我国部分地区农田土壤重金属镉(Cd)污染问题比较突出,造成农产品Cd含量超标,不仅影响农产品质量安全,还可能对人体健康产生不良影响[1-3]。按照《土壤环境质量农用地土壤污染风险管控标准(试行)》(GB 15618—2018)划分,土壤Cd含量高于风险筛选值,但低于风险管制值的农用地为“安全利用类”,在这类农用地进行农业生产必须采取措施以确保农产品达标。土壤Cd的风险筛选值和风险管制值因土壤pH不同而异,前者为0.3~ 0.6 mg·kg-1,后者为1.5~4.0 mg·kg-1。“安全利用类”属于中低污染,占污染农用地的绝大部分。我国2016年颁布的《土壤污染防治行动计划》要求,到2020年和2030年,受污染耕地安全利用率要分别达到90% 左右和95% 以上。因此,全国各地都在开展污染耕地阻抗农产品重金属积累的措施研究。一个广泛采用的措施是秸秆移除,其目的是通过移除积累在秸秆中的重金属,逐步降低土壤重金属含量。这个措施的效果如何,很少见到报道。本文通过对文献报道的数据进行模拟计算,评估水稻秸秆移除对降低土壤Cd含量的效果。
1 材料与方法通过对发表于1998年至2020年的文献进行检索和筛查,从中获取相关数据进行分析与计算。英文文献检索自Web of Science与Google Scholar,以“Rice”“China”“Cadmium”;“Rice”“har⁃ vest index”等组合的关键词进行检索。中文文献检索自《中国知网》,检索关键词为“水稻”“镉”;“水稻”“收获指数”。首先对检索出的论文进行筛选与剔除,剔除标准为:(1)非田间试验数据;(2)没有重复或没有明确标明重复次数的数据;(3)试验场地非中国地区的数据。对筛选后的文献进行数据收集和汇总,包括试验年份、地点、土壤Cd含量、水稻品种、秸秆生物量、秸秆Cd浓度、稻谷产量、稻米Cd浓度、收获指数等。
2 结果与讨论通过文献检索,共查到基于大田试验并同时提供土壤Cd全量和水稻成熟期秸秆Cd含量数据的文献22篇(表 1),包括了44个试验点,试验点分布在我国12个省份(图 1a)。有些试验点包括多个水稻品种,本研究取其不同品种秸秆Cd含量的平均值。将秸秆Cd浓度与土壤Cd浓度作图(图 1b)可见,两者具有显著的线性相关关系,回归分析得到的方程如下:
![]() |
(1) |
![]() |
表 1 秸秆Cd浓度与土壤Cd浓度线性关系数据 Table 1 Data of the linear relationship between straw Cd concentration and soil Cd concentration |
![]() |
图 1 试验点分布及秸秆Cd浓度与土壤Cd浓度的关系 Figure 1 Distribution of field trial sites and the relationship between straw Cd concentration and soil Cd concentration |
式中:y代表水稻秸秆Cd浓度,mg·kg-1;x代表土壤Cd总浓度,mg·kg-1。
对22篇文献报道的籽粒和秸秆Cd浓度(表 2)作图可见,两者呈现显著的线性关系(图 2),回归方程的斜率为0.11,该斜率与Duan等[25]基于两试验点466份水稻品种的结果(斜率为0.12)相似。秸秆Cd浓度与籽粒Cd浓度的比率变幅为2.8~43.8,中值为8.0。
![]() |
表 2 籽粒Cd浓度与秸秆Cd浓度线性关系数据 Table 2 Data of the linear relationship between grain Cd concentration and straw Cd concentration |
![]() |
图 2 水稻籽粒Cd浓度与秸秆Cd浓度的关系 Figure 2 The relationship between rice grain Cd concentration and straw Cd concentration |
为了计算水稻秸秆积累Cd量,首先需要知道秸秆的生物量。绝大多数文献未报道秸秆生物量,但是根据稻谷产量和收获指数可以计算秸秆生物量。从32篇我国基于田间试验文献中,得到水稻稻谷的生物量(平均值±SD)为8.01±1.9 t·hm-2(n=168),收获指数为0.50±0.06(n=139),即秸秆与稻谷生物量相等。
以8 t·hm-2的秸秆生物量,再根据回归方程(1)计算得到的秸秆Cd浓度,可以计算秸秆Cd的积累量(表 3)。以耕层深度为0.2 m、土壤容重为1.3 g·cm-3计算不同Cd浓度(0.5~5.0 mg·kg-1)土壤Cd总量(表 3)。单季水稻秸秆可移除的Cd占耕层土壤Cd总量仅为0.23%~0.37%(平均值为0.27%;表 3),移除率随着土壤Cd浓度增加呈下降趋势。总体而言,水稻秸秆移除对降低土壤Cd的效果非常有限。考虑到水稻籽粒Cd含量仅为秸秆Cd含量的1/8左右,水稻秸秆和籽粒对土壤Cd的总移除率为0.30%左右,按此计算,种植100季水稻可移除30%的耕层土壤Cd。
![]() |
表 3 水稻秸秆对土壤镉移除率 Table 3 Removal rate of soil cadmium by rice straw |
假设植物吸收的Cd来自于土壤中的有效态Cd,那么,秸秆移除可能使得土壤中有效态Cd的下降幅度大于土壤总Cd的下降幅度。土壤中不同形态Cd处于动态平衡之中,用同位素交换的方法测定的Cd E值,反映了土壤Cd的活性库(Labile pool)。不同土壤Cd E值占Cd总量的百分比变幅在10%~90% 之间,平均值为60%[27-28]。按此平均值计算,单季水稻秸秆和籽粒移除的Cd占土壤Cd活性库的0.5%。
以上计算结果代表我国不同土壤类型、不同水稻品种和栽培管理方式下的平均值。土壤性质中,pH值和土壤氧化还原状况对Cd的有效性影响很大。酸性和好氧条件下Cd有效性提高[2-3, 29-31],水稻对Cd的吸收增加,移除率也会相应增加。在一些有利于提高土壤Cd有效性的特定条件下,Cd移除率可比平均水平高3~5倍,即单季移除率可达土壤Cd总量的0.9%~1.5%。即使在这些情况下,水稻秸秆和籽粒对土壤Cd的移除效果仍然很有限。
根据已有的报道,我国不同地区大气沉降的Cd通量变化幅度为0.4~25 g·hm-2·a-1 [31-34]。与表 3比较可知,水稻秸秆Cd积累量与大气Cd沉降量基本相等。除了大气沉降外,灌溉水以及有些化肥和有机肥的施用也会向农田土壤输入Cd[2, 33]。因此,考虑到Cd输入,秸秆移除很可能并不会降低土壤Cd含量。
与其他重金属或类金属(如Pb、As、Hg)相比,Cd从土壤向植物的移动性较强,秸秆与土壤Cd的浓度比值(即富集系数)远大于其他重金属[35]。因此,秸秆移除对降低土壤中其他重金属或类金属含量的效果比Cd更低。
秸秆移除减少了有机质向土壤的输入。此外,水稻秸秆富含多种矿质元素,如Si的平均含量高达5%,每季秸秆Si的积累量平均值达400 kg·hm-2[36]。Si对水稻抵抗生物和非生物胁迫起重要作用[37-38],长期秸秆移除可使土壤有效Si含量下降,导致水稻减产[39]。此外,Si对水稻吸收Cd和As有抑制作用[40-41],长期秸秆移除可能削弱这种抑制作用。
3 结论本研究基于文献报道的数据建立了水稻秸秆Cd浓度与土壤Cd浓度的线性回归方程,根据该方程计算了水稻秸秆对Cd的积累量,发现单季秸秆移除可降低耕层土壤Cd含量平均值为0.27%,降镉效果有限。考虑到秸秆移除可能带来的副作用,秸秆移除不宜作为中低污染农田安全生产广泛推广的措施。
[1] |
Wang P, Chen H, Kopittke P M, et al. Cadmium contamination in agricultural soils of China and the impact on food safety[J]. Environmental Pollution, 2019, 249: 1038-1048. DOI:10.1016/j.envpol.2019.03.063 |
[2] |
Zhao F J, Ma Y B, Zhu Y G, et al. Soil contamination in China: Current status and mitigation strategies[J]. Environmental Science & Technology, 2015, 49(2): 750-759. |
[3] |
Zhu H H, Chen C, Xu C, et al. Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China[J]. Environmental Pollution, 2016, 219: 99-106. DOI:10.1016/j.envpol.2016.10.043 |
[4] |
Cao F, Wang R, Cheng W, et al. Genotypic and environmental variation in cadmium, chromium, lead and copper in rice and approaches for reducing the accumulation[J]. Science of the Total Environment, 2014, 496: 275-281. DOI:10.1016/j.scitotenv.2014.07.064 |
[5] |
Liu W X, Shen L F, Liu J W, et al. Uptake of toxic heavy metals by rice(Oryza sativa L.) cultivated in the agricultural soil near Zhengzhou City, People' s Republic of China[J]. Bulletin of Environmental Contamination and Toxicology, 2007, 79(2): 209-213. DOI:10.1007/s00128-007-9164-0 |
[6] |
Liu H Y, Probst A, Liao B H. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill(Hunan, China)[J]. Science of the Total Environment, 2005, 339(1/2/3): 153-166. |
[7] |
Liao G, Wu Q, Feng R, et al. Efficiency evaluation for remediating paddy soil contaminated with cadmium and arsenic using water management, variety screening and foliage dressing technologies[J]. Journal of Environmental Management, 2016, 170: 116-122. |
[8] |
范中亮, 季辉, 杨菲, 等. 不同土壤类型下杂交籼稻地上部器官对重金属镉和铅的富集特征[J]. 中国水稻科学, 2010, 24(2): 183-188. FAN Zhong-liang, JI Hui, YANG Fei, et al. Accumulation characteristics of cadmium and lead in aboveground organs of indica hybrid rice as affected by different soil types[J]. Chinese Journal of Rice Science, 2010, 24(2): 183-188. |
[9] |
杨定清, 罗丽卉, 周娅, 等. 非或低镉污染稻田不同品种稻米镉含量调查[J]. 环境与健康杂志, 2017, 34(12): 1091-1094. YANG Ding-qing, LUO Li-hui, ZHOU Ya, et al. Cadmium in different rice cultivars in soil with or without light contamination[J]. Journal of Environment and Health, 2017, 34(12): 1091-1094. |
[10] |
Mao C, Song Y, Chen L, et al. Human health risks of heavy metals in paddy rice based on transfer characteristics of heavy metals from soil to rice[J]. CATENA, 2019, 175: 339-348. DOI:10.1016/j.catena.2018.12.029 |
[11] |
李慧敏, 方圆, 唐翠荣, 等. 广西水稻土镉有效性、水稻镉富集系数与土壤性质的关系研究[J]. 西南农业学报, 2018, 31(12): 2678-2684. LI Hui-min, FANG Yuan, TANG Cui-rong, et al. Relationship among bioavailability cadmium and cadmium enrichment coefficient in rice and paddy soil properties in Guangxi[J]. Southwest China Journal of Agricultural Sciences, 2018, 31(12): 2678-2684. |
[12] |
宋波, 王佛鹏, 周浪, 等. 广西镉地球化学异常区水稻籽粒镉含量预测模型研究[J]. 农业环境科学学报, 2019, 38(12): 2672-2680. SONG Bo, WANG Fo-peng, ZHOU Lang, et al. Prediction model for cadmium concentrations in rice grain under the geochemical background of a cadmium anomaly area in Guangxi[J]. Journal of Agro-Environment Science, 2019, 38(12): 2672-2680. DOI:10.11654/jaes.2019-0723 |
[13] |
付玉豪, 李凤梅, 郭书海, 等. 沈阳张士灌区彰驿站镇土壤与水稻植株镉污染分析[J]. 生态学杂志, 2017, 36(7): 1965-1972. FU Yu-hao, LI Feng-mei, GUO Shu-hai, et al. Cadmium pollution in soil and rice plants in Zhangyizhan Town of Zhangshi irrigation area of Shenyang[J]. Chinese Journal of Ecology, 2017, 36(7): 1965-1972. |
[14] |
赵冰, 沈丽波, 程苗苗, 等. 麦季间作伴矿景天对不同土壤小麦, 水稻生长及锌镉吸收性的影响[J]. 应用生态学报, 2011, 22(10): 2725-2731. ZHAO Bing, SHEN Li-bo, CHENG Miao-miao, et al. Effects of intercropping Sedum plumbizincicola in wheat growth season under wheat-rice rotation on the crops growth and their heavy metals uptake from different soil types[J]. Chinese Journal of Applied Ecology, 2011, 22(10): 2725-2731. |
[15] |
Wang M Y, Chen A K, Wong M H, et al. Cadmium accumulation in and tolerance of rice(Oryza sativa L.) varieties with different rates of radial oxygen loss[J]. Environmental Pollution, 2011, 159(6): 1730-1736. DOI:10.1016/j.envpol.2011.02.025 |
[16] |
谈宇荣, 徐晓燕, 丁永祯, 等. 旱稻吸收砷镉的基因型差异研究[J]. 农业环境科学学报, 2016, 35(8): 1436-1443. TAN Yu-rong, XU Xiao -yan, DING Yong-zhen, et al. Genotypic variation of arsenic and cadmium uptake by upland rice[J]. Journal of Agro-Environmental Sciences, 2016, 35(8): 1436-1443. |
[17] |
Hu P, Ouyang Y, Wu L, et al. Effects of water management on arsenic and cadmium speciation and accumulation in an upland rice cultivar[J]. Journal of Environmental Sciences, 2015, 27: 225-231. DOI:10.1016/j.jes.2014.05.048 |
[18] |
Fan J L, Hu Z Y, Ziadi N, et al. Excessive sulfur supply reduces cadmium accumulation in brown rice(Oryza sativa L.)[J]. Environmental Pollution, 2010, 158(2): 409-415. DOI:10.1016/j.envpol.2009.08.042 |
[19] |
唐非, 雷鸣, 唐贞, 等. 不同水稻品种对镉的积累及其动态分布[J]. 农业环境科学学报, 2013, 32(6): 1092-1098. TANG Fei, LEI Ming, TANG Zhen, et al. Accumulation characteristic and dynamic distribution of Cd in different genotypes of rice(Oryza sativa L.)[J]. Journal of Agro-Environment Science, 2013, 32(6): 1092-1098. |
[20] |
He J, Zhu C, Ren Y, et al. Genotypic variation in grain cadmium concentration of lowland rice[J]. Journal of Plant Nutrition and Soil Science, 2006, 169(5): 711-716. DOI:10.1002/jpln.200525101 |
[21] |
Sun Y, Sun G, Xu Y, et al. Evaluation of the effectiveness of sepiolite, bentonite, and phosphate amendments on the stabilization remediation of cadmium-contaminated soils[J]. Journal of Environmental Management, 2016, 166: 204-210. |
[22] |
Li P, Wang X, Zhang T, et al. Effects of several amendments on rice growth and uptake of copper and cadmium from a contaminated soil[J]. Journal of Environmental Sciences, 2008, 20(4): 449-455. DOI:10.1016/S1001-0742(08)62078-1 |
[23] |
何冰, 陈小勤, 辛子兵, 等. 不同生长调节物质对水稻生长及镉积累的影响[J]. 生态学报, 2016, 36(21): 6863-6871. HE Bing, CHEN Xiao-qin, XIN Zi-bing, et al. Effects of four plant growth regulators on growth and cadmium accumulation in rice[J]. Acta Ecologica Sinica, 2016, 36(21): 6863-6871. |
[24] |
Chen H, Zhang W, Yang X, et al. Effective methods to reduce cadmium accumulation in rice grain[J]. Chemosphere, 2018, 207: 699-707. DOI:10.1016/j.chemosphere.2018.05.143 |
[25] |
Duan G L, Shao G S, Tang Z, et al. Genotypic and environmental variations in grain cadmium and arsenic concentrations among a panel of high yielding rice cultivars[J]. Rice, 2017, 10: 9. DOI:10.1186/s12284-017-0149-2 |
[26] |
陈院华, 李建国, 杨涛, 等. 水稻品种镉积累特征及相关性研究[J]. 江西农业学报, 2017, 29(9): 10-14. CHEN Yuan-hua, LI Jian-guo, YANG Tao, et al. Research on accumulation characteristic and correlation of cadmium in various rice varieties[J]. Acta Agriculturae Jiangxi, 2017, 29(9): 10-14. |
[27] |
Smolders E, Brans K, Foldi A, et al. Cadmium fixation in soils measured by isotopic dilution[J]. Soil Science Society of America Journal, 1999, 63(1): 78-85. DOI:10.2136/sssaj1999.03615995006300010013x |
[28] |
Degryse F, Buekers J, Smolders E. Radio-labile cadmium and zinc in soils as affected by pH and source of contamination[J]. European Journal of Soil Science, 2004, 55(1): 113-121. DOI:10.1046/j.1351-0754.2003.0554.x |
[29] |
Chen H P, Wang P, Gu Y, et al. The within-field spatial variation in rice grain Cd concentration is determined by soil redox status and pH during grain filling[J]. Environmental Pollution, 2020, 261: 114151. DOI:10.1016/j.envpol.2020.114151 |
[30] |
Mclaughlin M J, Smolders E, Zhao F J, et al. Managing cadmium in agricultural systems[J]. Advances in Agronomy, 2021, 166: 1-129. |
[31] |
Wang J, Wang P M, Gu Y, et al. Iron-manganese (oxyhydro) oxides, rather than oxidation of sulfides, determine mobilization of Cd during soil drainage in paddy soil systems[J]. Environmental Science & Technology, 2019, 53(5): 2500-2508. |
[32] |
Luo L, Ma Y B, Zhang S Z, et al. An inventory of trace element inputs to agricultural soils in China[J]. Journal of Environmental Management, 2009, 90(8): 2524-2530. DOI:10.1016/j.jenvman.2009.01.011 |
[33] |
Hou Q, Yang Z, Ji J, et al. Annual net input fluxes of heavy metals of the agroecosystem in the Yangtze River delta, China[J]. Journal of Geochemical Exploration, 2014, 139: 68-84. DOI:10.1016/j.gexplo.2013.08.007 |
[34] |
Feng W, Guo Z, Xiao X, et al. Atmospheric deposition as a source of cadmium and lead to soil-rice system and associated risk assessment[J]. Ecotoxicology and Environmental Safety, 2019, 180: 160-167. DOI:10.1016/j.ecoenv.2019.04.090 |
[35] |
Zhao F J, Wang P. Arsenic and cadmium accumulation in rice and mitigation strategies[J]. Plant and Soil, 2020, 446: 1-21. DOI:10.1007/s11104-019-04374-6 |
[36] |
Ma J F, Takahashi E. Soil, fertilizer and plant silicon research in Japan[M]. Amsterdam, The Netherlands: Elsevier Science, 2002.
|
[37] |
Ma J F, Yamaji N. Functions and transport of silicon in plants[J]. Cellular and Molecular Life Sciences, 2008, 65(19): 3049-3057. DOI:10.1007/s00018-008-7580-x |
[38] |
Savant N K, Snyder G H, Datnoff L E. Silicon management and sustainable rice production[J]. Advances in Agronomy, 1997, 58: 151-199. |
[39] |
Savant N K, Datnoff L E, Snyder G H. Depletion of plant-available silicon in soils: A possible cause of declining rice yields[J]. Communications in Soil Science and Plant Analysis, 1997, 28(13/14): 1245-1252. |
[40] |
Shao J F, Che J, Yamaji N, et al. Silicon reduces cadmium accumulation by suppressing expression of transporter genes involved in cadmium uptake and translocation in rice[J]. Journal of Experimental Botany, 2017, 68(20): 5641-5651. |
[41] |
Ma J F, Yamaji N, Mitani N, et al. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105: 9931-9935. |