快速检索        
  农业环境科学学报  2021, Vol. 40 Issue (12): 2647-2659  DOI: 10.11654/jaes.2021-0332
0

引用本文  

王慧敏, 陈莉荣, 任文杰, 等. 单壁碳纳米管对紫花苜蓿根际土壤中PAHs降解及微生物群落的影响[J]. 农业环境科学学报, 2021, 40(12): 2647-2659.
WANG Huimin, CHEN Lirong, REN Wenjie, et al. Effects of single-walled carbon nanotubes on degradation of polycyclic aromatic hydrocarbons and microbial community in rhizosphere soil of Medicago sativa[J]. Journal of Agro-Environment Science, 2021, 40(12): 2647-2659.

基金项目

国家自然科学基金项目(41877139);国家重点研发计划项目(2017YFA0207001);国家自然科学基金重大项目(41991335);昆都仑区科技计划项目(YF2020014)

Project supported

The National Natural Science Foundation of China(41877139); The National Key Research and Development Program of China (2017YFA0207001); Major Projects of the National Natural Science Foundation of China(41991335); The Science and Technique Programs of Kundulun District (YF2020014)

通信作者

任文杰, E-mail: wjren@issas.ac.cn 滕应, E-mail: yteng@issas.ac.cn

作者简介

王慧敏(1995-), 女, 河北张家口人, 硕士研究生, 从事有机污染土壤生物修复研究。E-mail: 1132921254@qq.com

文章历史

收稿日期: 2021-03-19
录用日期: 2021-06-02
单壁碳纳米管对紫花苜蓿根际土壤中PAHs降解及微生物群落的影响
王慧敏1,2 , 陈莉荣1 , 任文杰2 , 郑春丽1 , 黄怡雯2 , 滕应2 , 张铁军1     
1. 内蒙古科技大学能源与环境学院, 内蒙古 包头 014010;
2. 中国科学院土壤环境与污染修复重点实验室(南京土壤研究所), 南京 210008
摘要 为探究单壁碳纳米管(SWCNTs)对紫花苜蓿根际土壤中多环芳烃(PAHs)降解及微生物群落的影响,以高浓度PAHs污染土壤为供试土壤种植紫花苜蓿,并添加不同含量的SWCNTs,通过室内盆栽试验,分析了根际土壤中PAHs的降解效应及微生物群落响应。结果表明:添加0.5 g·kg-1和5 g·kg-1 SWCNTs使土壤中PAHs的去除率分别显著降低了3.43%和6.98%(P < 0.05),SWCNTs对PAHs降解的抑制作用主要来源于5环和6环高分子量PAHs。添加SWCNTs对紫花苜蓿生长并未产生毒害作用,当SWCNTs的添加量为5 g·kg-1时,紫花苜蓿根长、地上部鲜质量和根鲜质量与对照(不添加SWCNTs)相比分别显著增加了21.44%、49.13%和100.00%(P < 0.05)。qPCR和高通量测序结果表明,添加SWCNTs对土壤细菌生物量、丰富度和多样性无显著影响,但显著改变了土壤细菌群落组成。较高添加量的SWCNTs(5 g·kg-1)显著降低了污染土壤中PAHs潜在降解菌属PhenylobacteriumReyranellaBrevundimonasPseudorhodoferax的相对丰度。研究表明,添加SWCNTs抑制了根际土壤中PAHs的去除,尤其是5环和6环PAHs,同时改变了土壤中微生物群落,并且抑制了与PAHs降解相关的微生物。
关键词单壁碳纳米管    根际降解    多环芳烃    微生物群落    
Effects of single-walled carbon nanotubes on degradation of polycyclic aromatic hydrocarbons and microbial community in rhizosphere soil of Medicago sativa
WANG Huimin1,2 , CHEN Lirong1 , REN Wenjie2 , ZHENG Chunli1 , HUANG Yiwen2 , TENG Ying2 , ZHANG Tiejun1     
1. School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou 014010, China;
2. Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
Abstract: The study investigated the effect of single-walled carbon nanotubes(SWCNTs) on the degradation of polycyclic aromatic hydrocarbons(PAHs) and microbial communities in alfalfa rhizosphere soil. An indoor -pot experiment was performed to analyze the degradation of PAHs and the response of microbial communities by planting alfalfa(Medicago sativa) and adding different contents of SWCNTs to soil contaminated with high concentrations of PAHs. Addition of 0.5 g·kg-1 and 5 g·kg-1 SWCNTs significantly reduced the removal rate of PAHs in the soil by 3.43% and 6.98%(P < 0.05), respectively. The inhibitory effect of SWCNTs on degradation of PAHs mainly involved high-molecular-weight PAHs with five to six rings. SWCNTs were not toxic to alfalfa. When the supplemented level of SWCNTs was 5 g·kg-1, root length, shoot weight, and root weight of alfalfa were significantly increased by 21.44%, 49.13% and 100.00%(P < 0.05), respectively, compared with those of the control. The results of qPCR and high-throughput sequencing revealed that the addition of SWCNTs had no significant effect on soil bacterial biomass, richness, and diversity; however, it significantly changed the composition of soil bacterial community. The higher level of SWCNTs(5 g·kg-1) significantly reduced the relative abundance of potential PAH-degrading bacteria in contaminated soil, including Phenylobacterium, Reyranella, Brevundimonas and Pseudorhodoferax.
Keywords: single-walled carbon nanotubes    rhizosphere degradation    polycyclic aromatic hydrocarbons(PAHs)    microbial community    

多环芳烃(PAHs)是环境中普遍存在的一类具有“三致”效应的持久性有机污染物,对人体健康和生态系统具有极大威胁[1-2]。欧盟和美国环境保护署已把16种PAHs列为优先控制污染物,其中苯并[a]芘等7种PAHs也被我国列入“中国环境优先污染物黑名单”[3-5]。近年来,随着工业化和城市化的快速发展,我国土壤中PAHs日趋积累[4, 6-9],据《全国土壤污染状况调查公报》显示,土壤中PAHs的点位超标率已达1.4%,因此PAHs污染土壤修复已成为我国亟待解决的重要环境问题。根际修复是PAHs污染土壤绿色经济的修复策略[9-10],但目前修复周期仍然较长,因此寻找有效的强化措施、提高根际修复效率已成为拓展根际修复应用的重要途径。

碳纳米管是一种径向尺寸为纳米量级的一维量子材料,由于其独特的物理化学性质而在环保和农业等多个领域显示出巨大的应用潜力。碳纳米管可通过疏水和π-π相互作用强烈吸附PAHs[11-12],从而可能会影响其在环境中的生物有效性和归趋[13-14]。CUI等[15]发现添加单壁碳纳米管(SWCNTs)可以显著抑制沉积物中菲的生物有效性,进而抑制菲的矿化。但目前关于SWCNTs对土壤中有机污染物降解的影响尚未见报道。碳纳米管在一定浓度下还可以促进植物发芽生长,使根长和侧根数增加,同时还可以促进植物光合作用[16-17],增强植物的抗逆性[18]。YUAN等[19]研究表明,多壁碳纳米管(MWCNTs)也可以提高植物茎的伸长。此外,碳纳米管对土壤微生物群落还具有一定的调控作用。WU等[20]发现SWCNTs可以通过改变土壤细菌群落,进而影响碳氮循环。GE等[21]的研究表明长期添加MWCNTs显著降低了土壤细菌生物量,改变了土壤细菌群落结构。HAO等[22]研究了MWCNTs对种植水稻的土壤中细菌群落的影响,发现MWCNTs降低了变形菌门和硝化螺菌属(Nitrospira)的相对丰度,并显著改变了土壤细菌群落构成,进而影响土壤氮素循环。由此可见,碳纳米管的这些特性均可能会影响PAHs在植物根际的降解过程,但相关报道还比较有限。

本研究选择南京市栖霞区某煤制气厂污染场地土壤(粉砂壤土)作为供试土壤,以已报道的PAHs污染土壤典型修复植物紫花苜蓿和SWCNTs为供试材料,通过盆栽试验研究了SWCNTs对紫花苜蓿根际土壤中PAHs降解及微生物群落的影响,为探究SWCNTs在污染土壤根际修复中的应用提供基础数据。

1 材料与方法 1.1 化学试剂

16种多环芳烃(PAHs)标准溶液购自Sigma-Aldrich公司,乙腈和正己烷(色谱纯)购自Tedia公司(Ohio,美国),二氯甲烷和环己烷(分析纯)购自国药集团,无水硫酸钠(分析纯)购自西陇科学股份有限公司,硅胶(100~200目)购自青岛美高集团有限公司。

1.2 供试土壤与单壁碳纳米管

供试土壤采集南京市栖霞区某煤制气厂污染场地。采集的表层土壤(0~20 cm)样品,经过自然避光风干,均质化并过2 mm筛以去除石头、植物残体和其他碎屑。根据联合国粮食及农业组织(FAO)世界土壤分类系统,该土壤类型属于粉砂壤土。土壤基本理化性质测定参考鲁如坤[23]描述的方法,具体指标如下:土壤pH 8.51、有机质20.76 g·kg-1、全氮0.52 g·kg-1、全磷0.59 g·kg-1、全钾16.36 g·kg-1、碱解氮45.33 mg·kg-1、速效磷8.29 mg·kg-1、速效钾174.67 mg·kg-1、铵态氮2.50 mg·kg-1、硝态氮0.77 mg·kg-1、阳离子交换量18.48 cmol·kg-1。土壤中PAHs总量为344.48 mg·kg-1,其中包括芴1.68 mg·kg-1、菲34.13 mg·kg-1、蒽1.88 mg·kg-1、荧蒽61.51 mg·kg-1、芘89.99 mg·kg-1、苯并[a]蒽29.82 mg·kg-1、苗屈23.44 mg·kg-1、苯并[b]荧蒽25.86 mg·kg-1、苯并[k]荧蒽13.64 mg·kg-1、苯并[a]芘33.32 mg·kg-1、二苯并[a,h]蒽2.12 mg·kg-1、苯并[g,h,i]苝27.09 mg·kg-1

SWCNTs购自深圳市国恒启航科技有限公司,分别采用扫描电子显微镜(SEM)(Quanta FEG 250,FEI,Hillsboro,美国)、透射电子显微镜(TEM)(FEI Technai,F20,美国)和比表面积分析仪(BET)(V - Sorb 2800P,Gold APP Instruments Co.,北京,中国)对SWCNTs的形貌、结构和比表面积进行表征;通过拉曼(Raman)光谱仪(Renishaw 100,新加坡)评估SWCNTs的缺陷程度;通过傅里叶变换红外光谱(FTIR)(Nicolet 380,Thermo Fisher Scientific,Waltham,美国)和X射线光电子能谱(XPS)(ESCALAB 250Xi spectrometer,Thermo Scientific,美国)分析SWCNTs的表面官能团、元素组成及含量。

1.3 紫花苜蓿盆栽试验

称600 g风干土于花盆中,每千克土壤中施加尿素0.214 5 g、Ca(H2PO42·H2O 0.284 6 g和K2SO4 0.187 6 g。设置4个不同SWCNTs浓度的处理组:0(对照组)、0.1、0.5、5 g·kg-1,SWCNTs以固体粉末形式加入。紫花苜蓿种子购于江苏省农业科学院,种子先用0.5%的次氯酸钠溶液消毒10 min,再用95%的酒精溶液杀菌10 min,然后用无菌水连续冲洗5次,最后放入盛有无菌水的烧杯中浸泡2 h,将浸泡后的种子均匀放于铺有湿润滤纸的无菌培养皿中,并于30 ℃的恒温培养箱中催芽24 h后选取籽粒饱满的种子均匀播种于花盆中,10 d后将每盆内幼苗间苗到40株。所有植株置于光照培养室中培养,白天(16 h)温度为25~30 ℃,夜晚(8 h)温度为23~25 ℃,每日早晚补充水分,以维持土壤水分为田间持水量的60%,盆栽在光照室中随机排位,并间歇性轮换,保证生长条件一致。每个处理3个重复,种植70 d后收获。用去离子水将紫花苜蓿清洗干净后用滤纸吸干,测定其株高、根长、鲜质量。采用四分法取土壤样品,其中一部分新鲜土壤样品存放于-20 ℃冰箱中用来分析微生物群落多样性,其余土壤冷冻干燥,研磨混匀过60目筛后保存于4 ℃冷库中,用于测定土壤中PAHs含量及土壤的理化性质。土壤理化性质的测定参考鲁如坤[23]描述的方法,具体包括:土壤pH、总氮、总磷、总钾、有机质、碱解氮、速效钾、速效磷、铵态氮、硝态氮、可溶性有机碳(DOC)和阳离子交换量(CEC)等。

1.4 土壤中PAHs含量的测定

土壤中PAHs含量的测定方法参考MAO等[24]的文章并稍作修改。冻干的土样通过60目筛以均质化,然后与无水硫酸钠按1∶1混匀后置于索氏提取管中,量取70 mL二氯甲烷于茄型瓶中,在54 ℃下连续提取24 h。用旋转蒸发仪将萃取液浓缩至干,再加入环己烷(2.0 mL)对茄形瓶中的物质进行溶解。采用硅胶柱净化溶液(0.5 mL),使用正己烷-二氯甲烷混合液(1∶1,V/V)洗涤,收集洗脱液于刻度试管中,用氮气先吹至1 mL,再用乙腈定容至2 mL,重复该操作3次后过0.22 μm有机相滤膜,转移至进样瓶。采用日本岛津高效液相色谱(HPLC)仪测定溶液中PAHs浓度,具体设置条件参考REN等[25]的文章。采用外标法定量(R2>0.999),该方法测得土壤中PAHs的加标回收率为80.4%~98.2%。

1.5 土壤微生物群落分析

采用FastDNA® Spin Kit for Soil(MP Bio,美国)试剂盒提取土壤DNA。称取0.5 g土壤样品,按说明书的提取步骤进行。用Nanodrop®ND-1000 UV-Vis Spectrophotometer(NanoDrop Technologies,Wilmington,DE)检测核酸质量和纯度。将DNA样品置于-80 ℃冰箱备用。

高通量测序在广州美格基因科技有限公司进行,对16S rRNA基因的V5~V7区进行测序。前端引物序列为AACMGGATTAGATACCCKG,后端引物序列为ACGTCATCCCCACCTTC[26]。利用Quantitative Insights Into Microbial Ecology(QIIME)平台对测序得到的Fastq数据进行处理[27]。利用Trimmomatic软件分别对双端的Reads数据进行质量过滤[28]。同时,利用Mothur软件去除barcode和引物得到质控后的pairedend clean reads[29],使用Usearch软件得到归一化(次抽样)OTU表,用于后续数据分析[30]。计算原核生物群落在OTU水平的α多样性指数(香农指数和Chao指数)。基于Bray - Curtis,采用非度量多维尺度法(NMDS)对β多样性进行分析。采用Student′s t-test检测不同类群间丰度具有显著差异的物种,挑选相对丰度>0.1%的显著差异菌属绘制热图。

采用荧光定量PCR方法,对16S rRNA和PAHs降解基因PAH-RHDα GN和PAH-RHDα GP进行定量测定[1]。16S rRNA和PAH-RHDα引物序列(见表 1)。荧光定量PCR反应体系为10 µL SYBR Premix Ex Taq(TaKaRa),0.4 µL的前后引物(10 µmol·L-1),1.0 µL DNA模板,加入无菌水补足至20 µL。荧光定量PCR时,以无菌水代替模板DNA作为阴性对照。

表 1 荧光定量PCR使用的引物序列 Table 1 Primer sequences used in real-time PCR
1.6 统计学分析

所有数据为3个重复的平均值,误差棒表示标准差。采用SPSS 26.0进行统计学分析,采用单因素方差分析分析不同处理之间的显著差异(P < 0.05),并使用Origin 2019软件绘图。基于Spearman相关性分析方法分析土壤中5环、6环PAHs残留率与土壤中细菌群落相对丰度的相关性。

2 结果与讨论 2.1 SWCNTs的表征

通过BET测定,得知SWCNTs的比表面积为201.4 m2·g-1图 1所示为SWCNTs的SEM、TEM、FTIR、Raman和XPS表征图。通过SEM图可以直观看出,SWCNTs是一种呈管状结构的材料,聚集且相互缠绕。由TEM图可知,SWCNTs的基本结构是单根纳米碳管,管壁较薄,其内径4~10 nm,外径6~14 nm,其中部分纳米碳管相互聚集缠绕形成纳米碳管束。Raman光谱是一种表征碳纳米材料表面晶体结构有序程度的重要手段。SWCNTs材料表面会在1 360 cm-1和1 590 cm-1附近出现两个特征振动峰,分别为D峰和G峰,D峰是非晶态碳原子的悬键振动,G峰是二维六边形晶格sp2杂化碳原子的E2g振动,D峰和G峰强度比值(ID/IG)表示碳纳米管石墨化程度,其值越低,表明石墨化程度越高[31]。如图 1c所示,SWCNTs的ID/IG为1.24。采用FTIR对SWCNTs的表面官能团进行定性分析(图 1d),发现SWCNTs在3 463 cm-1处有明显的吸收峰,这是O—H键的伸缩振动,2 922 cm-1和2 853 cm-1处为饱和烃C—H特征峰,1 697 cm-1处为羧酸或酮中C=O键的对称伸缩振动峰,1 033 cm-1和1 385 cm-1处是羧基中C—O的特征吸收峰及C—H面内弯曲振动,1 617 cm-1处出现的吸收峰则是SWCNTs的C=C键的特征峰,这些特征峰说明SWCNTs中含有羧基[32-35]。采用XPS对SWCNTs的元素组成和基团进行分析(图 1e),发现SWCNTs中主要含有C元素(92.50%)和O元素(6.65%),C 1s的宽谱出现在286 eV处,O 1s的宽谱出现在533 eV处。C 1s-XPS峰中包含SWCNTs石墨结构的C—C峰、羟基和醚的C—O峰、醛醌酮的>C=O峰和羧基峰,它们分别出现284.8、286.2、287.8 eV和289.2 eV处[32, 36]。O 1s-XPS峰可分解为3类表面含O物种,即C=O、C—OH和C—O—C,其对应结合能分别为531.0,532.8 eV和535.1 eV,这与FTIR得出的结果基本一致。

图 1 SWCNTs的SEM(a)、TEM(b)、Raman光谱(c)、红外光谱(d)和XPS(e)表征 Figure 1 SWCNTs are characterized by SEM(a), TEM(b), Raman spectroscopy(c), FTIR(d)and XPS(e)
2.2 SWCNTs对紫花苜蓿根际降解PAHs的影响

图 2所示,添加SWCNTs在一定程度上抑制了土壤中PAHs的去除,并且随着SWCNTs添加量的增加,抑制程度逐渐增强。当SWCNTs的添加量为0.5 g·kg-1和5 g·kg-1时,经过70 d的培养,土壤中PAHs的浓度从原始土壤的344.48 mg·kg-1降低到153.22 mg·kg-1和165.46 mg·kg-1,去除率分别为55.52%和51.97%,相比于无添加的对照组(58.95%)显著降低了3.43个和6.98个百分点(P < 0.05)。当SWCNTs的添加量为0.1 g·kg-1时,土壤中PAHs的残留量降低到146.24 mg·kg-1,虽仍高于对照(141.40 mg·kg-1)处理,但与对照处理无显著差异。

误差线代表标准偏差(n=3)。不同小写字母表示不同处理间差异显著(P < 0.05)。下同 Error bars refer to the standard deviation(n=3). Different lowercase letters show significant(P < 0.05) difference among different treatments. The same below 图 2 SWCNTs对紫花苜蓿根际土壤中多环芳烃总量的残留浓度和去除率以及不同环数多环芳烃残留率的影响 Figure 2 Effects of SWCNTs on total PAHs residual concentration and removal rate, besides residual rate of PAHs with different rings in alfalfa rhizosphere soil

供试土壤中PAHs主要为高分子量PAHs,4环和5环、6环分别占总量的59.44%和29.62%。培养70 d后,添加SWCNTs对3环和4环PAHs的去除无显著影响,但显著抑制了5环、6环PAHs的去除(图 2b),尤其当SWCNTs添加量为5 g·kg-1时,抑制作用最强。培养70 d后,土壤中3环和4环PAHs的残留率分别在35.24%和46.55%以下,对于5环、6环PAHs,当添加SWCNTs时,其残留率相比于仅种植紫花苜蓿的对照(37.47%)显著提高了8.68~18.73个百分点(P < 0.05)。此外,3环PAHs更易被降解,残留率更低(29.58%~35.24%)。SWCNTs对土壤中高分子量PAHs去除的抑制作用,一方面可能是因为相比于低分子量PAHs,高分子量PAHs具有更强的疏水性,更容易被碳纳米材料吸附[37],从而降低土壤中高分子量PAHs的生物可利用性,抑制微生物对高分子量PAHs的获取[4],例如,SHRESTHA等[13]发现添加碳纳米管可以显著降低土壤中PAHs及其他有机污染物的生物可利用性。另一方面可能是因为添加SWCNTs改变了土壤微生物群落组成,抑制了相关PAHs降解微生物的相对丰度[20]

2.3 SWCNTs对紫花苜蓿生长的影响

碳纳米材料因其在调控植物生长方面的有效作用而受到生物技术专家的广泛关注[18]。本研究通过测量植物的株高、根长并称取其地上部及根部鲜质量,发现添加SWCNTs对紫花苜蓿的生长并未呈现出毒害效应,相反,在一定浓度下对紫花苜蓿的地上部或根部生长还具有一定的促进作用(图 3)。当SWCNTs的添加量为0.1 g·kg-1时,紫花苜蓿的株高与对照相比提高了19.62%(P < 0.05),但随着添加量继续增大,其对紫花苜蓿株高的影响不显著;当SWCNTs的添加量为5 g·kg-1时,显著促进了紫花苜蓿的根长、地上部鲜质量和根鲜质量(P < 0.05),与对照相比分别增加了21.44%、49.13%和100.00%(图 3)。也有研究报道添加一定浓度的碳纳米管可以显著促进紫花苜蓿根部伸长[38],认为紫花苜蓿可以将碳纳米管感知为胁迫因子,从而改变它们的基因表达并激活它们的生长,研究也表明SWCNTs对土壤中PAHs去除的抑制效应与其对植物生长的调控作用关系较小。

图 3 SWCNTs对紫花苜蓿的株高、根长、地上部鲜质量和根鲜质量的影响 Figure 3 Effects of SWCNTs on plant height, root length, aboveground fresh weight and root fresh weight of alfalfa
2.4 SWCNTs对土壤理化性质的影响

土壤中大量元素的供给,如氮和磷含量的提高可以增加异养微生物菌群的数量,从而促进对PAHs的生物降解[39-40]。本研究发现添加SWCNTs使部分理化指标发生显著变化,且不同浓度SWCNTs对土壤理化指标的影响不同。如图 4所示,相比于对照,当SWCNTs的添加量为0.1 g·kg-1时,土壤中pH和全氮含量显著降低,全钾、速效磷、速效钾、铵态氮和硝态氮的含量显著升高(P < 0.05);当SWCNTs的添加量为0.5 g·kg-1时,土壤中pH显著降低(P < 0.05),总钾、速效磷、速效钾、氨氮和DOC含量显著升高(P < 0.05);当SWCNTs的添加量为5 g·kg-1时,土壤中总氮含量显著降低(P < 0.05),总钾、有机质、速效磷、速效钾、氨氮和DOC含量显著升高(P < 0.05)。

图 4 SWCNTs对土壤理化性质的影响 Figure 4 Effects of SWCNTs on soil physicochemical propertie

土壤中5环、6环PAHs的去除率降低可能是因为SWCNTs导致土壤中全氮含量降低[41]。有研究表明碳、氮和磷的物质的量之比、氮素形态、pH等因素都可能影响PAHs的消减[42-43]。关于SWCNTs导致的土壤理化性质的变化与PAHs降解的关系还需进一步研究。

2.5 SWCNTs对土壤细菌生物量、功能基因和细菌群落结构的影响

微生物降解被认为是土壤中PAHs消减的主要途径[44]。本研究采用荧光定量PCR(qPCR)测定了培养70 d后不同处理下总细菌(16S rRNA基因)和PAHs环羟基化双加氧酶(PAH-RHDα)GP和GN基因的表达量,结果如图 5a~图 5c所示。添加SWCNTs时,16S rRNA、PAH-RHDα GP和PAH-RHDα GN的基因表达量相比于对照均无显著差异,表明添加SWCNTs并未影响土壤中细菌生物量以及PAHs降解功能基因丰度,这与目前大多数研究报道有一定区别。已有研究表明,添加SWCNTs可以显著降低土壤酶活性和细菌生物量[45]。同样,CHUNG等[46]的研究也表明,添加一定浓度的碳纳米管可以降低土壤中的大部分酶活性和总体细菌生物量。这种差异可能是由于已报道研究中采用的SWCNTs与本研究供试SWCNTs的制备方法不同,从而导致其结构和表面组成不同[20, 47]

图 5 SWCNTs对细菌生物量(a)、PAH-RHDα GP(b)、PAH-RHDα GN基因表达量(c)、α多样性指数(d,e)和β多样性指数(f)的影响 Figure 5 Effects of SWCNTs on the bacterial biomass(a), gene expression of PAH-RHDα GP(b)and PAH-RHDα GN(c), α diversity index(d, e)and β diversity index(f)

为了进一步探究SWCNTs对土壤中细菌群落的影响,本研究通过高通量测序技术,在OTU水平采用Chao指数和Shannon指数评估了SWCNTs对细菌丰富度和多样性的影响。如图 5d图 5e所示,SWCNTs对土壤细菌群落的丰富度和多样性无显著影响,这可能是由于细菌群落对碳纳米材料具有一定的抗逆性,随着培养时间延长,细菌群落受SWCNTs的影响逐渐减弱,直至恢复。RODRIGUES等[48]的研究表明,在培养3 d时SWCNTs对土壤细菌群落产生的显著影响在14 d后消失。本课题组前期研究也发现,石墨烯在培养4 d时能显著促进土壤细菌生物量,但在21 d后又恢复到对照水平[47]。基于Bray-Curtis距离的NMDS排序对β多样性进行分析(图 5f),结果发现,每个处理的平行样本都能够较好地团聚在一起,且随着SWCNTs添加量增加,各处理与对照的距离越来越远(stress=0.032),但在统计学上不存在显著差异(P>0.05)。土壤细菌群落结构的变化与土壤类型、碳纳米管类型及浓度有关。SHRESTHA等[13]的研究发现,在砂质黏壤土中添加MWCNTs对土壤微生物群落结构无显著影响,但在砂质壤土中添加高浓度的MWCNTs可以显著改变土壤微生物群落的结构。

2.6 SWCNTs对土壤微生物群落组成的影响

通过对土壤微生物群落更加细致的分析,发现添加SWCNTs改变了土壤中一些门类和属类微生物的相对丰度,但主要的门类和属类组成并未发生改变。如图 6a所示,在门水平上,对照组中相对丰度较高的微生物类群主要包括变形菌门(Proteobacteria,59.72%)、放线菌门(Actinobacteria,15.00%)、髌骨细菌门(Patescibacteria,12.51%)、酸杆菌门(Acidobacteria,3.54%)和绿弯菌门(Chloroflexi,3.49%)。当添加SWCNTs时,变形菌门的相对丰度随着SWCNTs添加量的升高逐渐降低,各处理相比于对照降低了1.99%~13.53%,已有报道表明变形菌门广泛存在于PAHs污染土壤中,被认为是具有菲、芘以及苯并[a]芘降解潜力的主要微生物门类[49-51]

图 6 不同浓度SWCNTs对土壤中细菌门和属的影响 Figure 6 Effects of SWCNTs on soil bacteria at the phylum and genus level

进一步比较各处理中微生物群落在属水平上的变化,如图 6b图 7所示。从图 6b可以看出,对照土壤中相对丰度较高的微生物属类主要包括Ramlibacter(12.11%)、Lysobacter(6.62%)和Pseudarthrobacter(3.33%)等。当添加SWCNTs时,不同添加量处理的土壤中Ramlibacter的相对丰度较对照相比均有所降低,降低了2.67%~3.08%,而Pseudarthrobacter的相对丰度较对照提高了1.43%~5.76%,此外,当添加0.1 g·kg-1和0.5 g·kg-1 SWCNTs时,Lysobacter的相对丰度分别提高了2.24%和1.83%,而当SWCNTs添加量为5 g·kg-1时,该属类微生物的相对丰度降低了0.13%。Lysobacter在油田和PAHs污染的土壤中经常被发现,且其相对丰度变化直接影响着PAHs的降解[52-53]。多项研究已经证实Lysobacter可以促进碳转化和固氮过程,从而增强PAHs的生物修复作用[54-55]

*表示处理组与对照组间差异显著(P < 0.05),**表示处理组与对照组间差异极显著(P < 0.01),蓝色代表相对丰度升高,黑色代表相对丰度降低 * indicates the significant difference between the treatment group and the control group(P < 0.05), ** indicates the extremely significant difference between the treatment group and the control group(P < 0.01). Blue represents increased relative abundance and black represents decreased relative abundance 图 7 不同浓度SWCNTs处理下土壤中细菌群落属水平热图(相对丰度>0.1%) Figure 7 Heat map of soil bacterial communities under different treatments with various concentrations of SWCNTs at the genus level (Relative abundance>0.1%)

为了更加直观地比较各微生物属的变化,采用相对丰度>0.1%且具有显著差异(P < 0.05)的菌属绘制热图,如图 7所示。当SWCNTs的添加量为0.1 g·kg-1时,土壤中受SWCNTs影响的显著差异菌属有7个(富集6个,抑制1个);当SWCNTs的添加量为0.5 g·kg-1和5 g·kg-1时,分别有4个(富集3个,抑制1个)和11个(富集4个,抑制7个),表明随着SWCNTs添加量的增加,其对土壤细菌菌属种类及丰度的抑制作用增强。如PhenylobacteriumReyranellaBrevundimonas的相对丰度在SWCNTs添加量为0.1 g·kg-1和0.5 g·kg-1的处理无显著变化,而在添加量为5 g·kg-1的处理中被显著抑制(P < 0.05),分别是对照处理相对丰度的63%、32%和36%,其中,PhenylobacteriumReyranella的相对丰度与土壤中5环、6环PAHs残留率呈显著负相关(P < 0.01)(表 2)。已有研究也表明Phenylobacterium相对丰度的变化与土壤中PAHs的去除直接相关[25, 56-58]。另外,本课题组前期研究采用稳定同位素核酸探针(DNA-SIP)技术也发现属于变形菌门的RamlibacterdPhenylobacteriumLysobacter对苯并[a]芘具有降解功能[51]。此外,Pseudorhodoferax的相对丰度与对照相比也显著降低了62%(P < 0.01)。ReyranellaBrevundimonasPseudorhodoferax也被多项研究认为是具有PAHs降解能力的菌属[59-60]。本研究发现添加5 g·kg-1 SWCNTs显著降低了PhenylobacteriumReyranellaBrevundimonasPseudorhodoferax的相对丰度,表明较高含量的SWCNTs可以抑制污染土壤中PAHs降解菌的数量,从而抑制PAHs的去除。然而添加SWCNTs对PAHs降解基因PAH-RHDα GP和PAH-RHDα GN的丰度均无显著影响,表明利用通用引物设计的潜在PAHs降解菌的相对丰度没有发生显著变化,如TerrabacterBacillus,这与添加SWCNTs对土壤微生物群落的分析结果一致,主要原因可能在于SWCNTs改变的这几类具有降解潜力的微生物对PAHs降解的途径或表达基因不一样。同时,添加一定浓度的SWCNTs显著抑制了土壤中BryobacterMicrovirgaActinotaleaSphingoaurantiacus的相对丰度(图 7),且MicrovirgaSphingoaurantiacus相对丰度的变化也与5环、6环PAHs残留率呈显著负相关(表 2P < 0.01和P < 0.05),说明添加SWCNTs不仅抑制了与PAHs降解相关菌属的相对丰度,还抑制了其他菌属的相对丰度。此外,碳纳米管因具有较大的比表面积,对PAHs具有较高的吸附亲和力[11-13],因此当土壤中存在SWCNTs时,一些高分子量的PAHs可能竞争性地吸附到其表面,从而降低了其对PAHs降解微生物的生物可利用性,进而微生物降解受到抑制,导致土壤中PAHs去除率降低[37, 61]

表 2 Spearman相关性分析 Table 2 Spearman correlation analysis
3 结论

(1)盆栽培养70 d后,添加SWCNTs处理显著抑制了土壤中5环、6环PAHs的去除,其在土壤中的残留率相比于未添加SWCNTs处理显著增加了8.68%~ 18.73%(P < 0.05),且随着SWCNTs添加量提高,抑制作用增强。添加SWCNTs对紫花苜蓿生长并未产生毒害作用。

(2)添加SWCNTs对土壤细菌生物量、细菌群落丰度和多样性无显著影响,但改变了土壤细菌群落组成。5 g·kg-1的SWCNTs显著抑制了PAHs潜在降解菌属PhenylobacteriumReyranellaBrevundimonasPseudorhodoferax的相对丰度。

参考文献
[1]
LI J, LUO C, ZHANG D, et al. Autochthonous bioaugmentation-modified bacterial diversity of phenanthrene degraders in PAH-contaminated wastewater as revealed by DNA-stable isotope probing[J]. Environmental Science & Technology, 2018, 52(5): 2934-2944.
[2]
LIAO X, WU Z, LI Y, et al. Effect of various chemical oxidation reagents on soil indigenous microbial diversity in remediation of soil contaminated by PAHs[J]. Chemosphere, 2019, 226: 483-491. DOI:10.1016/j.chemosphere.2019.03.126
[3]
KEITH L H, TELLIARD W A. Priority pollutants.I.A perspective view[J]. Environmental Science & Technology, 1979, 13(4): 416-423.
[4]
BAO H, WANG J, ZHANG H, et al. Effects of biochar and organic substrates on biodegradation of polycyclic aromatic hydrocarbons and microbial community structure in PAHs-contaminated soils[J]. Journal of Hazardous Materials, 2020, 385: 121595. DOI:10.1016/j.jhazmat.2019.121595
[5]
RIBEIRO H, SOUSA T, SANTOS J P, et al. Potential of dissimilatory nitrate reduction pathways in polycyclic aromatic hydrocarbon degradation[J]. Chemosphere, 2018, 199: 54-67. DOI:10.1016/j.chemosphere.2018.01.171
[6]
CHEN S, DUAN G, DING K, et al. DNA stable-isotope probing identifies uncultivated members of Pseudonocardia associated with biodegradation of pyrene in agricultural soil[J]. FEMS Microbiology Ecology, 2018. DOI:10.1093/femsec/fiy026
[7]
HEIJDEN S A V D, JONKER M T O. PAH bioavailability in field sediments: Comparing different methods for predicting in situ bioaccumulation[J]. Environmental Science & Technology, 2009, 43(10): 3757-3763.
[8]
ČVANČAROVÁ M, KřESINOVÁ Z, CAJTHAML T. Influence of the bioaccessible fraction of polycyclic aromatic hydrocarbons on the ecotoxicity of historically contaminated soils[J]. Journal of Hazardous Materials, 2013, 254/255: 116-124. DOI:10.1016/j.jhazmat.2013.03.060
[9]
GUO M, GONG Z, MIAO R, et al. Microbial mechanisms controlling the rhizosphere effect of ryegrass on degradation of polycyclic aromatic hydrocarbons in an aged-contaminated agricultural soil[J]. Soil Biology and Biochemistry, 2017, 113: 130-142. DOI:10.1016/j.soilbio.2017.06.006
[10]
GAN S, LAU E V, NG H K. Remediation of soils contaminated with polycyclic aromatic hydrocarbons(PAHs)[J]. Journal of Hazardous Materials, 2009, 172(2/3): 532-549.
[11]
MENEZES H C, BARCELOS S M R, MACEDO D F D, et al. Magnetic N-doped carbon nanotubes: A versatile and efficient material for the determination of polycyclic aromatic hydrocarbons in environmental water samples[J]. Analytica Chimica Acta, 2015, 873: 51-56. DOI:10.1016/j.aca.2015.02.063
[12]
GUO L, LEE H K. Development of multiwalled carbon nanotubes based micro-solid-phase extraction for the determination of trace levels of sixteen polycyclic aromatic hydrocarbons in environmental water samples[J]. Journal of Chromatography A, 2011, 1218(52): 9321-9327. DOI:10.1016/j.chroma.2011.10.066
[13]
SHRESTHA B, ANDERSON T A, ACOSTA-MARTINEZ V, et al. The influence of multiwalled carbon nanotubes on polycyclic aromatic hydrocarbon(PAH) bioavailability and toxicity to soil microbial communities in alfalfa rhizosphere[J]. Ecotoxicology and Environmental Safety, 2015, 116: 143-149. DOI:10.1016/j.ecoenv.2015.03.005
[14]
OLESZCZUK P, JOśKO I, XING B. The toxicity to plants of the sewage sludges containing multiwalled carbon nanotubes[J]. Journal of Hazardous Materials, 2011, 186(1): 436-442. DOI:10.1016/j.jhazmat.2010.11.028
[15]
CUI X, JIA F, CHEN Y, et al. Influence of single-walled carbon nanotubes on microbial availability of phenanthrene in sediment[J]. Ecotoxicology, 2011, 20(6): 1277-1285. DOI:10.1007/s10646-011-0684-3
[16]
MARTINEZ-BALLESTA M, ZAPATA L, CHALBI N, et al. Multiwalled carbon nanotubes enter broccoli cells enhancing growth and water uptake of plants exposed to salinity[J]. Journal of Nanobiotechnology, 2016, 14: 42. DOI:10.1186/s12951-016-0199-4
[17]
FAN X, XU J, LAVOIE M, et al. Multiwall carbon nanotubes modulate paraquat toxicity in Arabidopsis thaliana[J]. Environmental Pollution, 2018, 233: 633-641. DOI:10.1016/j.envpol.2017.10.116
[18]
VERMA S K, DAS A K, GANTAIT S, et al. Applications of carbon nanomaterials in the plant system: A perspective view on the pros and cons[J]. Science of the Total Environment, 2019, 667: 485-499. DOI:10.1016/j.scitotenv.2019.02.409
[19]
YUAN Z, ZHANG Z, WANG X, et al. Novel impacts of functionalized multi-walled carbon nanotubes in plants: Promotion of nodulation and nitrogenase activity in rhizobium-legume system[J]. Nanoscale, 2017, 9(28): 9921-9937. DOI:10.1039/C7NR01948C
[20]
WU F, YOU Y, ZHANG X, et al. Effects of various carbon nanotubes on soil bacterial community composition and structure[J]. Environmental Science & Technology, 2019, 53(10): 5707-5716.
[21]
GE Y, PRIESTER J H, MORTIMER M, et al. Long-term effects of multiwalled carbon nanotubes and graphene on microbial communities in dry soil[J]. Environmental Science & Technology, 2016, 50(7): 3965-3974.
[22]
HAO Y, MA C, ZHANG Z, et al. Carbon nanomaterials alter plant physiology and soil bacterial community composition in a rice-soilbacterial ecosystem[J]. Environmental Pollution, 2018, 232: 123-136. DOI:10.1016/j.envpol.2017.09.024
[23]
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
LU R K. Analytical methods of soil agricultural chemistry[M]. Beijing: China Agricultural Science and Technology Press, 2000.
[24]
MAO J, LUO Y, TENG Y, et al. Bioremediation of polycyclic aromatic hydrocarbon-contaminated soil by a bacterial consortium and associated microbial community changes[J]. International Biodeterioration & Biodegradation, 2012, 70: 141-147.
[25]
REN G, TENG Y, REN W, et al. Pyrene dissipation potential varies with soil type and associated bacterial community changes[J]. Soil Biology and Biochemistry, 2016, 103: 71-85. DOI:10.1016/j.soilbio.2016.08.007
[26]
RITITAKPHONG U, FALQUET L, VIMOLTUST A, et al. The microbiome of the leaf surface of arabidopsis protects against a fungal pathogen[J]. New Phytol, 2016, 210(3): 1033-1043. DOI:10.1111/nph.13808
[27]
CAPORASO J G, KUCZYNSKI J, STOMBAUGH J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7(5): 335-336. DOI:10.1038/nmeth.f.303
[28]
BOLGER A M, LOHSE M, USADEL B. Trimmomatic: A flexible trimmer for illumina sequence data[J]. Bioinformatics, 2014, 30(15): 2114-2120. DOI:10.1093/bioinformatics/btu170
[29]
WANG Q, QUENSEN R J F, FISH J A, et al. Ecological patterns of nifH genes in four terrestrial climatic zones explored with targeted metagenomics using FrameBot, a new informatics tool[J]. mBio, 2013, 4(5): e513-e592.
[30]
WANG B, LIU W, LIU X, et al. Comparative analysis of microbial communities during enrichment and isolation of DDT-degrading bacteria by culture-dependent and-independent methods[J]. Science of the Total Environment, 2017, 590/591: 297-303. DOI:10.1016/j.scitotenv.2017.03.004
[31]
赵玉敏, 万海勤, 许昭怡. 碳纳米管吸附还原溴酸盐研究[J]. 南京大学学报(自然科学), 2017, 53(2): 286-291.
ZHAO Y M, WAN H Q, XU Z Y. Adsorption and reduction of bromate over carbon nanotubes[J]. Journal of Nanjing University(Natural Sciences), 2017, 53(2): 286-291.
[32]
周超群. 碳纳米管与腐植酸相互作用研究[D]. 合肥: 中国科学技术大学, 2014: 18-24.
ZHOU C Q. Interactions between carbon nanotubes and humic acid[D]. Hefei: University of Science and Technology of China, 2014: 18-24.
[33]
刘晓红, 郭波红, 许丹翘, 等. 冬凌草甲素-单壁碳纳米管载药体系的制备及其吸附动力学[J]. 医药导报, 2017, 36(10): 1170-1174.
LIU X H, GUO B H, XU D Q, et al. Preparation of oridonin-singlewalled carbon nanotubes and study on its adsorption kinetics[J]. Medical Herald, 2017, 36(10): 1170-1174.
[34]
李绍秀, 崔逸阳, 潘郑宇, 等. 钙锰修饰磁性碳纳米管的制备与表征[J]. 硅酸盐通报, 2019, 38(10): 3360-3366.
LI S X, CUI Y Y, PAN Z Y, et al. Preparation and characterization of magnetic carbon nanotubes decorated by Ca and Mn[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(10): 3360-3366.
[35]
王少辉, 马国章, 侯彩英, 等. 改性多壁碳纳米管的制备及其WPU复合材料的性能[J]. 聚氨酯工业, 2019, 34(5): 13-16.
WANG S H, MA G Z, HOU C Y, et al. Preparation of functionalized multiwalled carbon nanotubes and properties of their waterborne polyurethane composites[J]. Polyurethane Industry, 2019, 34(5): 13-16.
[36]
周金梅, 李海燕, 林国栋, 等. 多壁碳纳米管的纯化及其表面含氧基团的表征[J]. 物理化学学报, 2010, 26(11): 3080-3086.
ZHOU J M, LI H Y, LIN G D, et al. Purification of multiwalled carbon nanotubes and characterization of their oxygen-containing surface groups[J]. Acta Physico-Chimica Sinica, 2010, 26(11): 3080-3086. DOI:10.3866/PKU.WHXB20101108
[37]
ZHANG G, HE L, GUO X, et al. Mechanism of biochar as a biostimulation strategy to remove polycyclic aromatic hydrocarbons from heavily contaminated soil in a coking plant[J]. Geoderma, 2020, 375: 114497. DOI:10.1016/j.geoderma.2020.114497
[38]
MIRALLES P, JOHNSON E, CHURCH T L, et al. Multiwalled carbon nanotubes in alfalfa and wheat: Toxicology and uptake[J]. Journal of the Royal Society Interface, 2012, 9(77): 3514-3527. DOI:10.1098/rsif.2012.0535
[39]
ATAGANA H I, HAYNES R J, WALLIS F M. Optimization of soil physical and chemical conditions for the bioremediation of creosotecontaminated soil[J]. Biodegradation, 2003, 14(4): 297-307. DOI:10.1023/A:1024730722751
[40]
KONG F, SUN G, LIU Z. Degradation of polycyclic aromatic hydrocarbons in soil mesocosms by microbial/plant bioaugmentation: Performance and mechanism[J]. Chemosphere, 2018, 198: 83-91. DOI:10.1016/j.chemosphere.2018.01.097
[41]
PELAEZ A I, LORES I, SOTRES A, et al. Design and field-scale implementation of an "on site" bioremediation treatment in PAH-polluted soil[J]. Environmental Pollution, 2013, 181: 190-199. DOI:10.1016/j.envpol.2013.06.004
[42]
ROLING W, MILNER M, JONES D, et al. Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation[J]. Applied and Environmental Microbiology, 2002, 68(11): 5537-5548. DOI:10.1128/AEM.68.11.5537-5548.2002
[43]
SIMARRO R, GONZÁLEZ N, BAUTISTA L F, et al. Optimisation of key abiotic factors of PAH(naphthalene, phenanthrene and anthracene) biodegradation process by a bacterial consortium[J]. Water, Air, & Soil Pollution, 2011, 217(1/2/3/4): 365-374.
[44]
HARITASH A K, KAUSHIK C P. Biodegradation aspects of polycyclic aromatic hydrocarbons(PAHs): A review[J]. Journal of Hazardous Materials, 2009, 169(1): 1-15.
[45]
JIN L, SON Y, YOON T K, et al. High concentrations of singlewalled carbon nanotubes lower soil enzyme activity and microbial biomass[J]. Ecotoxicology and Environmental Safety, 2013, 88: 9-15. DOI:10.1016/j.ecoenv.2012.10.031
[46]
CHUNG H, SON Y, YOON T K, et al. The effect of multi-walled carbon nanotubes on soil microbial activity[J]. Ecotoxicology and Environmental Safety, 2011, 74(4): 569-575. DOI:10.1016/j.ecoenv.2011.01.004
[47]
REN W, REN G, TENG Y, et al. Time-dependent effect of graphene on the structure, abundance, and function of the soil bacterial community[J]. Journal of Hazardous Materials, 2015, 297: 286-294. DOI:10.1016/j.jhazmat.2015.05.017
[48]
RODRIGUES D F, JAISI D P, ELIMELECH M. Toxicity of functionalized single-walled carbon nanotubes on soil microbial communities: Implications for nutrient cycling in soil[J]. Environmental Science & Technology, 2013, 47(1): 625-633.
[49]
MARTIN F, TORELLI S, LE P D, et al. Betaproteobacteria dominance and diversity shifts in the bacterial community of a PAH-contaminated soil exposed to phenanthrene[J]. Environmental Pollution, 2012, 162: 345-353. DOI:10.1016/j.envpol.2011.11.032
[50]
SINGHA L P, PANDEY P. Rhizobacterial community of Jatropha curcas associated with pyrene biodegradation by consortium of PAH-degrading bacteria[J]. Applied Soil Ecology, 2020, 155: 103685. DOI:10.1016/j.apsoil.2020.103685
[51]
WANG B, TENG Y, YAO H, et al. Detection of functional microorganisms in benzene[a] pyrene-contaminated soils using DNA-SIP technology[J]. Journal of Hazardous Materials, 2021, 407: 124788. DOI:10.1016/j.jhazmat.2020.124788
[52]
HOU J, LIU W, WANG B, et al. PGPR enhanced phytoremediation of petroleum contaminated soil and rhizosphere microbial community response[J]. Chemosphere, 2015, 138: 592-598. DOI:10.1016/j.chemosphere.2015.07.025
[53]
ZHOU Z, WANG M, ZUO X, et al. Comparative investigation of bacterial, fungal, and archaeal community structures in soils in a typical oilfield in Jianghan, China[J]. Archives of Environmental Contamination and Toxicology, 2017, 72(1): 65-77. DOI:10.1007/s00244-016-0333-1
[54]
ZHOU L, WANG X, REN W, et al. Contribution of autochthonous diazotrophs to polycyclic aromatic hydrocarbon dissipation in contaminated soils[J]. Science of the Total Environment, 2020, 719: 137410. DOI:10.1016/j.scitotenv.2020.137410
[55]
FAN F, YIN C, TANG Y, et al. Probing potential microbial coupling of carbon and nitrogen cycling during decomposition of maize residue by 13C-DNA-SIP[J]. Soil Biology and Biochemistry, 2014, 70: 12-21. DOI:10.1016/j.soilbio.2013.12.002
[56]
RODGERS-VIEIRA E A, ZHANG Z, ADRION A C, et al. Identification of anthraquinone-degrading bacteria in soil contaminated with polycyclic aromatichydrocarbons[J]. Applied and Environmental Microbiology, 2015, 81(11): 3775-3781. DOI:10.1128/AEM.00033-15
[57]
SINGLETON D R, ADRION A C, AITKEN M D. Surfactant-induced bacterial community changes correlated with increased polycyclic aromatic hydrocarbon degradation in contaminated soil[J]. Applied Microbiology and Biotechnology, 2016, 100(23): 10165-10177. DOI:10.1007/s00253-016-7867-z
[58]
WANG B, TENG Y, XU Y, et al. Effect of mixed soil microbiomes on pyrene removal and the response of the soil microorganisms[J]. Science of the Total Environment, 2018, 640/641: 9-17. DOI:10.1016/j.scitotenv.2018.05.290
[59]
LU C, HONG Y, LIU J, et al. A PAH-degrading bacterial community enriched with contaminated agricultural soil and its utility for microbial bioremediation[J]. Environmental Pollution, 2019, 251: 773-782. DOI:10.1016/j.envpol.2019.05.044
[60]
QIN Z, ZHAO Z, XIA L, et al. The dissipation and risk alleviation mechanism of PAHs and nitrogen in constructed wetlands: The role of submerged macrophytes and their biofilms-leaves[J]. Environment International, 2019, 131: 104940. DOI:10.1016/j.envint.2019.104940
[61]
CAO Y, YANG B, SONG Z, et al. Wheat straw biochar amendments on the removal of polycyclic aromatic hydrocarbons(PAHs) in contaminated soil[J]. Ecotoxicology and Environmental Safety, 2016, 130: 248-255. DOI:10.1016/j.ecoenv.2016.04.033