,促进微生物对NH4+的同化,降低本底NH4+含量,是减少堆肥氨挥发的有效措施[1]。氨气减排效果因碳组分和结构的不同存在差异[15]。Liang等[16]选用不同高碳物质调节碳氮比,结果表明蔗糖显著减少氨挥发(50%),而锯末和报纸等高纤维素类物质没有减排效果。Sun等[17]调节堆肥碳氮比至18,与锯末相比,秸秆和菌渣均可显著减少氨挥发。由此可见,通过易降解高碳物质调节碳氮比有助于减少堆肥过程中的氨挥发;对于难降解的高碳物质,通过水热化处理将其转化成小分子糖类,可提高氨气减排效果[18]。调控时期是影响氨气减排的关键,为保证减排效果,应避免易降解高碳物质在氨挥发高峰期前完全降解[15]

目前,堆肥碳氮比与N2O排放量的关系尚不明确,主要是因为N2O的产生途径不明晰。如果异养反硝化是N2O产生的主要途径,堆体内存在充足的可利用碳时,异养反硝化增强,N2O排放量增加[2];如果硝化是N2O产生的主要途径,堆体内可利用碳降解过程消耗O2,抑制氨氧化细菌活性,N2O排放量减少[9]

堆肥碳氮比与堆肥过程CH4排放量呈正相关[19]。实际上,堆肥过程CH4排放量与可利用碳的量成正比[3]。堆体内存在大量的可利用碳,产甲烷菌以此为底物产生CH4,可利用碳降解同时消耗O2,形成更有利于产甲烷菌生存的厌氧环境,促进CH4产生。Sun等[17]通过秸秆、菌渣和锯末调节物料至相同的碳氮比,与秸秆和菌渣相比,锯末显著减少CH4排放,表明选用可利用碳含量低的高碳物质有助于CH4减排。

综上所述,选用可利用碳含量高的高碳物质调节碳氮比可实现氨气减排,却易增加CH4排放,因此仅调节碳氮比难以实现协同减排(表 1)。当前堆肥研究中,在选用秸秆等高碳物质调节碳氮比的同时影响了pH和容重等因子[20],故今后研究中应基于碳组分和结构,考虑多重因素的交互效应。

表 1 畜禽废弃物堆肥过程氨气和温室气体调控策略、减排技术、影响机制、调控途径及技术参数和减排潜力 Table 1 Regulation strategy, mitigation technology, influencing mechanism, regulation pathway and technology parameter, mitigation potential of ammonia and greenhouse gas emissions from livestock waste composting
2.1.2 含水率

因堆肥方式和原料不同,目前尚不能从不同研究中得出含水率与氨挥发量间存在明确关系,主要表现在:①提高物料含水率,导致更多的水进入堆体内部微孔中,减少氧气在团聚体间的扩散,减弱有机氮的矿化,进而减少堆肥过程氨挥发。如El Kader等[21]将物料含水率从45%提高至66%时,自由空域减少20%~60%,氨挥发减少30%~70%;②提高物料含水率,促进有机质降解,提高堆肥温度,延长高温期,增加了堆肥过程氨挥发[22-23];③在强制通风堆肥时,通风速率而非含水率主导O2扩散,在此条件下未发现含水率对氨挥发有影响[24]。有研究指出,氨挥发发生于含水率接近持水能力最大值时[25]。对于低于适宜含水率的原料,可通过添加水或粪水来调节[26];含水率高的原料,可添加秸秆、锯末等辅料[27]

堆肥含水率对N2O排放量的影响目前尚不明确。含水率高时,O2难以渗入,堆体内部的厌氧区域扩大,反硝化细菌的活性增强,N2O排放增加[28]。当含水率过高时,N2O向大气中的扩散能力减弱,且易被N2O还原酶还原为N2,从而减少N2O的排放[29]。El Kader等[21]将含水率从45%提高到66%,N2O排放减少49%~60%。吴伟祥等[2]指出,物料含水率在60%~ 70%时有利于N2O减排。

堆肥初始物料含水率一般为50%~70%,含水率较高限制O2的供应,为产甲烷菌提供了更好的厌氧环境,同时降低甲烷氧化菌的活性,增加了CH4排放。因此,当堆肥物料含水率在50%~60%时,既不影响堆肥的进行,同时又有助于CH4减排。陈辉等[30]比较初始含水率对堆肥过程CH4排放的影响,表明与含水率60%相比,55%时CH4排放量减少24%。

综上所述,含水率主要通过影响O2在堆体内的扩散,间接影响堆肥过程氨气和温室气体的产生和排放。N2O和CH4的适宜含水率不同,故难以通过调节含水率实现N2O和CH4的协同减排(表 1)。值得注意的是,不同堆肥原料因结构不同而对含水率的要求也各不相同,今后应基于原料制定物料含水率调控参数。

2.1.3 容重

堆肥物料容重一般为0.2~0.8 Mg·m-3,氨挥发量随容重的增加而降低[31]。容重影响气体在堆体内的扩散,物料容重高时,气体在堆体内扩散能力较弱,更有利于氨气减排[32]。El Kader等[21]发现物料压实后自由空域减少20%~60%,氨挥发减少30%~70%。自由空域过低,将阻碍O2在堆体内的扩散,供氧不足会抑制物料降解,故调节容重时应保证自由空域水平值在30%以上[33]。添加填充剂降低容重并不一定增加堆肥氨挥发[31],因为填充剂的添加不仅影响堆肥容重,还影响碳氮比、含水率、pH等诸多因素。填充剂颗粒大小是调节容重、影响减排效果的关键参数[34]。付丽丽等[35]通过不同粒径的玉米芯调节堆肥容重,结果发现,5~10 cm颗粒具有最佳的氨气减排效果。

堆肥容重越低,堆体内孔隙度越高,气体扩散能力也越强,堆体内越不易形成厌氧环境,反硝化作用受到抑制,从而减少N2O排放。研究表明,容重为0.2~0.8 Mg · m-3时,容重越低,N2O排放就越低[31]。Tamura等[27]发现奶牛粪堆肥物料容重从0.80 Mg·m-3降到0.54 Mg·m-3时,N2O排放量降低26.5%。尽管如此,El Kader等[21]通过压实物料发现,容重从0.36 Mg· m-3增加到0.54 Mg·m-3时,N2O排放减少了48%,原因在于压实阻碍N2O向空气扩散。

堆肥容重越高,堆体内厌氧区域越大,CH4排放量也越大。Sommer[36]发现,压实后物料容重从0.42 Mg·m-3增加到0.50 Mg·m-3,堆体内O2浓度显著下降,CH4排放量增加84%。Tamura等[27]通过添加麦秸降低物料容重,显著减少了CH4排放。

综上所述,增加物料容重可减少氨挥发,但通常会增加温室气体排放,因此仅调节容重也难以实现协同减排(表 1)。综合考虑氨气和温室气体的协同减排,堆肥物料初始容重建议为0.5 Mg·m-3

2.2 供气策略优化 2.2.1 翻堆

翻堆提高堆体内O2浓度,促进有机氮的矿化,易增加氨挥发[31]。一般认为,氨挥发量随翻堆频率的增加而增加[37]。翻堆使物料均一化,堆体内部NOx-被翻至表面,经反硝化生成N2O[8],从而增加N2O排放[6]。赵晨阳等[38]发现,提高翻堆频率,导致N2O排放增加。因此,在保证堆肥物料降解的同时适当降低翻堆频率(每周1次)有助于减少NH3和N2O排放。O2供应不足是导致CH4产生的主要原因,通过翻堆为堆体提供充足的O2,避免厌氧区域的形成,降低产甲烷菌活性,增强甲烷氧化菌活性,可显著减少CH4排放。因此,翻堆频率越高,CH4排放量越低。贾兴永[39]每隔1、3、7 d翻堆一次,发现提高翻堆频率可减少CH4排放。江滔等[40-41]将翻堆频率由每周1次提高到每周2次,发现CH4减排50%。综上所述,降低翻堆频率在减少NH3和N2O排放的同时会增加CH4排放(表 1),因此通过改变翻堆频率也难以实现协同减排。

2.2.2 强制通风

强制通风条件下的氨挥发量要高于翻堆[4],且氨挥发量随通风速率的增加而增加[37]。因此,在保证O2供应、保持温度和去除水分的条件下,适当降低通气速率可减少氨挥发。Li等[22]进行牛粪堆肥试验时,设置了4个通风速率:0.095、0.192、0.384、0.768 L · min-1·kg-1DM,结果表明,0.192 L·min-1·kg-1DM处理效果最佳。Jiang等[41]在猪粪堆肥时采用3个通风速率:0.18、0.36、0.54 L·min-1·kg-1DM,发现NH3和N2O排放量随通风速率的增加而增加。通风速率越高,堆体内部的厌氧区域越小,反硝化越弱,N2O排放量也越低[42]。然而也有研究并未发现通风速率对N2O排放有影响[43]。由此可知,堆肥过程通风速率与N2O排放量的关系并不明确,原因在于:①随着通风速率增加,堆肥过程反硝化与硝化呈现此消彼长的现象,表现为N2O排放无显著差异;②不同研究间物料和O2有效性存在差异,若物料的孔隙度不均,即使增加通风速率,堆体内也易形成优先的O2流动路径,产生大量的厌氧区域[31]。强制通风为堆体源源不断地提供O2,可避免形成有利于CH4产生的厌氧区域。江滔等[40-41]发现,通风速率从0.18 L·min-1·kg-1DM提高到0.54 L·min-1·kg-1DM时,CH4减排90%。综上所述,降低通风速率可减少氨挥发,一般建议为0.2 L · min-1 · kg-1DM,同时易增加CH4排放(表 1),因此调节通风速率也难以实现协同减排。

2.2.3 通风方式

与连续通风相比,间歇通风可减少总的通气量,提高O2利用效率,显著减少堆肥过程氨挥发[44]。张红玉等[45]发现,每通气40 min停20 min的间歇通风方式具有最佳的氨挥发减排效果;而徐鹏翔[46]指出,每通气10 min停10 min的间歇通风处理氨挥发量最低。就氨气减排而言,不同研究因堆肥原料和规模不同,得出的间歇时间并不一致,今后应针对性地制定通气间歇时间。与连续通风相比,间歇通风时硝化与反硝化交替进行促进N2O排放[41]。江滔等[40-41]发现,与连续通风相比,间歇通风导致CH4排放增加8.9倍。Wang等[47]研究表明,与正压堆肥相比,从顶部向底部供气的负压堆肥方式显著减少氨挥发(55%),同时增加CH4和N2O排放。综上所述,改变通风方式难以实现氨气和温室气体的协同减排。

2.3 添加剂减排 2.3.1 生物添加剂

添加高温耐氨微生物或氨氧化微生物促进NH4+的同化或硝化,降低物料本底NH4+含量,可减少10.2%~42.8%的氨挥发[1]。堆肥中N2O的产生与NO2-含量正相关,氨氧化细菌与亚硝酸盐氧化菌的不平衡导致NO2-的累积,进而增加N2O排放[48]。Fukumoto等[48-49]通过添加亚硝酸盐氧化菌和富含亚硝酸盐氧化菌的腐熟堆肥,显著减少了堆肥过程N2O排放。陈耀宁等[50]通过添加硝化抑制剂双氰胺(DCD),发现其对nirK基因的抑制效果最显著。Jiang等[51]添加0%~ 10%的DCD,结果发现添加量高于2.5%时,硝化过程被显著抑制,堆肥过程N2O排放减少77%。微生物菌剂成本低、易施用,但在堆体内适应性较差,效果不稳定。此外,目前的菌剂功能单一且缺乏针对CH4减排的菌剂,因此研发适应性强、效果稳定且能实现氨气和温室气体协同减排的多功能复合菌剂应是未来研究的重点。

2.3.2 物理添加剂

物理添加剂主要包括生物炭、沸石、膨润土、麦饭石等吸附剂,其具有丰富的孔隙结构和带负电荷的吸附位点,有利于NH3和NH4+的吸附。此外,生物炭等表面的酸性含氧官能团与NH4+发生阳离子交换,也能吸附和固定NH4+[50]。研究表明,即使在低浓度和高温等条件下,物理吸附剂仍具有吸附作用[52],但物料性质可能影响吸附效果,如在高含水率(>65%)条件下,因水和NH4+竞争吸附位点易弱化吸附效果[1]。生物炭和沸石是目前应用最广泛的物理添加剂,添加剂量一般在初始干质量的20%以下,且氨气减排效果随添加量的增加而增强[53]。Wang等[54]和Li等[55]添加3%的生物炭,结果发现,与N2O产生相关的基因(narG和nirK)丰度降低,与N2O还原相关的基因(nosZ)丰度增加,显著减少了N2O排放。添加生物炭和沸石可改善堆体好氧状况,降低产甲烷菌丰度,增加甲烷氧化菌丰度[56-57]。一般认为,生物炭添加量越高,CH4减排效果越好[58]。Sánchez-García等[59]指出,添加3%的生物炭不足以改变堆体好氧状况,难以减少CH4排放。Chen等[60]添加10%由不同原料制备的生物炭,包括秸秆、竹子、木头、粪便、果壳烧制的生物炭,发现所有的生物炭均可减少NH3和CH4排放,其中秸秆生物炭具有最佳的减排效果,归因于其更大的比表面积和孔隙结构。此外,生物炭和沸石改性后孔隙结构更丰富,比表面积更大,含有的表面官能团更多[61-62],减排效果更好。综上所述,添加生物炭等物理吸附剂是实现堆肥过程氨气和温室气体协同减排的有效措施(表 1),然而由于制备工艺的不同,导致其表面性质和减排效果存在差异,在未来研究中需进一步明确其相关关系。

2.3.3 化学添加剂

化学添加剂可降低物料pH,增加NH4+的化学固定,对氨挥发的减排效果优于生物添加剂和物理添加剂[1]。目前,常用的化学添加剂包括磷镁盐、过磷酸钙、磷石膏等。对氨气减排效果为磷镁盐>过磷酸钙>磷石膏,因为镁或钙等离子可通过H2PO4-与NH4+结合,形成磷酸铵镁等稳定化合物,降低本底NH4+含量,进而减少氨挥发,而磷石膏与NH4+的结合不如镁和钙离子稳定,导致磷石膏的氨气减排效果较差。此外,Fe3+和Al3+等离子可通过水解形成酸,降低物料pH,有效减少堆肥过程氨挥发[1]。物料pH是影响堆肥过程氨挥发的直接因素,物料酸化可减少堆肥过程40%以上的氨挥发[1]。由于有机酸易降解,无机酸的氨气减排效果优于有机酸。化学添加剂对堆肥N2O的排放并无显著影响,其中磷石膏甚至增加N2O排放[1],可能由于化学添加剂降低堆肥pH,抑制N2O还原酶活性,提高N2O/N2产物比[63]。已有文献表明,物料酸化并不一定增加堆肥过程N2O排放[64]:Wu等[65]添加磷酸和硫酸,显著增加N2O排放;Mao等[66]添加苹果渣和柠檬酸,却显著降低N2O排放。

综上所述,酸的类型是影响堆肥过程NH3和N2O减排的关键因子,无机酸的氨气减排效果优于有机酸,但同时增加N2O排放,需注意的是无机酸的添加可能导致堆肥产品EC值增加和腐熟度降低[64],酸化过度(pH<6)亦可抑制堆肥微生物活性[45]。目前常用的化学添加剂都可显著减少堆肥过程CH4排放,其中磷镁盐、过磷酸钙和磷石膏可分别减少45.5%、51.0%和89.7%的CH4排放[1],主要因为这些添加剂降低物料pH,增加堆肥SO42-含量,从而抑制产甲烷菌活性,减少CH4排放[67]。需要注意的是,如选用磷酸作为磷镁盐中的磷源,应避免物料pH值过低[68];过磷酸钙的添加量应控制在初始物料的10%以下,否则会影响堆肥进程[51]。杨岩等[69]添加0%~25%的过磷酸钙,研究表明10%的添加量可获得最佳减排效果。Hao等[67]添加10%、20%和30%的磷石膏,研究表明添加量越高,CH4减排效果越好,但应避免酸化过度。

3 堆肥过程中氨气和温室气体协同减排

图 2可知,堆肥过程中调节物料性质和优化供气策略,导致气体排放此消彼长。因此,应在调节物料性质和优化供气策略的基础上,结合添加剂减排以实现氨气和温室气体的协同减排。基于以上文献综述,本文提出以下协同减排策略:

红色虚线:不能实现协同减排;绿色虚线:能够实现协同减排;黑色虚线:协同关系不明确 Red dotted line: trade-off; Green dotted line: synergetic mitigation; Black dotted line: unclear relationship 图 2 畜禽废弃物堆肥过程NH3、N2O和CH4等气体的协同关系对调控策略的响应 Figure 2 Synergetic relationship between gases(i.e. NH3, N2O, CH4 etc.)emissions responding to regulation strategy during manure composting

(1)根据减排的优先序,调节堆肥物料性质。氨气是堆肥过程氮素最主要的损失途径,首先考虑氨气减排,建议:①调节碳氮比至25~30,且应考虑碳组分尤其是易降解碳,而不仅是传统的全碳;②通过压实或选用合适粒径的填充剂,调节容重至0.5~0.8 Mg· m-3。其次考虑N2O减排,建议:①含水率调节至60%~70%;②容重调节至0.5 Mg·m-3。最后考虑CH4减排,建议:①调节碳氮比至20~25,且选用易降解碳含量低的高碳物质;②含水率调节至50%~60%;③容重调节至0.2~0.5 Mg·m-3。此外,还需要综合考虑堆肥方式、原料,制定物料性质调节的参数。

(2)根据减排目标气体,优化供气策略。如以氨气减排为主,建议:①翻堆频率每周1次;②通风速率0.2L·min-1·kg-1DM;③间歇通风,间歇通风在减少氨挥发的同时会增加温室气体的排放,可通过调节间歇时间减少温室气体的排放[70];④负压堆肥。如以N2O减排为主,建议:①翻堆频率每周1次;②连续通风;③正压堆肥。如以CH4减排为主,建议:①翻堆频率每1~2 d 1次;②连续通风;③正压堆肥。

(3)多功能复合菌剂精准调控,实现协同减排。化学添加剂(如磷镁盐)的氨气减排效果优于物理添加剂,而对温室气体的减排效果不如物理添加剂,故在今后的研究中可探索化学添加剂和物理添加剂的联合调控途径。此外,生物炭等物理添加剂可实现氨气和温室气体的协同减排,但是应明确生物炭的“制备工艺-表面性质-气体排放”三者的定量关系。

4 结论与展望

堆肥过程中碳氮转化与氨气和温室气体排放相互关联,本研究系统梳理了已发表的文献,分析了畜禽废弃物堆肥过程氨气和温室气体的排放机制;阐明了影响因素、调控途径和减排潜力。研究表明:畜禽废弃物堆肥过程氨气和温室气体的协同减排机理和调控途径尚不清楚,应在调节物料性质和优化供气策略的基础上,开展堆肥过程化学、物理和生物联合添加剂的精准调控以实现协同减排的基础和技术研究。

未来的研究重点和方向:

(1)氨气和温室气体的产生和排放相互关联,目前堆肥过程碳氮转化机制尚不清楚,阻碍协同减排策略的制定和优化,故应借助同位素技术明确碳氮气体产生途径,利用分子生物学技术解析微生物驱动机制,基于扫描电镜分析法和光谱法等技术剖析颗粒尺度碳氮转化动力学。

(2)目前堆肥过程气体减排机理尚不够明晰,主要因为调控措施会同时影响多个因素,从而引发多重效应甚至掩盖真实现象,今后研究应注重气体排放的交互影响机理的基础研究。

(3)为实现氨气和温室气体的协同减排,应在调节物料性质和优化供气策略的基础上,研发物理和化学复合添加剂与多功能菌剂以实现堆肥过程气体精准协同减排。

参考文献
[1]
Cao Y, Wang X, Bai Z, et al. Mitigation of ammonia, nitrous oxide and methane emissions during solid waste composting with different additives:A meta-analysis[J]. Journal of Cleaner Production, 2019, 235: 626-635.
[2]
吴伟祥, 李丽劼, 吕豪豪, 等. 畜禽粪便好氧堆肥过程氧化亚氮排放机制[J]. 应用生态学报, 2012, 23(6): 1704-1712.
WU Wei-xiang, LI Li-jie, LÜ Hao-hao, et al. Mechanisms of nitrous oxide emission during livestock manure aerobic composting[J]. Chinese Journal of Applied Ecology, 2012, 23(6): 1704-1712.
[3]
Bernal M P, Sommer S G, Chadwick D, et al. Current approaches and future trends in compost quality criteria for agronomic, environmental, and human health benefits[J]. Advances in Agronomy, 2017, 144: 143-233.
[4]
Tong B, Wang X, Wang S, et al. Transformation of nitrogen and carbon during composting of manure litter with different methods[J]. Bioresource Technology, 2019, 293: 122046.
[5]
Jarvis Å, Sundberg C, Milenkovski S, et al. Activity and composition of ammonia oxidizing bacterial communities and emission dynamics of NH3 and N2O in a compost reactor treating organic household waste[J]. Journal of Applied Microbiology, 2009, 106(5): 1502-1511.
[6]
Maeda K, Toyoda S, Shimojima R, et al. Source of nitrous oxide emissions during the cow manure composting process as revealed by isotopomer analysis of and amoA abundance in betaproteobacterial ammonia-oxidizing bacteria[J]. Applied and Environmental Microbiology, 2010, 76(5): 1555-1562.
[7]
Maeda K, Toyoda S, Hanajima, et al. Denitrifiers in the surface zone are primarily responsible for the nitrous oxide emission of dairy manure compost[J]. Journal of Hazardous Materials, 2013, 248: 329-336.
[8]
Maeda K, Toyoda S, Philippot L, et al. Relative contribution of nirKand nirS-bacterial denitrifiers as well as fungal denitrifiers to nitrous oxide production from dairy manure compost[J]. Environmental Science & Technology, 2017, 51(24): 14083-14091.
[9]
Zeng Y, De Guardia A, Ziebal C, et al. Impact of biodegradation of organic matters on ammonia oxidation in compost[J]. Bioresource Technology, 2013, 136: 49-57.
[10]
Hamelers H V M. A mathematical model for composting kinetics[M]. 2001.
[11]
Ge J, Huang G, Li J, et al. Multivariate and multiscale approaches for interpreting the mechanisms of nitrous oxide emission during pig manure-wheat straw aerobic composting[J]. Environmental Science & Technology, 2018, 52(15): 8408-8418.
[12]
Ge J, Huang G, Li J, et al. Particle-scale visualization of the evolution of methanogens and methanotrophs and its correlation with CH4 emissions during manure aerobic composting[J]. Waste Management, 2018, 78: 135-143.
[13]
Bykova S, Boeckx P, Kravchenko I, et al. Response of CH4 oxidation and methanotrophic diversity to NH4+ and CH4 mixing ratios[J]. Biology and Fertility of Soils, 2007, 43(3): 341-348.
[14]
Huang G F, Wong J W C, Wu Q T, et al. Effect of C/N on composting of pig manure with sawdust[J]. Waste Management, 2004, 24(8): 805-813.
[15]
Li Y, Li W, Liu B, et al. Ammonia emissions and biodegradation of organic carbon during sewage sludge composting with different extra carbon sources[J]. International Biodeterioration & Biodegradation, 2013, 85: 624-630.
[16]
Liang Y, Leonard J J, Feddes J J R, et al. Influence of carbon and buffer amendment on ammonia volatilization in composting[J]. Bioresource Technology, 2006, 97(5): 748-761.
[17]
Sun X, Lu P, Jiang T, et al. Influence of bulking agents on CH4, N2O, and NH3 emissions during rapid composting of pig manure from the Chinese Ganqinfen system[J]. Journal of Zhejiang University Science B, 2014, 15(4): 353-364.
[18]
Nakhshiniev B, Perera C, Biddinika M K, et al. Reducing ammonia volatilization during composting of organic waste through addition of hydrothermally treated lignocellulose[J]. International Biodeterioration & Biodegradation, 2014, 96: 58-62.
[19]
卢月, 徐建玲. 堆肥的温室气体排放和氮素转化进展研究[J]. 环境科学与管理, 2019, 44(5): 57-60.
LU Yue, XU Jian-ling. Research progress on greenhouse gas emissions and nitrogen transformation during composting[J]. Environmental Science and Management, 2019, 44(5): 57-60.
[20]
杨帆, 欧阳喜辉, 李国学, 等. 膨松剂对厨余垃圾堆肥CH4、N2O和NH3排放的影响[J]. 农业工程学报, 2013, 29(18): 226-233.
YANG Fan, OUYANG Xi-hui, LI Guo-xue, et al. Effect of bulking agent on CH4, N2O and NH3 emissions in kitchen waste composting[J]. Transactions of the CSAE, 2013, 29(18): 226-233.
[21]
El Kader N A, Robin P, Paillat J M, et al. Turning, compacting and the addition of water as factors affecting gaseous emissions in farm manure composting[J]. Bioresource Technology, 2007, 98(14): 2619-2628.
[22]
Li X, Zhang R, Pang Y. Characteristics of dairy manure composting with rice straw[J]. Bioresource Technology, 2008, 99(2): 359-367.
[23]
Petric I, Šestan A, Šestan I. Influence of initial moisture content on the composting of poultry manure with wheat straw[J]. Biosystems engineering, 2009, 104(1): 125-134.
[24]
Jiang T, Schuchardt F, Li G, et al. Effect of C/N ratio, aeration rate and moisture content on ammonia and greenhouse gas emission during the composting[J]. Journal of Environmental Sciences, 2011, 23(10): 1754-1760.
[25]
Cabrera M L, Chiang S C. Water content effect on denitrification and ammonia volatilization in poultry litter[J]. Soil Science Society of America Journal, 1994, 58(3): 811-816.
[26]
Fan H, Liao J, Abass O K, et al. Effects of bulking material types on water consumption and pollutant degradation in composting process with controlled addition of different liquid manures[J]. Bioresource Technology, 2019, 288: 121517.
[27]
Tamura T, Osada T. Effect of moisture control in pile-type composting of dairy manure by adding wheat straw on greenhouse gas emission[C]//International Congress Series. Elsevier, 2006, 1293: 311-314.
[28]
王亚楠, 孙英杰, 陈栋, 等. 废物管理活动中N2O产生及排放研究进展[J]. 环境科学与技术, 2013, 36(4): 33-38.
WANG Ya-nan, SUN Ying-jie, CHEN Dong, et al. Progress in the studies of N2O production and emission in waste management activities[J]. Environmental Science and Technology, 2013, 36(4): 33-38.
[29]
孙英杰, 吴昊, 王亚楠. 硝化反硝化过程中N2O释放影响因素[J]. 生态环境学报, 2011, 20(2): 384-388.
SUN Ying-jie, WU Hao, WANG Ya-nan. The influence factors on N2O emissions from nitrification and denitrification reaction[J]. Ecology and Environmental Sciences, 2011, 20(2): 384-388.
[30]
陈辉, 王巨媛, 田晓飞, 等. 含水率与C/N耦合对驴粪堆肥过程中温室气体排放的影响[J]. 生态环境学报, 2019, 28(2): 341-347.
CHEN Hui, WANG Ju-yuan, TIAN Xiao-fei, et al. Effects of different water content and C/N coupling on greenhouse gas emissions during donkey dung composting[J]. Ecology and Environmental Sciences, 2019, 28(2): 341-347.
[31]
Pardo G, Moral R, Aguilera E, et al. Gaseous emissions from management of solid waste:A systematic review[J]. Global Change Biology, 2015, 21(3): 1313-1327.
[32]
Webb J, Sommer S G, Kupper T, et al. Emissions of ammonia, nitrous oxide and methane during the management of solid manures[M]//Agroecology and Strategies for Climate Change. Springer, Dordrecht, 2012: 67-107.
[33]
王永江.猪粪堆肥过程有机质降解动力学模型研究[D].北京: 中国农业大学, 2014.
WANG Yong-jiang. Study on degrading kinetics of organic matter for composting process of swine manure[D]. Beijing: China Agricultural University, 2014.
[34]
吴传栋, 王科, 李伟光, 等. 调理剂投配比及粒径对污泥堆肥的影响研究[J]. 哈尔滨商业大学学报(自然科学版), 2014, 30(3): 275-278, 283.
WU Chuan-dong, WANG Ke, LI Wei-guang, et al. Study on the effects of conditioner dosing ratio and particle size on sludge composting[J]. Journal of Harbin University of Commerce(Natural Sciences Edition), 2014, 30(3): 275-278, 283.
[35]
付丽丽, 阚培赢, 刘娟, 等. 颗粒粒径对玉米芯混合鸡粪堆肥氨气减排的影响[J]. 辽宁石油化工大学学报, 2019, 39(5): 36-39.
FU Li-li, KAN Pei-ying, LIU Juan, et al. Effect of corncob size on ammonia emission in manure composting[J]. Journal of Liaoning Shihua University, 2019, 39(5): 36-39.
[36]
Sommer S G. Effect of composting on nutrient loss and nitrogen availability of cattle deep litter[J]. European Journal of Agronomy, 2001, 14(2): 123-133.
[37]
曹玉博, 邢晓旭, 柏兆海, 等. 农牧系统氨挥发减排技术研究进展[J]. 中国农业科学, 2018, 51(3): 566-580.
CAO Yu-bo, XING Xiao-xu, BAI Zhao-hai, et al. Review on ammonia emission mitigation techniques of crop-livestock production system[J]. Scientia Agricultura Sinica, 2018, 51(3): 566-580.
[38]
赵晨阳, 李洪枚, 魏源送, 等. 翻堆频率对猪粪条垛堆肥过程温室气体和氨气排放的影响[J]. 环境科学, 2014, 35(2): 533-540.
ZHAO Chen-yang, LI Hong-mei, WEI Yuan-song, et al. Effects of turning frequency on emission of greenhouse gas and ammonia during swine manure windrow composting[J]. Environmental Science, 2014, 35(2): 533-540.
[39]
贾兴永.生物炭及翻堆频率对鸡粪堆肥过程中温室气体排放的影响[D].北京: 中国农业大学, 2015.
JIA Xing-yong. Effects of biochar and turnover frequency on greenhouse gas emissions in chicken manure composting[D]. Beijing: China Agricultural University, 2015.
[40]
江滔, Frank S, 李国学. 冬季堆肥中翻堆和覆盖对温室气体和氨气排放的影响[J]. 农业工程学报, 2011, 27(10): 212-217.
JIANG Tao, Frank S, LI Guo-xue. Effect of turning and covering on greenhouse gas and ammonia emissions during the winter composting[J]. Transactions of the CSAE, 2011, 27(10): 212-217.
[41]
Jiang T, Li G, Tang Q, et al. Effects of aeration method and aeration rate on greenhouse gas emissions during composting of pig feces in pilot scale[J]. Journal of Environmental Sciences, 2015, 31: 124-132.
[42]
Osada T, Kuroda K, Yonaga M. Determination of nitrous oxide, methane, and ammonia emissions from a swine waste composting process[J]. Journal of Material Cycles and Waste Management, 2000, 2(1): 51-56.
[43]
Chowdhury M A, de Neergaard A, Jensen L S. Potential of aeration flow rate and bio-char addition to reduce greenhouse gas and ammonia emissions during manure composting[J]. Chemosphere, 2014, 97: 16-25.
[44]
Elwell D L, Hong J H, Keener H M. Composting hog manure/sawdust mixtures using intermittent and continuous aeration:Ammonia emissions[J]. Compost Science & Utilization, 2002, 10(2): 142-149.
[45]
张红玉, 王桂琴, 顾军, 等. 通风方式对厨余垃圾堆肥H2S和NH3排放的影响[J]. 中国农业大学学报, 2017, 22(12): 124-130.
ZHANG Hong-yu, WANG Gui-qin, GU Jun, et al. Influence of ventilation on H2S and NH3 emission during kitchen waste composting[J]. Journal of China Agricultural University, 2017, 22(12): 124-130.
[46]
徐鹏翔.反应器堆肥过程中氮素的转化特征及工艺优化研究[D].北京: 中国农业大学, 2019.
XU Peng-xiang. Study on nitrogen conversion characteristics and process optimization in reactor compost[D]. Beijing: China Agricultural University, 2018.
[47]
Wang X, Bai Z, Yao Y, et al. Composting with negative pressure aeration for the mitigation of ammonia emissions and global warming potential[J]. Journal of Cleaner Production, 2018, 195: 448-457.
[48]
Fukumoto Y, Suzuki K, Osada T, et al. Reduction of nitrous oxide emission from pig manure composting by addition of nitrite-oxidizing bacteria[J]. Environmental Science & Technology, 2006, 40(21): 6787-6791.
[49]
Fukumoto Y, Inubushi K. Effect of nitrite accumulation on nitrous oxide emission and total nitrogen loss during swine manure composting[J]. Soil Science and Plant Nutrition, 2009, 55(3): 428-434.
[50]
陈耀宁, 黄爱知, 黎媛萍, 等. 硝化抑制剂对农业废物好氧堆肥理化性质及反硝化功能基因的影响[J]. 环境工程学报, 2016, 10(8): 4451-4456.
CHEN Yao-ning, HUANG Ai-zhi, LI Yuan-ping, et al. Effect of nitrification inhibitor on physico-chemical properties and denitrification functional genes during agricultural waste composting[J]. Chinese Journal of Environmental Engineering, 2016, 10(8): 4451-4456.
[51]
Jiang T, Ma X, Tang Q, et al. Combined use of nitrification inhibitor and struvite crystallization to reduce the NH3 and N2O emissions during composting[J]. Bioresource Technology, 2016, 217: 210-218.
[52]
李国学, 李玉春, 李彦富. 固体废物堆肥化及堆肥添加剂研究进展[J]. 农业环境科学学报, 2003, 22(2): 252-256.
LI Guo-xue, LI Yu-chun, LI Yan-fu. Advance on composting of solid waste and utilization of additives[J]. Journal of Agro-Environment Science, 2003, 22(2): 252-256.
[53]
付祥峰, 刘琪琪, 李恋卿, 等. 生物质炭对猪粪堆肥过程中氮素转化及温室气体排放的影响[J]. 农业环境科学学报, 2017, 36(9): 1893-1900.
FU Xiang-feng, LIU Qi-qi, LI Lian-qing, et al. Effects of biochar on nitrogen transformation and greenhouse gas emissions during swine manure composting[J]. Journal of Agro-Environment Science, 2017, 36(9): 1893-1900.
[54]
Wang C, Lu H, Dong D, et al. Insight into the effects of biochar on manure composting:Evidence supporting the relationship between N2O emission and denitrifying community[J]. Environmental Science & Technology, 2013, 47(13): 7341-7349.
[55]
Li S, Song L, Jin Y, et al. Linking N2O emission from biochar-amended composting process to the abundance of denitrify(nirK and nosZ) bacteria community[J]. AMB Express, 2016, 6(1): 37.
[56]
Sonoki T, Furukawa T, Jindo K, et al. Influence of biochar addition on methane metabolism during thermophilic phase of composting[J]. Journal of Basic Microbiology, 2013, 53(7): 617-621.
[57]
李慧杰, 王一明, 林先贵, 等. 沸石和过磷酸钙对鸡粪条垛堆肥甲烷排放的影响及其机制[J]. 土壤, 2017, 49(1): 63-69.
LI Hui-jie, WANG Yi-ming, LIN Xian-gui, et al. Effects of adding zeolite and superphosphate on greenhouse gas emission and methanogens during chicken manure composting[J]. Soils, 2017, 49(1): 63-69.
[58]
Awasthi M K, Wang M, Chen H, et al. Heterogeneity of biochar amendment to improve the carbon and nitrogen sequestration through reduce the greenhouse gases emissions during sewage sludge composting[J]. Bioresource Technology, 2017, 224: 428-438.
[59]
Sánchez-García M, Alburquerque J A, Sánchez-Monedero M A, et al. Biochar accelerates organic matter degradation and enhances N mineralisation during composting of poultry manure without a relevant impact on gas emissions[J]. Bioresource Technology, 2015, 192: 272-279.
[60]
Chen W, Liao X, Wu Y, et al. Effects of different types of biochar on methane and ammonia mitigation during layer manure composting[J]. Waste Management, 2017, 61: 506-515.
[61]
万政钰.利用改性沸石吸附剂处理氨气的研究[D].长春: 吉林大学, 2009.
WANG Zheng-yu. Study on treating ammonia gas with modified zeolite adsorbent[D]. Changchun: Jilin University, 2009.
[62]
Ahmed M B, Zhou J L, Ngo H H, et al. Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater[J]. Bioresource Technology, 2016, 214: 836-851.
[63]
Liu B, Mørkved P T, Frostegård Å, et al. Denitrification gene pools, transcription and kinetics of NO, N2O and N2 production as affected by soil pH[J]. FEMS Microbiology Ecology, 2010, 72(3): 407-417.
[64]
Pan J, Cai H, Zhang Z, et al. Comparative evaluation of the use of acidic additives on sewage sludge composting quality improvement, nitrogen conservation, and greenhouse gas reduction[J]. Bioresource Technology, 2018, 270: 467-475.
[65]
Wu J, He S, Liang Y, et al. Effect of phosphate additive on the nitrogen transformation during pig manure composting[J]. Environmental Science and Pollution Research, 2017, 24(21): 17760-17768.
[66]
Mao H, Zhang T, Li R, et al. Apple pomace improves the quality of pig manure aerobic compost by reducing emissions of NH3 and N2O[J]. Scientific Reports, 2017, 7(1): 1-8.
[67]
Hao X, Larney F J, Chang C, et al. The effect of phosphogypsum on greenhouse gas emissions during cattle manure composting[J]. Journal of Environmental Quality, 2005, 34(3): 774-781.
[68]
Ren L, Schuchardt F, Shen Y, et al. Impact of struvite crystallization on nitrogen losses during composting of pig manure and cornstalk[J]. Waste Management, 2010, 30(5): 885-892.
[69]
杨岩, 孙钦平, 李妮, 等. 添加过磷酸钙对蔬菜废弃物堆肥中氨气及温室气体排放的影响[J]. 应用生态学报, 2015, 26(1): 161-167.
YANG Yan, SUN Qin-ping, LI Ni, et al. Effects of superphosphate addition on NH3 and greenhouse gas emissions during vegetable waste composting[J]. Chinese Journal of Applied Ecology, 2015, 26(1): 161-167.
[70]
曾剑飞.间歇供氧对畜禽粪便好氧堆肥氧气供需和主要气体产排的影响及机制研究[D].北京: 中国农业大学, 2018.
ZENG Jian-fei. Study on the effect of intermittent oxygen supply on oxygen supply and demand and main gas production and emission of livestock manure aerobic composting and its mechanism[D]. Beijing: China Agricultural University, 2018.