大型铜冶炼厂周边农田区大气重金属沉降特征研究

陶美娟 1.2.3,周 静 1.2*,梁家妮 1.2,崔红标 1.2.3,徐 磊 1.2.3,祝振球 1.2.3

(1.中国科学院南京土壤研究所,南京 210008; 2.国家红壤改良工程技术研究中心 中国科学院红壤生态实验站,江西 鹰潭 335211; 3.中国科学院大学,北京 100049)

摘 要:为探索铜冶炼厂周边农田区大气重金属沉降的时空变异特征,以冶炼厂为中心,四周等距离均匀分设 8 个监测点,于 2012 年 5 月至 2013 年 4 月,根据酸沉降检测技术规范,采收大气干湿沉降混合样品,利用原子吸收分光光度法分析样品中 Cu、Cd、Pb、Zn、Cr 含量,计算各监测点所代表区域各类重金属沉降通量。结果显示,研究区重金属 Cu、Cd、Pb、Zn、Cr 的年沉降通量分别为 638、6.56、70.0、225、22.7 mg·m⁻²·a⁻¹。五种重金属沉降量具有一定的时间变化特征,其中 Cd、Zn 和 Cr 的月际间变化显著(*P*<0.05,*n*=96), Pb、Zn、Cr 季节间变化显著(*P*<0.05,*n*=32), 而 Cu 无显著的月间或季间变化。空间上,Cu、Cd、Pb 年沉降通量有极显著性差异(*P*<0.01,*n*=8),以铜冶炼厂西南方向的九牛岗监测点最高, 而 Zn 和 Cr 则无显著性差异。

关键词:大气沉降;重金属;时空变异;农田区

中图分类号:X75 文献标志码:A 文章编号:1672-2043(2014)07-1328-07 doi:10.11654/jaes.2014.07.011

Atmospheric Deposition of Heavy Metals in Farmland Area Around a Copper Smelter

TAO Mei-juan^{1,2,3}, ZHOU Jing^{1,2*}, LIANG Jia-ni^{1,2}, CUI Hong-biao^{1,2,3}, XU Lei^{1,2,3}, ZHU Zhen-qiu^{1,2,3}

(1.Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; 2.National Engineering Research and Technology Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan 335211, China; 3.University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract: Atmospheric deposition is one of transport approaches of heavy metals. Farmland is facing heavy metal pollution from the surrounding industries. In this study, we selected a typical farmland area to explore the spatial-temporal variation characteristics of heavy metal deposition around a copper smelter. Between May, 2012 to April, 2013, atmospheric deposition samples (dry and wet) were collected monthly at 8 monitoring sites. The annual deposition fluxes of heavy metals were 638.0 mg·m⁻²·a⁻¹, 6.56 mg·m⁻²·a⁻¹, 70.0 mg·m⁻²·a⁻¹, 225.0 mg·m⁻²·a⁻¹, and 22.7 mg·m⁻²·a⁻¹ for Cu, Cd, Pb, Zn and Cr, respectively. These heavy metals showed temporal variations. Zinc and Cr depositions had significant monthly and seasonal variations (P<0.05), but Cd showed significant monthly variation only (P<0.05, n=96), and Pb seasonal differences only (P<0.05, n=32). However, no significant monthly or seasonal variations were found for Cu deposition. The annual deposition fluxes of Cu, Cd and Pb had markedly difference between monitoring sites (P<0.01, n=8), but not for Zn and Cr(P>0.05, n=8). **Keywords**; atmospheric deposition; heavy metals; spatial-temporal variation; farmland area

20世纪中叶以来,密集的工业生产、频繁的交通运输和人类活动等向大气中排放的重金属激增,大气

重金属沉降也呈迅猛增加趋势^[1-2]。大气沉降不仅会直 接影响居民身体健康,污染土壤和水体等,而且也会 对农作物生长产生不良影响^[3-7]。大量颗粒物积累在植 物表面,堵塞植物叶片气孔,影响正常生理功能^[8],其 包含的污染物可直接被农作物气孔吸收,影响农产品 质量安全^[9]。目前大气重金属沉降研究范围多集中于 大中型城市^[10-11],有关农田区域的大气重金属沉降特 征及时空差异还少有报道。

铜冶炼是三废污染相对较重的行业,废气中主要 含有 Cu、Cd、Pb、Zn 等重金属^[12-13]。某铜冶炼厂位于江

收稿日期:2013-12-13

基金项目:国家"973"课题"微/纳米材料对重金属重度污染土壤修复 的原理及其示范"(2013CB934302);赣都英才 555 工程:国 家科技支撑计划课题"红壤耕地次生障碍修复技术研究与 集成示范"(2011BAD41B01);2010 年度国家重金属污染防 治专项资金"江铜贵冶周边区域九牛岗土壤修复示范项目"

作者简介:陶美娟(1988—),女,硕士研究生,主要研究方向为大气沉 降与土壤生态环境。E-mail:mjtao@issas.ac.cn

^{*} 通信作者:周 静 E-mail:zhoujing@issas.ac.cn

西省贵溪市,是当前全球单体最大的闪铜现代化冶炼 厂之一,该厂周边农田土壤普遍存在轻到重度 Cu、Cd 污染,部分农田土壤出现了 Zn、Pb、Cr 污染,并严重影 响到农作物品质^[14-16]。大气沉降作为该区域农田生态 系统重金属污染最可能的主要来源之一,其沉降输入 的格局和特征尚缺乏研究。因此,本文在前人对土壤 和植物调查研究的基础上,对铜冶炼厂周边农田系统 中存在的五种主要重金属(Cu、Cd、Zn、Pb、Cr)的大气 沉降开展定量研究,定点监测该区域典型农业种植模 式下农田生态系统大气重金属的输入通量,探索污染 源的输入特征,为该区域的农业安全生产管理及土壤 污染防治提供理论参考。

1 材料与方法

1.1 研究区概况

某铜冶炼厂位于江西省贵溪市,距市区约4km, 地属亚热带温湿气候区,气温偏高,光照充足。境内地 形复杂,气候差异较大,全年降水量1905mm,多集中 于春夏之间,4—6月占全年总降水量的48%,年蒸发 量1482mm,年日照时数1736h,常年主导风向是东 风、东北风,多年平均风速1.19m·s⁻¹,最大风速达 16.2m·s⁻¹,无霜期平均343d。

1.2 取样与分析

以铜冶炼厂为中心,在其四周距离约2km的农 田区内,设置8个监测点(图1)。按照中国环境保护 行业标准中酸沉降检测技术规范(HJ/T 165—2004), 用无盖聚乙烯桶(高 40 cm, 直径 15 cm)作为沉降接 收容器,在 2012 年 5 月至 2013 年 4 月,以月为周期, 采集干湿沉降混合样品,共收集样品 96 个。各监测点 样品收集时,采取了免受低空地面扬尘等因素影响的 措施:(1)沉降接收器放置在 1.5 m 高的沉降支架上; (2)各采样点距离道路至少 1 km,农田区内 0.5 km; (3)采样点避免任何人为干扰。

每月将沉降样品无损耗、无污染运回实验室,样 品静置3d,用虹吸法分离出上清液,测定pH、测量体 积;下层沉淀物及少量悬浊液全部转移至玻璃烧杯 内,过滤后记录滤液体积,滤液体积与上清液体积合 并记为溶液总体积,得溶液样品。沉淀物烘干后称重, 得沉淀样品。溶液样品过滤后冷冻保存,采用原子吸 收分光光度法测定;沉淀样品采用硝酸-高氯酸全量 分解法消解,原子吸收分光光度法测定(原子吸收分 光光度计,目立Z-2000)。溶液样品选择去离子水为 空白对照,沉淀样品选择土壤(GBW 07405)国家标准 物质为空白对照,测定项目为重金属元素Cu、Cd、Pb、 Zn、Cr,其中,Cu、Zn的检出限为0.001 mg·L⁻¹;Cd、Pb、 Cr 的检出限为0.01 µg·L⁻¹。所有元素回收率在 92%~ 98%之间。

1.3 数据处理

重金属月沉降通量计算公式如下: *F=Qs+Qi =V・Cs/S+M・Ci/S*

贵溪冶炼厂监测点分布图

图 1 铜冶炼厂周边重金属沉降监测点分布图

Figure 1 Monitoring sites of heavy metal deposition around a copper smelter

式中:F为月沉降通量,mg·m⁻²;Qs为每月重金属溶解 部分,mg·m⁻²;Qi为每月重金属沉淀部分,mg·m⁻²;V为 溶液总体积,L;Cs为溶液样品元素浓度,mg·L⁻¹;M为月沉淀总质量,g;Ci为沉淀样品元素质量分数, mg·g⁻¹;S为监测面积,m²。

由周年内每月数据之和得到重金属溶解部分、沉 淀部分、年沉降通量(mg·m⁻²·a⁻¹)。

本文所有数据及处理均在 MS Excel 2003、SPSS 18.0 和 Origin8.6 中进行处理。

2 结果与讨论

2.1 铜冶炼厂周边农田区重金属沉降通量

铜冶炼厂周边农田区重金属溶解部分及沉淀部 分沉降量如图 2,重金属年沉降通量如表 1。结果表 明,沉降总量中五种重金属溶解部分均高于沉淀部 分,以 Zn 元素最为显著,溶解部分是沉淀部分的 4.72 倍,其他元素溶解部分与沉淀部分的比值介于 1.23~3.31。这与降尘中重金属形态分布及降雨的酸 碱度有关,因为铜冶炼排放烟尘中含有酸溶性重金 属氧化物^[17],在模拟不同 pH 的降雨研究中发现,酸性 越强重金属溶出率越高^[18-19]。该研究区属于全国酸雨 分布区,监测期间降水 pH 平均为 4.76,测得溶液样 品 pH 在 3.62~4.98 之间,铜冶炼排放的烟尘中,除含

农业环境科学学报 第33卷第7期

表1 铜冶炼厂周边重金属年沉降通量

Table 1 Annual deposition fluxes of heavy metals around

a copper smelter

投口公口	山を湖山上	元素年沉降通量/mg·m ⁻² ·a ⁻¹					
件前编写	<u> </u>	Cu	Cd	Pb	Zn	Cr	
GX01	周家	348	4.00	52.4	151	25.7	
GX02	石窝	201	3.44	54.4	165	22.3	
GX03	滨江	424	5.84	61.8	212	26.4	
GX04	沈家	586	5.93	76.1	189	21.6	
GX05	吴家	359	4.78	65.5	183	19.4	
GX06	印石	640	7.37	74.5	331	24.6	
GX07	水泉	574	5.88	72.6	225	16.5	
GX08	九牛	1973	15.2	102.7	348	24.9	
平均值		638	6.56	70.0	225	22.7	
标准差		559	3.71	16.0	74.5	3.43	
变异系数		0.880	0.570	0.230	0.330	0.150	

有重金属外,还有 SO₂、硫化物等污染物,加剧了降水的酸化程度,使重金属溶解部分变高^[20]。

由表1可知,Cu年沉降通量高于其他元素,平均可达638 mg·m⁻²·a⁻¹,高出Cd、Pb、Cr年沉降通量1~2 个数量级。Cd、Pb、Zn、Cr四种元素年沉降通量分别达 到了6.56、70.0、225、22.7 mg·m⁻²·a⁻¹。对比国内外研 究,本研究区内铜冶炼厂周边区域农田区Cu、Cd平 均年沉降通量均显著大于国内外一些研究区域,Pb、 Zn、Cr三种元素平均年沉降通量除与哈尔滨市较接 近外,均明显大于其他五个参比区域(表2)。

2.2 铜冶炼厂周边农田区重金属沉降时空分布特征

大气重金属沉降主要受气象条件(降雨类型、时 段、雨量、降雨间隔时间和风速风向)、季节变化以及 降尘来源和性质^四等多种因素的影响,因此具有一定 的时空分布特征。

2.2.1 周边农田区重金属沉降时间分布特征

铜冶炼厂周边农田区大气重金属沉降月际间变 化规律如图 3。差异显著性检验(a=0.05)表明,不同

Table 2 Comparisons of heavy metal depositions nearby a copper smelter and other sites $(mg \cdot m^{-2} \cdot a^{-1})$						
区域	Cu	Cd	Pb	Zn	Cr	
铜冶炼厂周边(2012—2013)	638	6.56	70.0	225	22.7	
成都市经济区(2004—2005)[21]		1.77	45.9	147		
大庆市主城区(2008—2009)[22]	17.5	0.17	15.7	78.8	17.8	
哈尔滨市建成区(2008—2009)[23]		0.67	52.7	177	39.1	
香港大帽山(2001—2002)[24]	17.4	0.07	10.6	127	6.32	
贝尔格莱德市主城区(2002—2006) ^[5]	34.5	0.22	21.7	41.4	1.64	
巴黎主城区(1988—2001) ^[26]	18.6	0.24	4.20	30.00		

= 2 铜冶桥厂用协区域与其他地区重全层在沉降涌号对比 (ma, m^{-2}, a^{-1})

月份 Cu、Pb 月沉降通量差异性不显著;Cd、Zn、Cr 月 沉降通量随月际变化呈显著性差异(P<0.05),其中 Cr 为极显著差异(P<0.01)。分析各重金属月沉降通 量最高值与最低值出现的月份,五种元素之间并无 规律性,但 Cu 与 Cd 月沉降通量之间具有高度相关 性(r>0.80,n=96),其余各元素月沉降量两两之间相 关性不高。

铜冶炼厂周边农田区大气重金属沉降季节间变 化规律见表 3。差异显著性检验(a=0.05)表明,大气 Cu、Cd冬季沉降量均分别与春、秋两季呈显著差异 (P<0.05);Pb、Zn、Cr的季节沉降量随季节变化差异性 显著(P<0.05),其中Cr为极显著差异(P<0.01)。五种元 素季节沉降量最高值多出现在春夏两季,最低值多出 现在冬季。这与该地区年内降雨量分配不均有关,监 测期间降雨多集中于春夏两季(4—6月降雨量占全年

表 3 区域季节降雨量及大气重金属季节

Table 3 Seasonal variations in rainfall and atmospheric heavy metal depositions

			•			
季节	降雨量/ mm	Cu/ mg•m ⁻²	Cd/mg·m ⁻²	Pb/ mg∙m ⁻²	$Zn/mg \cdot m^{-2}$	Cr/ mg•m ⁻²
春	950	209a	2.00a	19.9b	53.8ab	9.85a
夏	626	$135 \mathrm{bc}$	2.02a	12.2c	74.8a	$7.84\mathrm{b}$
秋	500	178ab	1.59a	24.1a	62.8a	2.95c
冬	326	116c	0.93b	18.9b	34.0b	2.04c

注:同列数据后的不同字母表示在 P<0.05 水平差异性显著。

降雨量的48%),空气中不能自由降落的尘粒被雨水 带至地面,会导致元素沉降量增加^[28],相关性分析表 明,Cu、Cd、Cr季节沉降量与季节降雨量之间均呈高 度相关(r>0.80,n=32),Zn与降雨量之间的相关性不 高,但最高值仍出现在降雨量较多的夏季。由于每年 12月至次年2月的风速较大,降雨量较少,污染物易 于扩散而不易于沉降,造成冬季的沉降量较低。Pb的 季节沉降量最高值出现在秋季,最低值出现在夏季, 与季节降雨量之间无显著相关性,可能是由大气降尘 中各元素的来源及主要分布颗粒物粒径不同所导致。 因此,重金属沉降量大小除与降雨和降尘总量有关 外,还与其中重金属含量高低有关。

2.2.2 周边农田区重金属沉降空间分布特征

铜冶炼厂周边各监测点所代表的农田区各类重 金属年沉降通量如图 4。其中,Cu、Cd、Pb 三种元素 不同监测点之间年沉降通量均存在极显著性差异 (P<0.01),Zn、Cr 两种元素则表现出无显著性差异 (P>0.05)。各元素不同监测点年沉降通量中,Cu 的 变异系数最高,为0.88,最高值是最低值的约10倍; Cr 的变异系数最低,为0.15。大部分元素年沉降通 量最高值出现在位于冶炼厂西南方向的九牛岗监测 点,最低值多出现在位于铜冶炼厂西北偏北方向的 石窝、东北偏北方向的周家监测点。根据监测期间该 地区的风向频率玫瑰图(图 5)进行相关性分析得:

Figure 4 Annual deposition fluxes of heavy metals in different monitoring sites around a copper smelter

除 Cr 外, Cu、Cd、Pb、Zn 平均年沉降通量均与对应风向频率呈高度相关(r>0.85)。由此得出,在与污染源距离、降雨量及风速等因素基本一致的情况下,风向是导致不同监测点重金属年沉降通量差异性的主要因素。

3 结论

(1)通过周年监测分析,研究区铜冶炼厂周边农 田区大气沉降中 Cu、Cd、Pb、Zn、Cr 的年沉降通量分 别为 638、6.56、70.0、225、22.7 mg·m⁻²·a⁻¹。与国内外 一些研究区域相比,该区域属于这五种重金属元素的 高沉降区。 (2)不同重金属的沉降量对时间变化的响应不同: Cr、Zn最易受月际间和季节间变化的影响(月、季间 沉降量均表现出显著性差异,P<0.05),Cd、Pb、Cu次 之。五种重金属季节沉降量最高值多出现在春夏两 季,最低值多出现在冬季,造成这一现象的主要原因 为季节降雨量的不同。由于污染来源及主要分布的颗 粒物粒径的影响,Pb季节沉降量表现出秋季最高,夏 季最低的现象。

(3)不同监测点之间 Cu、Cd、Pb 年沉降通量均存 在极显著性差异(P<0.01),Zn、Cr 则表现出无显著性差 异(P>0.05)。除 Cr 外,Cu、Cd、Pb、Zn 平均年沉降量均 与对应的风向频率呈高度相关(r>0.85),风向成为导致 2014 年 7 月

不同监测点重金属年沉降通量差异性的主要因素。

参考文献:

- Cao Z Z, Yang Y H, Lu J L, et al. Atmospheric particle characterization, distribution and deposition in Xi'an, Shaanxi Province, Central China [J]. Environmental Pollution, 2011, 159(2):577–584.
- [2] Hu X, Zhang Y, Ding Z H, et al. Bioaccessibility and health risk of arsenic and heavy metals(Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China[J]. *Atmospheric Environment*, 2012, 57(1): 146–152.
- [3] Wang X Q, He M C, Xie J, et al. Heavy metal pollution of the world largest antimony mine –affected agricultural soils in Hunan Province China[J]. Soils Sediments, 2010, 10(5):827–837.
- [4] Borjan M, Marcella S, Blount B, et al. Perchlorate exposure in lactating women in an urban community in New Jersey[J]. Science of the Total Environment, 2011, 409(3):460–464.
- [5] Pandey J, Pandey U. Accumulation of heavy metals in dietary vegetables and cultivated soil horizon on organic farming system in relation to atmospheric deposition in a seasonally dry tropical region of India[J]. *Environmental Monitoring and Assessment*, 2009, 148:61–74.
- [6] Hermsdorff H H, Zulet M A, Puchau B, et al. Fruit and vegetable consumption and proinflammatory gene expression from peripheral blood mononuclear cells in young adults: A translational study[J]. Nutrition and Metabolism, 2010, 7:1–11.
- [7]朱 鹏,刘 洋,陈良华,等. 岷江下游农田生态系统重金属铅镉锌的输入源格局[J]. 农业环境科学学报, 2013, 32(9):1814-1820. ZHU Peng, LIU Yang, CHEN Liang-hua, et al. Input pattern of sources for Pb, Cd and Zn in the agricultural ecological system in the lower reaches(Wu-tongqiao section) of Minjiang River[J]. Journal of Agro-Environment Science, 2013, 32(9):1814-1820.
- [8] Gonzalo M A, Bermudez, Raquel J, et al. Heavy metal and trace ele-

ments in atmospheric fall-out: Their relationship with topsoil and wheat element composition[J]. *Journal of Hazardous Materials*, 2012, 213–214: 447–456.

[9] 章明奎, 刘兆云, 周 翠. 铅锌矿区附近大气沉降对蔬菜中重金属积 累的影响[J]. 浙江大学学报(农业与生命科学版), 2010, 36(2): 221-229.

ZHANG Ming-kui, LIU Zhao-yun, ZHOU Cui. Effect of atmospheric deposition on heavy metal accumulation in vegetable crop near a leadzinc smelt mine[J]. *Journal of Zhejiang University*(*Agric & Life Sci*), 2010, 36(2):221–229.

- [10] 庞 博, 张银龙, 王 丹. 城市不同功能区内叶面尘与地表灰尘的 粒径和重金属特征[J]. 生态环境学报, 2009, 18(4):1312–1317. PANG Bo, ZHANG Yin-long, WANG Dan. The characteristic of particulate size and heavy metal in foliar dust and surface dust from different urban areas[J]. *Ecology and Environmental Sciences*, 2009, 18(4): 1312–1317.
- [11]杨忠平,卢文喜,龙玉桥.长春市城区重金属大气干湿沉降特征[J]. 环境科学研究,2009,22(1):28-34.

YANG Zhong-ping, LU Wen-xi, LONG Yu-qiao. Atmospheric dry and wet deposition of heavy metals in Changchun City, China[J]. *Research* of Environmental Sciences, 2009, 22(1):28–34.

[12]韩明霞,孙启宏.中国火法铜冶炼污染物排放情景分析[J].环境科 学与管理,2009,34(12):40-44.

HAN Ming-xia, SUN Qi-hong. Pullutants emission scenario analysis of China copper smelter industry[J]. *Environmental Science and Management*, 2009, 34(12):40-44.

[13] 马倩玲, 郭 泉. 铜冶炼企业的环境影响评价[J]. 有色金属, 2009, 61 (1):125-128.

MA Qian-ling, GUO Quan. Environmental impact assessment for copper extractive metallurgy industry[J]. *Nonferrous Metals*, 2009, 61(1): 125–128.

- [14] 梁家妮,周 静,马友华,等. 治炼厂综合堆渣场围坝下水田重金属 污染特征与评价[J]. 农业环境科学学报, 2009, 28(5):877-882.
 LIANG Jia-ni, ZHOU Jing, MA You-hua, et al. Status and assessment of heavy metals pollution in paddy soil around the spoil area of smeltery
 [J]. Journal of Agro-Environment Science, 2009, 28(5):877-882.
- [15] 梁家妮,周 静,崔 键,等. 冶炼厂综合堆渣场周边菜地重金属分布特征与污染评价[J]. 农业环境与发展, 2009, 26(2):84-87. LIANG Jia-ni, ZHOU Jing, CUI Jian, et al. Status and assessment of heavy metals pollution in vegetable field around the spoil area of smeltery[J]. Agro-Environment & Development, 2009, 26(2):84-87.
- [16] 江水英, 吴声东, 肖化云, 等. 贵溪冶炼厂周边菜园地土壤-辣椒系统中重金属的迁移特征[J]. 江西农业大学学报, 2010, 32(3):628-632.

JIANG Shui–ying, WU Sheng–dong, XIAO Hua–yun, et al. Characteristics of heavy metal transportation in vegetable soil and capsicum system near the Guixi Copper Smeltery[J]. *Acta A griculturae Universitatis Jiangxiensis*, 2010, 32(3):628–632.

[17] 关鲁雄, 雷坚志, 郑有材, 等. 铜冶炼厂低铟烟尘中浸取有价金属的研究[J]. 稀有金属, 2008, 32(1):88-93.
 GUAN Lu-xiong, LEI Jian-zhi, ZHENG You-cai, et al. Leaching pro-

农业环境科学学报 第 33 卷第 7 期

cess for comprehensive recovery of valuable metals from copper smelter dust with low indium[J]. Chinese Journal of Rare Metals, 2008, 32 (1):88–93.

[18] 胡恭任, 戚红璐, 于瑞莲, 等. 大气降尘中重金属形态分析及生态 风险评价[J]. 有色金属, 2011, 63(2):286-291.
HU Gong-ren, QI Hong-lu, YU Rui-lian, et al. Speciation analysis of heavy metal in atmospheric dust and ecological risk assessment[J].

Nonferrous Metals, 2011, 63(2):286-291.
[19] 胡恭任, 戚红璐, 于瑞莲, 等. 模拟酸雨对泉州市区大气降尘重金属的淋溶[J]. 环境化学, 2010, 29(5):884-891.
HU Gong-ren, QI Hong-lu, YU Rui-lian, et al. Leaching of heavy metals from Quanzhou dustfall with simulated acid rain[J]. Environmental Chemistry, 2010, 29(5):884-891.

[20] 解淑艳, 王瑞斌, 郑皓皓. 2005—2011 年全国酸雨状况分析[J]. 环 境监控与预警, 2012, 4(5):33-37.

XIE Shu-yan, WANG Rui-bin, ZHENG Hao-hao. Analysis on the acid rain from 2005 to 2011 in China[J]. *Environmental Monitoring and Forewarning*, 2012, 4(5):33–37.

- [21] 汤奇峰,杨忠芳,张本仁,等.成都经济区 As 等元素大气干湿沉降 通量及来源研究[J]. 地学前缘, 2007, 14(3):213-222.
 TANG Qi-feng, YANG Zhong-fang, ZHANG Ben-ren, et al. A study of elements flux and sources from atmospheric bulk deposition in the Chengdu economic region[J]. *Earth Science Frontiers*, 2007, 14(3): 213-222.
- [22]汤 洁,李 娜,李海毅,等.大庆市大气干湿沉降重金属元素通量及来源[J]. 吉林大学学报(地球科学版), 2012, 42(2):507-513.
 TANG Jie, LI Na, LI Hai-yi, et al. Flux and source appointment of heavy metals from atmospheric dry and wet deposition in Daqing City,

China[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(2):507-513.

- [23]汤 洁,韩维峥,李 娜,等.哈尔滨市城区大气重金属沉降特征和 来源研究[J].光谱学与光谱分析, 2011, 31(11):3087-3091.
 TANG Jie, HAN Wei-zheng, LI Na, et al. Multivariate analysis of heavy metal element concentrations in atmospheric deposition in Harbin City, Northeast China[J]. Spectroscopy and Spectral Analysis, 2011, 31(11):3087-3091.
- [24] Wong C S C, Li X D, Zhang G, et al. Atmospheric deposition of heavy metals in the Pearl River Delta, China[J]. Atmospheric Environment, 2003, 37(6):767–776.
- [25] Mijic Z, Stojic A, Perisic M, et al. Seasonal variability and source apportionment of metals in the atmospheric deposition in Belgrade[J]. *Atmospheric Environment*, 2010, 44(30):3630–3637.
- [26] Motelay–Massei A, Ollivon D, Tiphagne K, et al. Atmospheric bulk deposition of trace metals to the Seine River Basin, France: Concentrations, sources and evolution from 1988 to 2001 in Paris[J]. Water, Air, and Soil Pollution, 2005, 164, 119–135.
- [27] 蒋炳言, 方凤满, 汪琳琳. 芜湖市区地表灰尘中重金属空间分布特征及来源分析[J]. 安全与环境学报, 2010, 10(5):578-582.
 JIANG Bing-yan, FANG Feng-man, WANG Lin-lin. Source of heavy metals and their spatial distribution on the surface dust in Wuhu Urban Areas[J]. Journal of Safety and Environment, 2010, 10(5):578-582.
- [28] 胡春华, 柯 丽, 童 乐,等. 大气降水重金属含量特征及来源分析
 [J]. 环境污染与防治, 2012, 34(12):26-30.
 HU Chun-hua, KE Li, TONG Le, et al. Characteristics and source analysis of heavy metals in atmosphric precipitation of Boyang Lake basin[J]. Environmental Pollution & Control, 2012, 34(12):26-30.