快速检索        
  农业环境科学学报  2021, Vol. 40 Issue (3): 482-492  DOI: 10.11654/jaes.2020-1316
0

引用本文  

黄蕊, 纪雄辉, 王欣, 等. 土壤-水稻系统Cd-As同步钝化与吸收阻控研究进展[J]. 农业环境科学学报, 2021, 40(3): 482-492.
HUANG Rui, JI Xiong-hui, WANG Xin, et al. Synchronous passivation and absorption inhibition of Cd-As co-contamination in soil-rice system: A review[J]. Journal of Agro-Environment Science, 2021, 40(3): 482-492.

基金项目

国家自然科学基金项目(41977108);湖南省自然科学杰出青年基金项目(2020JJ2023);国家水稻产业体系(CARS-28)

Project supported

The National Natural Science Foundation of China (41977108); The Natural Science Foundation for Distinguished Young Scholars of Hunan Province, China (2020JJ2023); The National Rice Industry System Project (CARS-28)

通信作者

纪雄辉  E-mail: 1546861600@qq.com

作者简介

黄蕊(1994—), 女, 湖北随州人, 硕士生, 从事农田土壤重金属污染与修复研究。E-mail: 591042980@qq.com

文章历史

收稿日期: 2020-11-14
录用日期: 2020-12-24
土壤-水稻系统Cd-As同步钝化与吸收阻控研究进展
黄蕊1 , 纪雄辉1,2,3 , 王欣4 , 陈豪宇2 , 魏维2 , 柳赛花1,3 , 谢运河1,3     
1. 湖南省农业环境生态研究所, 长沙 410125;
2. 湖南大学研究生院隆平分院, 长沙 410125;
3. 农田土壤重金属污染防控与修复湖南省重点实验室, 长沙 410125;
4. 湖南师范大学资源与环境科学学院, 长沙 410081
摘要:我国稻田土壤镉-砷(Cd-As)复合污染形势严峻,是实现农田安全利用的难点。相较于其他粮食作物,水稻积累Cd/As的能力更强,对人类健康危害更大,因此,修复Cd-As复合污染稻田土壤,降低稻米Cd/As含量,对保障我国食品安全意义重大。原位钝化技术是目前应用最广泛且治理效率较高的重金属污染土壤修复技术,本文重点阐述了针对稻田土壤Cd-As复合污染的典型钝化剂及其钝化机理,主要包括铁(Fe)+碱性无机材料复合钝化剂、Fe+有机材料复合钝化剂、Fe+有机+碱性无机材料复合钝化剂、有机+碱性无机材料复合钝化剂等;在此基础上,从根际稳定固持和体内运移阻控两方面,探讨原位钝化技术同步降低水稻Cd-As吸收的作用机制。最后,提出未来Cd-As复合钝化剂的研发方向,强调了土壤友好型Fe-Si复合钝化剂可有效从土壤钝化和生理阻隔两方面同步降低Cd/As生物毒害,应用前景广阔。
关键词稻田土壤    水稻    Cd-As复合污染    复合钝化材料    生理阻控    
Synchronous passivation and absorption inhibition of Cd-As co-contamination in soil-rice system: A review
HUANG Rui1 , JI Xiong-hui1,2,3 , WANG Xin4 , CHEN Hao-yu2 , WEI Wei2 , LIU Sai-hua1,3 , XIE Yun-he1,3     
1. Hunan Institute of Agri-Environment and Ecology, Changsha 410125, China;
2. Longping Branch of Graduate School of Hunan University, Changsha 410125, China;
3. Hunan Province Key Laboratory of Prevention, Control and Remediation of Soil Heavy Metal Pollution, Changsha 410125, China;
4. College of Resources and Environmental Science, Hunan Normal University, Changsha 410081, China
Abstract: In recent years, paddy soil co-contaminated with cadmium and arsenic(Cd-As) in China has become increasingly common. Due to the completely opposite chemical properties of Cd and As in soil, Cd-As compound pollution is increasingly considered to be of significance in the remediation of heavy metal contamination in farmland. Compared with other cereal crops, rice has been subjected to growing threats from Cd and As contamination in the soil. Therefore, the remediation of Cd-As co-contaminated paddy soil and the control of the accumulation of Cd and As in rice grains are of great importance to ensure food safety. In situ immobilization technology for soil heavy metal pollution is a widely-applied remediation measure due to its high efficiency. Here, the common compound passivation materials of paddy soil Cd-As pollution, including Fe + alkaline inorganic passivators, Fe + organic passivators, Fe + alkaline inorganic + organic passivators, and organic + alkaline inorganic passivators, along with their remediation mechanisms were summarized. Based on this, the principles of mitigating Cd and As accumulation in rice were also explored. This review suggests that to better inhibit the uptake of Cd and As by rice, passivators should have good ability in soil heavy metal solidification and inhibit heavy metal transport to rice grains through physiological barrier. Considering the broad application prospects of soil-friendly Fe-silicon compound passivators in remediating Cd-As co-contaminated paddy soil, it is critical to develop novel Fe-silicon compound passivators in the future.
Keywords: paddy soil    rice    cadmium and arsenic co-contamination    composite passivation material    physiological barrier    
1 Cd-As复合污染现状

据2014年《全国土壤污染状况调查公报》[1]显示,近年来,人类的各种工农业生产活动,如矿山开采和冶炼、汽车尾气排放、大气沉降、使用污水作为灌溉水源以及农药与杀虫剂的长期不当使用等原因,导致重金属成为影响我国耕地土壤环境质量的主要污染物,其中重金属Cd和As污染点位超标率分别高达7.0% 和2.7%,高居我国无机污染物类型的第一、三位,我国农田土壤正遭受着不同程度的Cd-As复合污染问题[2-3]

矿区/冶炼区将未经处理过的含多种高浓度重金属的废水、废气、废渣等工业废弃物直接排放进入附近河流、大气、土壤是导致水体、土壤及农作物受到严重重金属复合污染的重要原因之一[4]。据报道,我国广东汕头和安徽省的某些采矿区和冶炼区由于工业废弃物的不当排放导致附近农田土壤出现不同程度的Cd-As复合污染现象,且均超过《土壤环境质量农用地土壤污染风险管控标准(试行)》(GB 15618— 2018)[5]规定的农用地土壤污染风险筛选值,潜在风险较高[6-7];湖南省是我国著名的有色金属之乡,矿区不合理的矿冶活动同样使周边农业环境重金属污染现象突出,如湖南郴州柿竹园矿区附近农田土壤Cd、As平均浓度分别达到了0.3~21.9 mg·kg-1和25~359 mg·kg-1,严重威胁了当地农业生产的可持续发展[8]。利用污水作为灌溉水是导致稻田土壤Cd-As复合污染的另一重要原因,据《第二次全国污染源普查公报》[9],2017年我国水污染物中重金属Pb、Hg、Cd、Cr和As排放量达到了182.54 t,污水灌溉导致相应流域内农田重金属污染严重,湖南省内的矿山开采、金属冶炼活动大多位于湘江流域,大量工业废弃物被不当排放进入湘江,使得流域内农田土壤重金属污染形势严峻,严重危害到流域内4 300万人民的生命健康[10]。郭朝晖等[11]对从湘江中下游的衡阳-长沙段采集的219个农田土壤样品进行分析,结果发现,其中As、Cd、Ni、Cu、Pb和Zn等重金属含量均高于湖南省相应土壤重金属背景值,且出现不同程度的重金属复合污染问题。稻田土壤Cd-As复合污染同样也一直严重困扰其他以稻米为主食的东亚和东南亚国家农业的健康发展,当地稻米籽粒Cd、As含量严重超标,有毒物质通过食物链聚集到人类体内,威胁人体健康[12]。日本稻田土壤的Cd-As复合污染也严重威胁到了其粮食安全与可持续发展[13]。另外,巴基斯坦的章市被污染水源灌溉的农田土壤,Pb、Cd、As浓度分别达到了119.4、51.0、34.8 mg·kg−1,污染较为严重[14]

作为世界上约一半人口主食的水稻相较于其他大宗谷类作物更容易积累Cd和As,其中,精米As含量相较于其他谷类作物高约80%[15-16],Cd含量高约28%[17-18]。如有研究表明,作为我国水稻主产区之一的湖南省,其矿冶污染区生产的水稻精米中Cd、As含量均高于《食品安全国家标准食品中污染物限量》(GB 2762—2017)中所规定的标准[19]。土壤中过量的重金属不仅会影响稻米质量,还会降低稻米产量。稻田土壤Cd-As复合污染呈现出的整体性和大面积趋势已经给人类社会的可持续发展造成了严重的威胁[20-21](表 1),也给其治理与修复方法提出了新的要求。目前,针对Cd-As复合污染的修复技术主要有物理修复法、化学修复法以及生物修复法等[31]。其中,化学原位钝化技术由于其简单易行、见效快、经济效益高且对土壤产生的二次污染较小而受到国内外学者的青睐,是目前应用最广泛的土壤重金属污染修复方法之一[32-33]。鉴于Cd-As复合污染的普遍性、危害的严重性以及治理的复杂性,本文将集中阐述稻田土壤Cd-As复合污染的典型钝化材料、钝化机理及其对水稻Cd-As吸收的同步阻控,以期为高效修复Cd-As复合污染土壤、减轻稻米Cd-As积累提供科学依据与应用指导。

表 1 稻田土壤Cd-As复合污染现状 Table 1 Current status of Cd-As compound contamination in paddy soil
2 农田土壤Cd-As复合污染钝化剂

原位钝化技术是将钝化剂添加到土壤中,通过络合、吸附、沉淀、离子交换等物理化学反应,改变重金属在土壤中的赋存形态,降低其生物有效性和迁移性,从而减轻其对农作物生物毒性的方法[3, 14, 34-35]。Cd和As在土壤中表现出截然不同的化学性质、形态和价态。一般随土壤中pH值升高,土壤生物有效态Cd含量降低,两者呈显著负相关关系;而类金属As则相反,随着土壤pH值升高,As溶出性增加。淹水条件下,随着土壤Eh值的降低,土壤Cd移动性减弱,而As的移动性却升高[34, 36]。因此,稻田土壤Cd-As协同钝化较为困难,效果较差,治理单一Cd或As污染稻田土壤的钝化剂一般不适用于Cd-As复合污染稻田。目前,针对土壤Cd-As复合污染通常需要复合钝化剂来实现Cd-As的同步钝化[37],主要包括:铁(Fe)与碱性无机材料复合钝化剂[14, 20, 23, 38];Fe与有机材料复合钝化剂[26, 39];Fe与碱性无机、有机材料复合钝化剂[40-43];碱性无机与有机材料复合钝化剂[24-25]。明确复合钝化剂对Cd-As的复合钝化机制对于评价修复材料的钝化效果与后续改进和未来新材料研发均具有十分重要的意义。

2.1 Fe与碱性无机材料复合钝化剂

作为地壳元素中含量排名第4的元素,Fe在稻田土壤生物化学过程中扮演着重要的角色[44],其可以高效调控土壤Cd/As循环及其活性,从而显著影响Cd/As的生物有效性[45-47];另外碱性无机材料也被广泛应用于修复土壤Cd-As复合污染。Fe与碱性无机材料对复合Cd-As污染的钝化机制主要为:(1)Fe对As有高度的亲和力,Fe主要通过专性吸附和非专性吸附作用降低土壤中As的生物有效性。专性吸附主要是土壤中As和金属氧化物发生配位体交换作用,如零价铁(Fe0)/铁(氢)氧化物表面含有丰富的羟基(—OH)和水合基(—OH2),砷酸根(AsO43-)可与其表面丰富的配位基团进行交换,在表面形成稳定的内层螯合物[48-50];非专性吸附主要是由于表面带正电荷的胶粒[如铁(氢)氧化物]对带负电荷的AsO43-或亚砷酸根(AsO33-)离子发生静电吸附作用[31, 48, 51-52],从而达到固化活性态As的目的。(2)Fe0及铁(氢)氧化物等均具有较强的氧化还原能力,可改变稻田土壤中As的存在价态,对As3+具有较强的氧化和吸附能力,从而高效减轻As的生物有效性[31]。(3)化学性质相近的重金属元素,尤其是同族重金属元素同时存在于土壤中,由于对吸附点位的竞争会导致出现拮抗竞争作用[53]。在植物生长过程中Fe2+和Zn2+会与Cd2+竞争吸附位点,从而抑制植物对Cd的吸附,降低Cd的生物有效性[54]。(4)碱性无机材料如石灰、含磷(P)材料、含硅(Si)物质(黏土矿物)、含钙(Ca)物质等,可以通过提高土壤pH值降低稻田土壤中Cd的活性。在土壤pH值较高时,Cd2+易与土壤中OH-、CO32-、SO42-、SiO32-和HPO42-等含氧阴离子生成难溶性沉淀物并逐渐向残渣态转化,进而降低土壤中Cd的迁移性和生物有效性[55-56]。但提高土壤的pH值易使稻田土壤中As活化,因而碱性无机材料一般仅应用于Cd污染土壤钝化[43, 57-58]。(5)碱性黏土矿物(如沸石、蒙脱石、海泡石等)因其破键和晶格内的类质同象置换现象、巨大的比表面积和高孔隙率而拥有较高的阳离子交换容量,故而对Cd具有较强的离子交换能力和吸附能力[59]

基于以上钝化机制,Fe与碱性无机材料的复合钝化剂被广泛应用于修复稻田Cd-As复合污染土壤,其可同时有效降低Cd、As的生物有效性,目前国内外研究较多,并取得了一定的成果。徐珺等[23]利用碳酸钙+Fe0(LI)和羟基磷灰石+Fe0(HI)对Cd-As复合污染稻田土壤进行钝化修复,结果显示,LI的效果明显优于HI,LI使土壤中交换态Cd和As、TCLP提取态Cd和As均显著下降,这主要是由于碳酸钙使土壤pH值升高,从而增强了土壤对Cd的吸附作用并促使Cd形成氢氧化物沉淀;同时,Fe和Ca均可与As反应生成难溶性沉淀,进而使As的溶解性大幅降低。Ullah等[3]利用Fe2O3负载改性毛发(1 g)+CaCO3(10 g)对Cd、As、Cr和Pb复合污染土壤进行原位钝化修复,并种植水稻进行钝化效果检验,结果表明,相较于对照,该钝化处理使稻米Cd、As、Cr和Pb含量分别下降了46%、80%、79% 和81%,显著降低了Cd-As等复合重金属污染物的生物有效性。此外,磷酸盐可通过与Cd形成稳定的金属磷酸盐沉淀物[如Cd3(PO4)2]而与Fe联合用于修复Cd-As复合污染土壤。例如,Yuan等[14]将10% 剂量(钝化剂/土壤质量)的羟基磷酸铁加入到Cd、As和Pb复合污染的土壤中后,NaHCO3提取态As、DTPA提取态Cd和Pb的固定率分别达到了69%、59% 和44%,且当土壤水分在20%~100% 之间变化时,固定效率没有发生变化。

2.2 Fe与有机材料复合钝化剂

有机物质如生物炭、有机废弃物(作物秸秆和动物粪便等)、有机酸、腐殖质和生物菌类等近年来被广泛应用于土壤Cd-As复合污染钝化修复[58, 60-61]。有机钝化剂在被施加进入土壤后可以有效改变Cd-As的迁移性,进而减轻土壤中Cd和As的生物有效性,其钝化机理主要为:(1)有机钝化剂含有丰富的配位体官能基团,如羧基(—COOH)、羰基(C=O)、酚羟基(—OH)等,其在稻田土壤中与游离态Cd相互作用后形成稳定的有机络合物或螯合物,从而降低Cd的迁移性和生物有效性[62-63]。(2)腐殖质是有机钝化剂的主要成分,许多研究结果表明,土壤环境中Cd2+易与腐殖质分子形成腐殖质-Cd络合物,进而抑制植物吸收Cd[64-65]。(3)生物炭和有机肥等有机钝化剂加入土壤后产生的有机阴离子会和土壤颗粒表面的OH-发生配位交换作用,继而使土壤溶液中OH-增多,pH值显著升高,而土壤pH值的变化则会进一步影响土壤Eh值,从而影响土壤中重金属存在形态,进而影响土壤对重金属的吸附性能、改变土壤中重金属的迁移性和生物有效性[58]。(4)对生物体而言,无机As的毒性远高于有机态As[60]。环境中无机态As转化为有机态As的主要方法是甲基化作用,土壤环境中的微生物和动物等是将无机态As甲基化成有机态As的主导者,而由于有机钝化剂含有高度腐殖化的有机质而为甲基化提供了甲基源,对土壤中微生物的种类和数量影响较大,从而促进了As的甲基化[66-67]。当土壤环境中无机态As通过微生物的甲基化作用转化为毒性较小的有机态As或以气体形式排放到大气中,则可大幅降低As的生物毒害作用[68]

近年来,随着研究的深入与实际的需求,国内外出现了大量关于改性生物炭的研究[53]。生物炭表面携带大量负电荷,拥有较高的阳离子交换量,因此一般应用于修复重金属阳离子(如Cd、Pb)污染的土壤[68-70],针对土壤Cd-As复合污染,多将生物炭与Fe材料进行复合应用,进而弥补单一钝化剂的不足,提高修复效率。如张静静[61]利用蚕沙生物炭(BC)分别和不同Fe材料(FeSO4、FeCl3、Fe0、纳米铁)混施修复Cd-Pb-As复合污染土壤,结果表明,BC+FeSO4混施钝化效果最好,残渣态Cd和As分别增加了40.9% 和1.9%,离子交换态和碳酸盐结合态Cd和As分别降低了28.4% 和10.8%,大幅降低了土壤中Cd、As的生物有效性。有机废弃物、有机酸和腐殖质等有机物质也可以有效钝化土壤中重金属,近年来也被广泛应用于污染土壤的修复。王向琴等[26]将Fe0与腐殖质复配(质量比为12.5∶87.5)用于稻田土壤Cd-As的同步钝化,与对照相比,施加2 250 kg·hm-2复合钝化剂的土壤,早稻稻米中Cd、As含量分别显著下降0.16 mg· kg-1和0.61 mg·kg-1,晚稻稻米中Cd、As含量分别显著下降0.25 mg·kg-1和0.66 mg·kg-1。刘承帅等[71]发现在利用Fe-腐殖质复合材料对Cd-As复合污染土壤进行钝化修复后,土壤中有效态Cd和As分别下降了37.4% 和28.2%,芥菜地上部Cd和As分别下降了48.3% 和39.3%,地下部则分别下降了72.1% 和61.7%,复合材料的施用促进了Cd-As复合污染土壤中蔬菜的安全生产。涂春艳等[27]发现利用蚕沙有机肥-Fe0复配(最佳复配比1∶2)可以协同钝化土壤中Cd、As、Zn,使其生物有效性显著降低。但需注意的是,有机物质稳定性较差、易受土壤微生物的影响,且有重新活化土壤中重金属的风险[58, 72],有机物质在实际应用中还存在许多限制因素。

2.3 Fe与有机材料、碱性无机材料复合钝化剂

一般单一钝化材料对某一种重金属污染土壤钝化修复效果较好,而Cd、As在土壤中相反的化学性质则更加大了Cd-As复合污染土壤修复的困难。已有研究表明,将Fe材料与有机、碱性无机材料进行组配,可大幅提高Cd-As复合污染土壤的钝化效率。如张永利[42]利用高浓度Fe0(0.5%)与蘑菇渣菜梗堆肥、石灰和蒙脱石进行复配,并对珠三角Cd-As污染土壤开展钝化研究,发现土壤中DTPA-Cd和CaCl2-Cd分别显著下降了24.2%~34.3%和77.2%~90.6%,HCl-As下降了37.7%~44.4%,为Cd-As污染农田的安全可持续生产提供了钝化依据。这主要是由于蘑菇渣菜梗堆肥不仅富含腐殖质与官能团,可通过吸附、络合作用降低土壤中有效态Cd,而且石灰和蒙脱石可使土壤pH值升高,土壤表面负电荷增加,从而固定了土壤中有效态Cd;同时Fe0被氧化成铁(氢)氧化物,使Cd和As被大量吸附。此外,含Si碱性材料也被广泛应用于Cd-As复合污染稻田土壤修复,主要涉及以下4种机制:第一,硅酸盐不仅易与土壤中易溶性Cd形成难溶性沉淀,而且可以增加土壤中有效硅(SiO2)含量,进而与土壤中活性态Cd络合形成牢固的Si-Cd络合物;第二,含Si物质可以提高土壤pH值,增强土壤对Cd的吸附,进而达到降低Cd的迁移性和生物有效性的目的;第三,由于硅酸与亚砷酸是化学类似物,且水稻根系通过吸收Si的细胞质膜转运体LSi1LSi2对As(Ⅲ)进行高效吸收,因而土壤中水溶性硅酸(H4SiO4)的增加可以相应减少水稻对As的吸收转运[73];第四,含Si物质的加入可以促进水稻根表铁膜的形成,增加对土壤活性态Cd、As的吸附作用,进而抑制水稻根系对Cd、As的吸收与积累[74]。刘传平等[43]发明了一种铁硅硫多元素复合生物炭调理剂,用来对Cd-As-Pb复合污染稻田土壤进行钝化处理并种植水稻,结果显示,稻米无机As、总Cd和总Pb分别下降52.1%、58.6% 和42.1%,表明该铁硅硫多元素复合生物炭调理剂可同时有效降低土壤中Cd、As和Pb生物有效性,减控这3种重金属在稻米中的积累。郭娟等[75]对比了硅铁材料单施、生物炭单施及硅铁材料+生物炭复合施配对酸雨条件下Cd、As生物有效性的影响,结果表明,相较于单一钝化材料,硅铁材料和生物炭复配在降低农田土壤中水溶交换态Cd和非专性吸附态As效果方面最为显著,有效减轻酸雨条件下Cd、As对上海青产生的生物毒害,这对保障酸化条件下中轻度Cd-As复合污染农田土壤的蔬菜安全生产有重要意义。另外,熊静等[41]也发现铁改性生物炭、酸改性海泡石和酸改性蛭石在最佳复配比为20.67%、23.49% 和49.54% 时,对Cd-As同步钝化效果最好,可有效降低土壤中Cd和As的生物有效性。

2.4 碱性无机与有机材料复合钝化剂

用于Cd-As复合污染土壤修复的碱性无机与有机复合钝化剂多是黏土矿物、硅钙类、磷酸盐类材料与生物炭、有机物料进行复配,将这类材料进行组配不仅可以有效钝化Cd、As,还可改善土壤理化性质(如土壤酸碱性和土壤肥力)[51]。辜娇峰等[24]将羟基磷灰石、沸石和改性秸秆炭按一定比例进行组配,并利用其对Cd-As复合污染稻田土壤进行改良,水稻盆栽实验表明,适量施用该组配改良剂显著降低了水稻根际土壤可交换态Cd、As和稻米Cd与无机As含量。杜彩艳等[25]将硅藻土、生物炭、沸石粉和石灰进行组合并开展田间实验,发现生物炭、沸石粉与硅藻土复配对土壤生物有效态Cd、As、Pb和Zn的减控效果最好,分别使玉米籽粒中Cd、As、Pb和Zn含量较对照中降低了95.0%、90.9%、47.7% 和31.4%。表 2总结了常用Cd-As复合钝化剂及其应用效果。

表 2 Cd-As复合钝化剂及其应用效果和修复机理 Table 2 Composite passivation materials of Cd-As and its application efficiency and mechanism
3 原位钝化技术同步阻控水稻吸收Cd-As原理

高效原位钝化技术在有效钝化土壤Cd、As的同时,还可对Cd、As在水稻体内的转运与积累产生减控作用,因此,近年来关于土壤钝化阻控水稻吸收Cd、As的原理与过程引起国内外学者的广泛重视。

Cd、As从土壤中迁移到水稻籽粒中主要经过4个过程:根部吸收土壤中生物有效态Cd、As,木质部向地上部转运,跨维管束运输以及通过韧皮部将Cd、As向籽粒转移[34, 77]。从迁移过程来看,稻田土壤中活性态Cd、As从土壤矿物质表面迁移至水稻根系表层并被吸收的过程,是决定水稻Cd、As积累的关键,因此,钝化剂可从两方面阻控水稻Cd、As的吸收与积累:首先,利用钝化剂减少稻田土壤中活性态Cd、As含量,控制Cd、As从土壤矿物质表面迁移至水稻根系表层并被吸收的过程,相关钝化机理已在前文叙述;其次,钝化剂可生理阻控水稻根系吸收Cd、As及其在水稻体内的转运。Fe钝化剂在生理阻控水稻Cd、As吸收方面应用前景巨大:一方面,定位于水稻根部的OsNramp1、OsIRT1/2和OsYSL2/15转运蛋白在促进Fe2+吸收的同时也促进Cd2+的吸收[78-81],因此,利用Fe钝化剂不仅可以钝化土壤中活性态Cd、As,而且土壤中有效态Fe2+浓度的增加可对Cd2+产生竞争吸收作用,抑制Cd相关转运蛋白的表达,进而减少水稻根系对Cd的吸收,达到减少水稻Cd积累的目的[82-84];另一方面,Fe的加入可进一步提高水稻体内酶的活性(如超氧化物歧化酶SOD和过氧化氢酶CAT等),从而减少植物体内Cd胁迫的危害和水稻籽粒的Cd聚集[85]。同时,Fe钝化剂的施入可促进水稻根表铁膜的形成,研究表明,水稻根表铁膜对Cd和As都有良好的屏障作用,进而阻控土壤中生物有效态Cd和As通过根部进入水稻体内[86-87]

As在淹水还原稻田土壤中主要以As(OH)3的形态存在,As(OH)3与硅酸盐是典型的化学类似物,水稻根系对As(OH)3的吸附主要通过水稻根系的Si转运通道Lsi1和Lsi2。Lsi1主要位于水稻成熟区主根和侧根外皮层及内皮层细胞膜的外侧,是根系从土壤中吸收As(OH)3的主要途径,因此,使用含Si物质作为钝化剂可通过拮抗竞争作用从源头调控水稻根系通过转运蛋白通道Lsi1对土壤中有效态As的吸收,对降低水稻As积累意义重大。不同于Lsi1,Lsi2主要表达于外皮层和内皮层细胞膜的内侧,作为Si的外排转运蛋白,它主要负责将细胞内的As(OH)3朝中柱方向的质外体外排,通过木质部向地上部转运,因此,Lsi2对As(OH)3在水稻地上部的传输贡献更大[88-89]。Ma等[73]的研究结果也表明Lsi2对水稻籽粒As积累的影响较Lsi1大,这说明阻控As通过木质部向地上部转运是控制水稻地上部As积累的关键,而增加水稻中Si的含量对抑制As(OH)3向地上部转运、降低籽粒中As含量意义重大。含Si物质作为钝化剂还可抑制Cd从水稻根部向茎秆及地上部转移,减少水稻籽粒Cd含量。首先,Si可以通过在根内皮层附近聚集来降低细胞壁的孔隙度,从而减少根部Cd质外体旁流,阻断Cd向地上部的运输[90]。其次,Si、Cd还可和细胞壁上半纤维素共沉积形成[Si-半纤维素基质] Cd络合物,从而通过抑制Cd向地上部的运输来减少水稻籽粒中Cd的积累量[91-92]。此外,据Kim等[93]的研究结果表明,Si还可通过抑制重金属相关转运基因OsHMA2和OsHMA3的表达,来减少Cd进入水稻木质部装载,从而减少Cd对水稻的生物毒害。因此,使用含Si材料作为Cd-As复合污染钝化剂,可以达到同步降低土壤和水稻体内Cd、As含量的双重目的。

综上所述,Fe和含Si物质均对土壤中Cd和As有良好的钝化效果及可从生理上阻控水稻吸收Cd/As能力(图 1),开发新型Fe-Si复合钝化剂对修复CdAs复合污染稻田土壤意义重大。

图 1 Fe-Si复合钝化剂阻控水稻吸收Cd、As机理 Figure 1 Mechanism of Fe-Si composite passivators in inhabiting the accumulation of Cd and As in rice
4 结论与展望

原位钝化修复技术可显著降低Cd、As在土壤中的迁移性和生物有效性,但由于Cd、As相反的化学性质,其同步钝化效果较低,单一钝化剂难以进行CdAs复合污染修复,而复合钝化剂多将Fe材料和其他有机或碱性无机物质进行复配,可同时钝化稻田土壤中活性态Cd、As,降低水稻籽粒对Cd、As的吸收和积累。但目前Cd-As复合污染原位钝化修复技术仍存在许多不足之处,有待进一步研究。

(1)利用含磷物质作为钝化剂有可能会造成水体富营养化,有机肥和秸秆生物炭的复配可能会向土壤引入重金属,改变土壤原有微生物群落组成结构等。

(2)钝化剂单次用量较大,可能会对环境带来二次污染且使得修复成本过高,经济效益和环境效益有待提高。

(3)钝化效果的稳定性和持久性较差,目前研究缺乏对钝化效果的长期定位观测与研究数据。

针对上述存在问题提出以下几点建议:

(1)加强新型Fe-Si钝化剂的研发。Fe-Si钝化剂对稻田土壤中Cd、As有较好的钝化效果及生理阻控效果,将Fe、Si材料连用,研究Cd-As钝化效率显著的钝化剂对降低钝化剂单位施加量,提高经济效益和环境效益极为重要。

(2)结合盆栽试验和野外田间试验确定新型FeSi钝化剂最佳施用量。我国大部分土壤都是缺Si土壤,尤其是南方稻田土壤,水稻是典型富Si植物(干物质Si>10%),含Si材料的添加可显著促进水稻生长,增加稻谷产量;Fe材料在一定浓度范围内对土壤无毒害,但超过一定剂量会给土壤理化性质带来危害。即Fe-Si钝化剂的适量施用基本不会给土壤理化性质和环境造成影响,反而会促进作物增产。因此探索新型Fe-Si复合钝化剂的合理施用剂量可使经济效益和环境效益达到最大化。

(3)深入揭示新型Fe-Si钝化剂对土壤Cd、As的钝化机理和抑制水稻Cd、As吸收与转运的分子机制与生理过程。

(4)进行长期定位大田试验以验证新型Fe-Si钝化剂钝化的稳定性、有效性和持久性,为持久高效降低水稻籽粒中Cd、As积累提供技术支持。

参考文献
[1]
中华人民共和国生态环境部, 中华人民共和国自然资源部. 全国土壤污染状况调查公报[R]. 北京: 2014: 1-5.
Ministry of Ecology and Environment of PRC, Ministry of Natural Resources of PRC. Report on the national general survey of soil contamination[R]. Beijing. 2014: 1-5.
[2]
Zheng C, Heng L, Wende M, et al. Addition of graphene sheets enhances reductive dissolution of arsenic and iron from arsenic contaminated soil[J]. Land Degradation & Development, 2018, 29(3): 572-584.
[3]
Ullah A, Ma Y, Li J, et al. Effective amendments on cadmium, arsenic, chromium and lead contaminated paddy soil for rice safety[J]. Agronomy, 2020, 10(3): 359-376. DOI:10.3390/agronomy10030359
[4]
盛维康, 侯青叶, 杨忠芳, 等. 湘江水系沉积物重金属元素分布特征及风险评价[J]. 中国环境科学, 2019, 39(5): 2230-2240.
SHENG Wei-kang, HOU Qing-ye, YANG Zhong-fang, et al. Distribution characteristics and ecological risk assessment of heavy metals in sediments from Xiang River[J]. China Environmental Science, 2019, 39(5): 2230-2240. DOI:10.3969/j.issn.1000-6923.2019.05.052
[5]
中华人民共和国生态环境部, 国家市场监督管理总局. 土壤环境质量农用地土壤污染风险管控标准(试行): GB 15618-2018[S]. 北京: 中国环境科学出版社, 2018.
Ministry of Ecology and Environment, State Administration of Market Supervision, Administration of the PRC. Soil environmental quality risk control standard for soil contamination of agricultural land: GB 15618-2018[S]. Beijing: China Environmental Science Press, 2018.
[6]
曾希柏, 徐建明, 黄巧云, 等. 中国农田重金属问题的若干思考[J]. 土壤学报, 2013, 50(1): 186-194.
ZENG Xi-bai, XU Jian-ming, HUANG Qiao-yun, et al. Some deliberations on the issues of heavy metals in farmlands of China[J]. Acta Pedologica Sinica, 2013, 50(1): 186-194.
[7]
米雅竹, 朱广森, 张旭, 等. 3种水分管理条件下施用木炭和磷酸二铵对水稻Cd、As累积的影响[J]. 生态与农村环境学报, 2020, 36(9): 1200-1209.
MI Ya-zhu, ZHU Guang-sen, ZHANG Xu, et al. Accumulation of Cd and As in rice(Oryza sativa) under different water management coupled with charcoal and diammonium phosphate amendment[J]. Journal of Ecology and Rural Environment, 2020, 36(9): 1200-1209.
[8]
Yang W T, Zhou H, Gu J F, et al. Effects of a combined amendment on Pb, Cd, and As availability and accumulation in rice planted in contaminated paddy soil[J]. Soil and Sediment Contamination: An International Journal, 2017, 26(1): 70-83. DOI:10.1080/15320383.2017.1235132
[9]
中华人民共和国生态环境部, 国家统计局, 中华人民共和国农业农村部. 第二次全国污染源普查公报[EB/OL]. [2020-06-08]. http://www.mee.gov.cn/home/ztbd/rdzl/wrypc/zlxz/202006/t20200616_784745.html.
Ministry of Ecology and Environment of the PRC, National Bureau of Statistics of the PRC, Ministry of Agriculture and Rural Areas of the PRC. The second national pollution source census bulletin[EB/OL].[2020-06-08]. http://www.mee.gov.cn/home/ztbd/rdzl/wrypc/zlxz/202006/t20200616_784745.html.
[10]
李倩. 湘江流域某冶炼厂周边土壤Cd、Pb、As污染特征与风险评价[J]. 湖南有色金属, 2016, 32(6): 67-70, 80.
LI Qian. Cd, Pb and As pollution characteristics and risk assessment in soils surrounding a smelter located in Xiang River[J]. Hunan Nonferrous Metals, 2016, 32(6): 67-70, 80. DOI:10.3969/j.issn.1003-5540.2016.06.018
[11]
郭朝晖, 肖细元, 陈同斌, 等. 湘江中下游农田土壤和蔬菜的重金属污染[J]. 地理学报, 2008, 63(1): 3-11.
GUO Zhao-hui, XIAO Xi-yuan, CHEN Tong-bin, et al. Heavy metal pollution of soils and vegetables from midstream and downstream of Xiangjiang River[J]. Acta Geographica Sinica, 2008, 63(1): 3-11.
[12]
Yamazaki S, Ueda Y, Mukai A, et al. Rice phytochelatin synthases OsPCS1 and OsPCS2 make different contributions to cadmium and arsenic tolerance[J]. Plant Direct, 2018, 2(1): 1-15.
[13]
Ishikawa S, Makino T, Ito M, et al. Low-cadmium rice(Oryza sativa L.) cultivar can simultaneously reduce arsenic and cadmium concentrations in rice grain[J]. Soil Science & Plant Nutrition, 2016, 62(4): 1-13.
[14]
Yuan Y, Chai L, Yang Z, et al. Simultaneous immobilization of lead, cadmium, and arsenic in combined contaminated soil with iron hydroxyl phosphate[J]. Journal of Soils & Sediments, 2017, 17(2): 1-8. DOI:10.1007/s11368-016-1540-0
[15]
Williams P N, Villada A, Deacon C, et al. Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain concentrations compared to wheat and barley[J]. Environmental Science & Technology, 2007, 41(19): 6854-6859.
[16]
Wang X, Huang R, Li L, et al. Arsenic removal from flooded paddy soil with spontaneous hygrophyte markedly attenuates rice grain arsenic[J]. Environment International, 2019, 133: 105159. DOI:10.1016/j.envint.2019.105159
[17]
Chaney R L, Reeves P G, Ryan J A, et al. An improved understanding of soil Cd risk to humans and low cost methods to phytoextract Cd from contaminated soils to prevent soil Cd risks[J]. Biometals, 2004, 17(5): 549-553. DOI:10.1023/B:BIOM.0000045737.85738.cf
[18]
成颜君. 谷类作物子粒Cd、Zn、Se含量比较及杂交稻不同品种Cd积累差异研究[D]. 南京: 南京农业大学, 2008.
CHENG Yan-jun. Grain concentrations of Cd, Zn and Se of staple crops and Cd accumulation in hybrid rice plants[D]. Nanjing: Nanjing Agricultural University, 2008.
[19]
严露, 林朝君, 王欣, 等. 有机肥及复配硫酸盐对土壤-水稻系统砷镉有效性的调控[J]. 土壤学报, 2020, 57(3): 667-679.
YAN Lu, LIN Zhao-jun, WANG Xin, et al. Effects of organic manure fertilizers and its amendment of sulfates on availability of arsenic and cadmium in soil-rice system[J]. Acta Pedologica Sinica, 2020, 57(3): 667-679.
[20]
Gu J F, Zhou H, Tang H, et al. Cadmium and arsenic accumulation during the rice growth period under in situ remediation[J]. Ecotoxicology & Environmental Safety, 2019, 171: 451-459.
[21]
Zhao F J, Ma Y, Zhu Y G, et al. Soil contamination in China: Current status and mitigation strategies[J]. Environmental Science & Technology, 2015, 49(2): 750.
[22]
尹带霞. 生物炭对稻田土壤重金属生物有效性的影响与作用机制[D]. 长沙: 湖南师范大学, 2016.
YIN Dai-xia. The affect mechanism of biochar on heavy metal bioavailability in paddy soil[D]. Changsha: Hunan Normal University, 2016.
[23]
徐珺, 曾敏, 王光军, 等. 2种组配改良剂修复镉砷复合污染稻田土壤的研究[J]. 环境科学学报, 2018, 38(5): 2008-2013.
XU Jun, ZENG Min, WANG Guang-jun, et al. Remediation of paddy soil complexly polluted with cadmium and arsenic using 2 combined amendments[J]. Acta Scientiae Circumstantiae, 2018, 38(5): 2008-2013.
[24]
辜娇峰, 周航, 杨文弢, 等. 复合改良剂对镉砷化学形态及在水稻中累积转运的调控[J]. 土壤学报, 2016, 53(6): 1576-1585.
GU Jiao-feng, ZHOU Hang, YANG Wen-tao, et al. Effect of combined soil amendment regulating chemical forms of cadmium and arsenic in paddy soil and their bioaccumulation and translocation in rice[J]. Acta Pedologica Sinica, 2016, 53(6): 1576-1585.
[25]
杜彩艳, 木霖, 王红华, 等. 不同钝化剂及其组合对玉米(Zea mays) 生长和吸收Pb Cd As Zn影响研究[J]. 农业环境科学学报, 2016, 35(8): 1515-1522.
DU Cai-yan, MU Lin, WANG Honghua, et al. Effects of different amendments on growth and Pb, Cd, As, Zn uptake by Zea mays[J]. Journal of Agro-Environment Science, 2016, 35(8): 1515-1522.
[26]
王向琴, 刘传平, 杜衍红, 等. 零价铁与腐殖质复合调理剂对稻田镉砷污染钝化的效果研究[J]. 生态环境学报, 2018, 27(12): 2329-2336.
WANG Xiang-qin, LIU Chuan-ping, DU Yan-hong, et al. Effects of stabilizing remediation of Cd and As in paddy rice by applying combined zero-valent iron and humus[J]. Ecology and Environmental Sciences, 2018, 27(12): 2329-2336.
[27]
涂春艳, 蒋林伶, 张超兰, 等. 蚕沙有机肥-铁基复配材料对镉砷锌复合污染土壤的修复效应[J]. 南方农业学报, 2019, 50(11): 2436-2442.
TU Chun-yan, JIANG Lin-ling, ZHANG Chao-lan, et al. Passivation effects of silkworm organic fertilizer and iron base compound material on heavy metals in contaminated soil by cadmium, arsenic and zinc[J]. Journal of Southern Agriculture, 2019, 50(11): 2436-2442. DOI:10.3969/j.issn.2095-1191.2019.11.08
[28]
Yun S W, Park C G, Jeon J H, et al. Dissolution behavior of As and Cd in submerged paddy soil after treatment with stabilizing agents[J]. Geoderma, 2016, 270: 10-20. DOI:10.1016/j.geoderma.2015.11.036
[29]
Arao T, Kawasaki A, Baba K, et al. Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice[J]. Environmental Science & Technology, 2009, 43(24): 9361-9367.
[30]
Khan Z I, Ahmad K, Ashraf M, et al. Bioaccumulation of heavy metals and metalloids in luffa(Luffa cylindrica L.) irrigated with domestic wastewater in Jhang, Pakistan: A prospect for human nutrition[J]. Pakistan Journal of Botany, 2015, 47(1): 217-224.
[31]
Huang R, Wang X, Xing B. Removal of labile arsenic from flooded paddy soils with a novel extractive column loaded with quartz-supported nanoscale zero-valent iron[J]. Environmental Pollution, 2019, 225: 113249.
[32]
周莉, 郑向群, 丁永祯, 等. 农田镉砷污染防控与作物安全种植技术探讨[J]. 农业环境科学学报, 2017, 36(4): 613-619.
ZHOU Li, ZHENG Xiang-qun, DING Yong-zhen, et al. Probes of prevention and control of farmland pollution by cadmium & arsenic and crop production safety[J]. Journal of Agro-Environment Science, 2017, 36(4): 613-619.
[33]
卢美献. 不同固定剂及其配比对土壤中镉砷钝化修复效果研究[D]. 南宁: 广西大学, 2016.
LU Mei-xian. Study on immobilization and remediation of cadmium and arsenic combined pollution soil by different soil amendments and their mix[D]. Nanning: Guangxi University, 2016.
[34]
于焕云, 崔江虎, 乔江涛, 等. 稻田镉砷污染阻控原理与技术应用[J]. 农业环境科学学报, 2018, 37(7): 1418-1426.
YU Huan-yun, CUI Jiang-hu, QIAO Jiang-tao, et al. Principle and technique of arsenic and cadmium pollution control in paddy field[J]. Journal of AgroEnvironment Science, 2018, 37(7): 1418-1426.
[35]
Ashrafi M, Mohamad S, Yusoff I, et al. Immobilization of Pb, Cd, and Zn in a contaminated soil using eggshell and banana stem amendments: Metal leachability and a sequential extraction study[J]. Environmental Science and Pollution Research, 2015, 22(1): 223-230. DOI:10.1007/s11356-014-3299-4
[36]
Honma T, Ohyama T. Effect of application of molasses to paddy soil on the concentration of cadmium and arsenic in rice grain[J]. Soil Science & Plant Nutrition, 2012, 58(2): 255-260.
[37]
王建乐, 谢仕斌, 林丹虹, 等. 5种钝化剂对镉砷污染稻田的田间修复效果对比[J]. 环境工程学报, 2019, 13(11): 2691-2700.
WANG Jian-le, XIE Shi-bin, LIN Dan-hong, et al. Comparative of the field remediation effects of cadmium and arsenic contaminated paddy by five passivators[J]. Chinese Journal of Environmental Engineering, 2019, 13(11): 2691-2700. DOI:10.12030/j.cjee.201811177
[38]
吴宝麟. 铅镉砷复合污染土壤钝化修复研究[D]. 长沙: 中南大学, 2014.
WU Bao-lin. The immobilization remediation of cadmium (Cd), lead(Pb) and arsenic(As) in contaminated soils[D]. Changsha: Central South University, 2014.
[39]
卢美献, 李方圆, 张超兰, 等. 不同固定剂对土壤中镉砷钝化修复效果研究[J]. 广西大学学报(自然科学版), 2016, 41(5): 1667-1675.
LU Mei-xian, LI Fang-yuan, ZHANG Chao-lan, et al. Effects of different soil amendments on the immobilization and remediation of cadmium and arsenic in soil[J]. Journal of Guangxi University(Nat Sci Ed), 2016, 41(5): 1667-1675.
[40]
Wu J, Huang D, Liu X, et al. Remediation of As(Ⅲ) and Cd(Ⅱ) co-contamination and its mechanism in aqueous systems by a novel calcium-based magnetic biochar[J]. Journal of Hazardous Materials, 2018, 348: 10-19. DOI:10.1016/j.jhazmat.2018.01.011
[41]
熊静, 郭丽莉, 李书鹏, 等. 镉砷污染土壤钝化剂配方优化及效果研究[J]. 农业环境科学学报, 2019, 38(8): 1909-1918.
XIONG Jing, GUO Li-li, LI Shu-peng, et al. Optimizing the formulation and stabilization effects of an amendment for cadmium and arsenic contaminated soil[J]. Journal of Agro-Environment Science, 2019, 38(8): 1909-1918.
[42]
张永利. 珠三角农田土壤环境镉砷钝化效果研究[D]. 兰州: 兰州大学, 2019.
ZHANG Yong-li. The study on inactivity of cadmium and arsenic in farmland soil of Pearl River Delta[D]. Lanzhou: Lanzhou University, 2019.
[43]
刘传平, 李芳柏, 王向琴. 一种铁硅硫多元素复合生物炭土壤重金属调理剂的制备方法[P]. CN 105713619 A, 2016.
LIU Chuanping, LI Fang-bai, WANG Xiang-qin. Method for preparing iron-silicon-sulfur multi-element composite biochar soil heavy metal conditioner[P]. CN 105713619 A, 2016.
[44]
Borch T, Kretzschmar R, Kappler A, et al. Biogeochemical redox processes and their impact on contaminant dynamics[J]. Environmental Science & Technology, 2010, 44(1): 15-23.
[45]
Zhu Y G, Yoshinaga M, Zhao F J, et al. Earth abides arsenic biotransformations[J]. Annu Rev Earth Planet, 2014, 42(1): 443-467. DOI:10.1146/annurev-earth-060313-054942
[46]
Yu H Y, Li F B, Liu C S, et al. Iron redox cycling coupled to transformation and immobilization of heavy metals: Implications for paddy rice safety in the red soil of South China[J]. Advances in Agronomy, 2016, 137: 279-317.
[47]
Liu G F, Meng J, Huang Y L, et al. Effects of carbide slag, lodestone and biochar on the immobilization, plant uptake and translocation of As and Cd in a contaminated paddy soil[J]. Environmental Pollution, 2020, 266: 115194. DOI:10.1016/j.envpol.2020.115194
[48]
Miretzky P, Cirelli A F. Remediation of arsenic-contaminated soils by iron amendments: A review[J]. Critical Reviews in Environmental Science and Technology, 2010, 40(2): 93-115. DOI:10.1080/10643380802202059
[49]
Lakshmipathiraj P, Narasimhan B R V, Prabhakar S, et al. Adsorption of arsenate on synthetic goethite from aqueous solutions[J]. Journal of Hazardous Materials, 2006, 136(2): 281-287. DOI:10.1016/j.jhazmat.2005.12.015
[50]
冷迎祥, 刘菲, 王文娟, 等. 小分子有机酸对纳米铁稳定砷的影响[J]. 环境工程学报, 2017, 11(5): 3195-3203.
LENG Ying-xiang, LIU Fei, WANG Wen-juan, et al. Effects of small molecule organic acids on nanometer iron for stabilization of arsenic[J]. Chinese Journal of Environmental Engineering, 2017, 11(5): 3195-3203.
[51]
Yin D, Wang X, Peng B, et al. Effect of biochar and Fe-biochar on Cd and As mobility and transfer in soil-rice system[J]. Chemosphere, 2017, 186: 928-937. DOI:10.1016/j.chemosphere.2017.07.126
[52]
Makino T, Nakamura K, Katou H, et al. Simultaneous decrease of arsenic and cadmium in rice(Oryza sativa L.) plants cultivated under submerged field conditions by the application of iron-bearing materials[J]. Soil Science & Plant Nutrition, 2016, 62(4): 340-348.
[53]
Zhang F, Wang X, Ji X H, et al. Efficient arsenate removal by magnetite-modified water hyacinth biochar[J]. Environmental Pollution, 2016, 216: 575-583. DOI:10.1016/j.envpol.2016.06.013
[54]
Cho H H, Wepasnick K, Smith B A, et al. Sorption of aqueous Zn[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2010, 26(2): 967-981.
[55]
殷飞, 王海娟, 李燕燕, 等. 不同钝化剂对重金属复合污染土壤的修复效应研究[J]. 农业环境科学学报, 2015, 34(3): 438-448.
YIN Fei, WANG Hai-juan, LI Yan-yan, et al. Remediation of multiple heavy metal polluted soil using different immobilizing agents[J]. Journal of Agro-Environment Science, 2015, 34(3): 438-448.
[56]
Chen S, Xu M, Ma Y, et al. Evaluation of different phosphate amendments on availability of metals in contaminated soil[J]. Ecotoxicology and Environmental Safety, 2007, 67(2): 278-285. DOI:10.1016/j.ecoenv.2006.06.008
[57]
廖敏, 黄昌勇, 谢正苗. 施加石灰降低不同母质土壤中镉毒性机理研究[J]. 农业环境保护, 1998, 17(3): 101-103.
LIAO Min, HUANG Chang-yong, XIE Zheng-miao. The mechanism of detoxification of cadmium after liming in soils[J]. Agro-environmental Protection, 1998, 17(3): 101-103.
[58]
吴霄霄, 曹榕彬, 米长虹, 等. 重金属污染农田原位钝化修复材料研究进展[J]. 农业资源与环境学报, 2019, 36(3): 253-263.
WU Xiao-xiao, CAO Rong-bin, MI Chang-hong, et al. Research progress of in-situ passivated remedial materials for heavy metal contaminated soil[J]. Journal of Agriculture Resources and Environment, 2019, 36(3): 253-263.
[59]
Liang X, Han J, Xu Y, et al. In situ field-scale remediation of Cd polluted paddy soil using sepiolite and palygorskite[J]. Geoderma, 2014, 235/236: 9-18. DOI:10.1016/j.geoderma.2014.06.029
[60]
李英, 朱司航, 商建英, 等. 土壤镉和砷污染钝化修复材料及科学计量研究[J]. 农业环境科学学报, 2019, 38(9): 2011-2022.
LI Ying, ZHU Si-hang, SHANG Jian-ying, et al. Immobilization materials for cadmium and arsenic contaminated soil remediation and their scientific metrology research[J]. Journal of Agro-Environment Science, 2019, 38(9): 2011-2022.
[61]
张静静. 蚕沙生物炭混施不同铁基材料对土壤镉、铅、砷钝化修复效果研究[D]. 南宁: 广西大学, 2017.
ZHANG Jing-jing. Research about the effects of mixed application of silkworm excrement biochar and different iron-based materials on the passivation of cadmium, lead and arsenic in soil[D]. Nanning: Guangxi University, 2017.
[62]
Zhang F, Wang X, Yin D, et al. Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes)[J]. Journal of Environmental Management, 2015, 153(15): 68-73.
[63]
Harter R D, Naidu R. Role of metal-organic complexation in metal sorption by soils[J]. Advances in Agronomy, 1995, 55(8): 219-263.
[64]
毕冬雪, 邓亚娟, 孟凡德, 等. 腐殖质纳米颗粒对镉污染土壤的修复[J]. 环境工程学报, 2018, 12(5): 1295-1302.
BI Dong-xue, DENG Ya-juan, MENG Fan-de, et al. Humic nanoparticles for remediation of Cd-contaminated soils[J]. Chinese Journal of Environmental Engineering, 2018, 12(5): 1295-1302.
[65]
余贵芬, 蒋新, 孙磊, 等. 有机物质对土壤镉有效性的影响研究综述[J]. 生态学报, 2002, 22(5): 770-776.
YU Gui-fen, JIANG Xin, SUN Lei, et al. A review for effect of organic substances on the availability of cadmium in soils[J]. Acta Ecologica Sinica, 2002, 22(5): 770-776. DOI:10.3321/j.issn:1000-0933.2002.05.021
[66]
Wang P, Sun G, Jia Y, et al. A review on completing arsenic biogeochemical cycle: Microbial volatilization of arsines in environment[J]. Journal of Environmental Sciences, 2014, 26(2): 371-381. DOI:10.1016/S1001-0742(13)60432-5
[67]
Bentley R, Chasteen T G. A review on cicrobial methylation of metalloids: Arsenic, antimony, and bismuth[J]. Microbiology and Molecular Biology Reviews, 2002, 66(2): 250-271. DOI:10.1128/MMBR.66.2.250-271.2002
[68]
Bolan N, Kunhikrishnan A, Thangarajan R, et al. Remediation of heavy metal(loid) s contaminated soils: To mobilize or to immobilize?[J]. Journal of Hazardous Materials, 2014, 266: 141-166. DOI:10.1016/j.jhazmat.2013.12.018
[69]
潘亚男, 陈灿, 王欣, 等. 凤眼莲源生物炭对土壤As, Hg, Cd溶出特性与化学形态的影响[J]. 环境科学学报, 2017, 37(6): 2342-2350.
PAN Ya-nan, CHEN Can, WANG Xin, et al. Effects of water hyacinth biochar on leaching characteristics and fractionations of As, Hg and Cd in a multi-metal contaminated soil[J]. Acta Scientiae Circumstantiae, 2017, 37(6): 2342-2350.
[70]
杜艳艳. 负载铁生物炭和氧化钙对稻田土壤砷、镉的钝化效能与机理[D]. 长沙: 湖南师范大学, 2018.
DU Yan-yan. The efficiency and mechanism of As and Cd immobilization by Fe-impregnated biochar and CaO in paddy soil[D]. Changsha: Hunan Normal University, 2018.
[71]
刘承帅, 李芳柏, 童辉, 等. 一种铁基-腐殖质复合材料及其在土壤重金属污染治理中的应用[P]. CN104971938 A, 2015.
LIU Chengshuai, LI Fang-bai, TONG Hui, et al. An iron-based humus composite material and its application in remediating soil heavy metal contamination[P]. CN104971938 A, 2015.
[72]
Ebrahimian E, Bybordi A. Effect of organic acids on heavy-metal uptake and growth of canola grown in contaminated soil[J]. Communications in Soil Science & Plant Analysis, 2014, 45(13): 1715-1725.
[73]
Ma J F, Yamaji N, Mitani N, et al. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain[J]. Proceedings of the National Academy of Sciences, 2008, 105(29): 9931-9935. DOI:10.1073/pnas.0802361105
[74]
王怡璇, 刘杰, 唐云舒, 等. 硅对水稻镉转运的抑制效应研究[J]. 生态环境学报, 2016, 25(11): 1822-1827.
WANG Yi-xuan, LIU Jie, TANG Yun-shu, et al. Inhibitory effect of silicon on cadmium accumulation and transportation in rice[J]. Ecology and Environmental Sciences, 2016, 25(11): 1822-1827.
[75]
郭娟, 罗小丽, 姚爱军, 等. 模拟酸雨条件下铁硅材料和生物炭对土壤镉砷形态及生物有效性的影响[J]. 农业环境科学学报, 2018, 37(7): 1495-1502.
GUO Juan, LUO Xiao-li, YAO Ai-jun, et al. Effects of iron-silicon material and biochar on soil Cd and As speciation and vegetable uptake under simulated acid rain condition[J]. Journal of Agro-Environment Science, 2018, 37(7): 1495-1502.
[76]
辜娇峰. 组配改良剂对稻田镉砷复合污染的调控效果及机制研究[D]. 长沙: 中南林业科技大学, 2017.
GU Jiao-feng. Mechanisms and effecs of combined amendment regulating paddy soil complexly contaminated with cadmium and arsenic[D]. Changsha: Central South University of Forestry and Technology, 2017.
[77]
Zhao F J, Mcgrath S P, Meharg A A. Arsenic as a food chain contaminant: Mechanisms of plant uptake and metabolism and mitigation strategies[J]. Annual Review of Plant Biology, 2010, 61(1): 535. DOI:10.1146/annurev-arplant-042809-112152
[78]
Colangelo E P, Guerinot M L. Put the metal to the petal: Metal uptake and transport throughout plants[J]. Current Opinion in Plant Biology, 2006, 9(3): 322-330. DOI:10.1016/j.pbi.2006.03.015
[79]
Elsevier. Biochimica et biophysica acta. Molecular cell research[M]. North Holland: Elsevier, 1982.
[80]
Xia J, Yamaji N, Ma J F. Further characterization of an aluminum influx transporter in rice[J]. Plant Signaling & Behavior, 2011, 6(1): 160-163.
[81]
Takahashi R, Ishimaru Y, Senoura T, et al. The OsNRAMP1 iron transporter is involved in Cd accumulation in rice[J]. Journal of Experimental Botany, 2011, 62(14): 4843-4850. DOI:10.1093/jxb/err136
[82]
Ishimaru Y, Takahashi R, Bashir K, et al. Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport[J]. Scientific Reports, 2012, 2(6071): 286.
[83]
邵国胜, 陈铭学, 王丹英, 等. 稻米镉积累的铁肥调控[J]. 中国科学, 2008, 38(2): 180-187.
SHAO Guo-sheng, CHEN Ming-xue, WANG Dan-ying, et al. Using iron fertilizer to control Cd accumulation in rice plants: A new promising technology[J]. Science in China Series C-Life Sciences, 2008, 38(2): 180-187. DOI:10.3321/j.issn:1006-9259.2008.02.011
[84]
Guha T, Barman S, Mukherjee A, et al. Nano-scale zero valent iron modulates Fe/Cd transporters and immobilizes soil Cd for production of Cd free rice[J]. Chemosphere, 2020, 260: 127533. DOI:10.1016/j.chemosphere.2020.127533
[85]
Barman F, Majumdar S, Arzoo S H, et al. Genotypic variation among 20 rice cultivars/landraces in response to cadmium stress grown locally in West Bengal, India[J]. Plant Physiology and Biochemistry, 2020, 148: 193-206. DOI:10.1016/j.plaphy.2020.01.019
[86]
Du J, Yan C, Li Z. Formation of iron plaque on mangrove Kandalar. Obovata(S.L.) root surfaces and its role in cadmium uptake and translocation[J]. Marine Pollution Bulletin, 2013, 74(1): 105-109. DOI:10.1016/j.marpolbul.2013.07.023
[87]
Huang H, Jia Y, Sun G X, et al. Arsenic speciation and volatilization from flooded paddy soils amended with different organic matters[J]. Environmental Science & Technology, 2012, 46(4): 2163-2168.
[88]
Ma J F, Yamaji N. A cooperative system of silicon transport in plants[J]. Trends in Plant Science, 2015, 20(7): 435-442. DOI:10.1016/j.tplants.2015.04.007
[89]
Yi C, Moore K L, Miller A J, et al. The role of nodes in arsenic storage and distribution in rice[J]. Journal of Experimental Botany, 2015(13): 3717-3724.
[90]
Cunha K P V D, Nascimento C W A D. Silicon effects on metal tolerance and structural changes in maize(Zea mays L.) grown on a cadmium and zinc enriched soil[J]. Water Air & Soil Pollution, 2009, 197(1/2/3/4): 323-330. DOI:10.1007/s11270-008-9814-9
[91]
Liu J, Ma J, He C, et al. Inhibition of cadmium ion uptake in rice (Oryza sativa) cells by a wall-bound form of silicon[J]. New Phytologist, 2013, 200(3): 691-699. DOI:10.1111/nph.12494
[92]
Ma J, Cai H, He C, et al. A hemicellulose-bound form of silicon inhibits cadmium ion uptake in rice(Oryza sativa) cells[J]. New Phytologist, 2015, 206(3): 1063-1074. DOI:10.1111/nph.13276
[93]
Kim Y H, Khan A, Kim D H, et al. Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormones[J]. BMC Plant Biology, 2014, 14(1): 1-13. DOI:10.1186/1471-2229-14-1