腐熟堆肥为滤料的生物滤池对堆肥气中NH₃的去除效果

袁京1, 杜小龙1, 张智炯1, 李国学1*, 张地方1, 江滔2, 杨青原1
(1. 中国农业大学资源与环境学院, 北京 100193; 2. 乐山师范学院,化学学院, 四川 乐山 614004)

摘要: 为了研究腐熟堆肥作为生物滤池滤料对好氧堆肥过程中产生的NH₃的定量除效果, 试验设计了将生物滤料进行灭菌和不灭菌两个处理, 通过滤池对NH₃的去除率以及滤料物理化学性质的变化, 分析腐熟堆肥作为生物滤料对于NH₃的去除机理以及定量化物理吸附作用和微生物转化作用的贡献大小。结果表明, 腐熟堆肥作为生物滤料, 在一定的滤池高度下可100% 去除NH₃。在对NH₃的去除过程中, 腐熟堆肥物理吸附作用贡献率为75%~80%, 微生物转化作用的贡献率为10%~25%。NH₃在生物滤池中先通过物理吸附作用以铵态氮的形式被固定, 然后经微生物转化为硝态氮。滤池底部滤料承担着去除NH₃的主要作用, 随着滤池高度的增加, 滤料对NH₃的累积去除量逐渐减少。滤池不同高度与NH₃累积排放量的关系可用拟合方程表示。通过方程计算可知: 对于灭菌的滤料, 当滤池高度为50 cm 时, NH₃去除率可接近100%; 而未灭菌的腐熟堆肥滤料在25 cm 高度就可完全去除NH₃。腐熟堆肥: 矿土=4:6 (湿基质量比) 混合而成的生物滤料, 经过28 d 的过滤处理后, 滤料未发生酸化现象。

关键词: 生物过滤; 腐熟堆肥; 氨气; 细菌; 物理吸附; 去除率

Effect of mature compost biofilter on removal efficiency of NH₃ produced during composting
YUAN Jing1, DU Long-long1, ZHANG Zhi-ye1, LI Guo-xue1*, ZHANG Di-fang1, JIANG Tao2, YANG Qing-yuan1
(1. College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; 2. College of Chemistry, Leshan Normal University, Leshan 614004, China)

Abstract: Biofiltration is an effective technique to mitigate gaseous emissions. Mature compost may absorb gases emitted from composting piles. Diverse bacteria acclimated in mature compost may also contribute to the mitigation of NH₃ emissions. In this study, a quantitative contribution of adsorption capacity and microbical activity of biofilter to NH₃ removal efficiencies was examined using a mature compost as biofiltration material. Results showed that the mature compost as a biofiltration material removed 100% NH₃ via its high adsorption capacity and acclimated bacteria. Adsorption played the main role in NH₃ removal, accounting for 75%~80% of total removal. Microbial activity in the mature compost contributed 10%~25%. Ammonia was adsorbed physically by the un-sterilized biofilter, and was then converted to NO₂⁻/NO₃⁻ by nitrifying bacteria. Most NH₃ was removed by the packing material at the bottom of biofilter. Cumulative NH₃ emissions reduced gradually along with increasing biofilter thickness. The relationship between cumulative NH₃ emission (y) and thickness of biofilter (x) was expressed as y=7.727.4xe⁻⁰'²⁶ for non-sterilized biofilter (R²=0.983 9) and y=4.060.6e⁻⁰'³¹ for sterilized biofilter (R²=0.991 5). In non-sterilized treatment, biofilter of 25 cm thick could remove NH₃ completely, while in sterilized treatment, the biofilter thickness to remove NH₃ was 50 cm. No acidification was detected in a mixture of mature compost and sand at 4.6 at the end 28 day experiment. The present study indicates that using mature compost as biofilter is a suitable approach to mitigating NH₃ emissions during composting.

Keywords: biofiltration; mature compost; ammonia; bacteria; adsorption capacity; removal efficiency

收稿日期: 2015-08-06
基金项目: 国家自然科学基金项目(41275161, 41201282); “十二五” 国家科技支撑计划循环经济农业项目课题(2012BAD14B16); 中小企业发展专项基金中欧国际合作项目(SQ2013T000008)
作者简介: 袁京(1988一), 女, 博士, 主要研究方向为固体废弃物处理与资源化。E-mail: jingyuan@cau.edu.cn
*通讯作者: 李国学 E-mail: ligx@cau.edu.cn
我国城市生活垃圾经大类组分可以分为厨余垃圾和其他垃圾，厨余垃圾主要是可生物降解的一类垃圾，含水率高达 75%~80%。对于此类含水率和有机质量含量较高的固体废弃物，堆肥是一种有效处理方式。堆肥处理可实现厨余垃圾的无害化，同时也可以生产肥料。然而，恶臭污染已成为限制堆肥技术发展的主要问题。NH₃ 就是普遍存在的一种恶臭气体，《中华人民共和国大气污染防治法》已经明确规定了堆肥厂 NH₃ 排放的最低限值 (GB 14554—1993)。堆肥过程中 30%~60% 总氮以 NH₃ 的形式损失，对于堆肥过程中 NH₃ 的控制一直是研究的热点。

生物过滤是一种经济有效的去除臭气的方法。国内外大量的研究已经表明，腐熟堆肥是一种去除效率高且容易获取的生物滤料，一般被广泛用于去除堆肥过程中产生的 NH₃。各种不同的有机原料经堆肥后的腐熟堆肥均被作为滤料用于去除 NH₃，和其他可挥发有机污染物。Hung 和 Park 利用腐熟堆肥和椰子皮作为滤料可以完全去除猪粪堆肥过程中产生的 NH₃；Maeda 等用牛粪作为原材料进行堆肥，发现堆体覆盖一层腐熟的堆肥，可以明显减少 NH₃ 的释放；陆明等利用腐熟鸡粪堆肥和树皮组成填料去除鸡粪堆肥氧化，发现对堆肥气中 VOCs 有很好的去除效果，其中以总 VOCs 的比例高达 98.7%。不同原料的腐熟堆肥以及腐熟堆肥与其他物质构成的复合生物滤料，对于 NH₃ 的去除率可达到 70%~100%，且不需要适应期。

对于腐熟堆肥去除 NH₃ 的机理研究也有很多报道。Schuetz 等认为腐熟堆肥较大的比表面积为微生物生存提供了合适的环境。另一外，腐熟堆肥较弱水分保持力可以缓解气体的透过和逸散。腐熟堆肥具有较高的物理吸附能力以及较弱的微生物活性是去除 NH₃ 的主要原因。然而，这两种作用对 NH₃ 去除效率的贡献率分别为多少？这是微生物作用，还是物理吸附作用？目前关于腐熟堆肥作为滤料去除 NH₃ 的研究已有很多报道，主要集中在工艺参数确定以及提高去除效率方面。关于这两种作用的定量化效果研究还比较少。本研究希望通过对滤料进行灭菌处理，研究不同作用的定量化去除效果，为无机滤料和有机滤料的选择提供定量化参数，为滤池构建以及滤料筛选提供科学依据。

1 材料与方法

1.1 实验设计及装置

实验中通入生物滤池的 NH₃ 为厨余垃圾一次完全堆肥过程中排出的混合气体，堆肥周期为 28 d。生物滤池中滤料由腐熟堆肥：砂土=4:6 (湿基质量比) 配制而成。腐熟堆肥为厨余垃圾经堆肥后的腐熟产品。每个滤池体积约 8.5 L，滤料总量约 10.5 kg。实验设计两个处理，L2 处理为对对照处理 (未灭菌)，L2 处理将滤料进行高温灭菌。利用高压蒸汽灭菌器，在 1 个大气压下高温灭菌 2 h。两个处理初始生物滤料基质的性质如表 1 所示。

好氧堆肥及生物过滤装置如图 1 所示。堆肥过程中排出的气体先收集于冷凝器中，然后通过管道连接到生物滤池底部进气口，采用底部进气，顶部出气方式，用流量计测定系统各部分流量。气体通入生物滤池的流量为 0.03 m³·h⁻¹，经冷凝后的堆肥气体在室温温度下进入滤池。试验期间室温为 21~28 °C。经生物滤池过滤后的气体通入硫酸吸收瓶中，尾气净化后排出。

生物滤池由高 70 cm、内径 14.7 cm 的不锈钢管制成。生物滤池滤料层厚度设为 60 cm。为了提高滤料性能，减少压力降，滤料中 60% 的滤料颗粒直径大于 4 mm，滤池铺设上下两层，下层为气体扩散层，由粗砂石组成，厚 10 cm，具有均匀布气，防止堵塞和减少压力降等功能；上层滤料由腐熟堆肥混合砂土组成，厚度 50 cm。共设 5 个气体采样口，每 10 cm 高度设置一个取样点。每天测定滤池进气与出气口 O₂ 和 NH₃ 浓度。

1.2 测定项目及分析方法

NH₃ 采用静态箱法采集气体样品，每次测试 1 次，每次重复测试 3 次取平均值。NH₃ 用质量分数 2% 硼酸吸收，标准浓度的稀 H₂SO₄ 滴定。O₂ 采用生物气体测定仪分别 (biogas, Britain, Geotech)。在实验开始

表 1 初始滤料的性质

<table>
<thead>
<tr>
<th>处理</th>
<th>TOC，%</th>
<th>TN，%</th>
<th>NH₃−N，g·kg⁻¹</th>
<th>NO₃−N，g·kg⁻¹</th>
<th>pH</th>
<th>含水率，%</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1（灭菌）</td>
<td>5.61±0.08</td>
<td>0.45±0.02</td>
<td>0.26±0.01</td>
<td>1.11±0.02</td>
<td>7.62±0.07</td>
<td>33.3±0.19</td>
</tr>
<tr>
<td>L2（灭菌）</td>
<td>5.48±0.07</td>
<td>0.44±0.01</td>
<td>0.57±0.03</td>
<td>0.79±0.01</td>
<td>7.56±0.12</td>
<td>33.1±0.24</td>
</tr>
</tbody>
</table>

注：TOC、TN、NH₃、NO₃−N 数据基于干基质量；pH、含水率数据基于湿基质量。
1. PG; 2. 风机; 3. 流量计; 4. 堆肥反应器; 5. 取样口; 6. 温度探头; 7. 布气隔板; 8. 滤液出口; 9. 生物滤池; 10. 膜滤; 11. 取气口; 12. 粗砂; 13. 布气隔板; 14. 碳酸吸收瓶; 15. 冷凝容器

图 1 实验装置

Figure 1 Diagram of experimental device

和结束时分别取生物滤料固体样品; 其中鲜样样本用于测定含水量, pH, 氨氮 (NH\textsubscript{3}-N) 和硝氮 (NO\textsubscript{3}-N) 等指标; 另一部分自然风干, 粉碎后过 0.5 mm 簍, 测定总有机碳 (Total organic carbon)、总氮 (Total nitrogen) 含量。含水率采用烘箱干燥法测定, pH 值、总有机碳、总氮采用 NY525 有机脚料标准方法测定。无机态氮 (NH\textsubscript{3}- N 和 NO\textsubscript{3}-N) 的测定方法: 用 2 mol·L-1 的 KCl 溶液, 按照 10:1(V/M)同混样混合, 振荡 30 min, 定静过滤取上清液, 经稀释后上流动分插仪测定 (Auto Analyzer 3, Seal, 德国)。

生物滤料 NH\textsubscript{3} 去除率按如下式计算:

\[R_i = \frac{I - O}{I} \times 100\% \]

式中：\(R_i \) 为生物滤装置对氨气 i 的去除率, %; \(I \) 为生物滤装置进气中氨气 i 的浓度, mg·m-3; \(O \) 为生物滤装置出气中氨气 i 的浓度, mg·m-3。

2 结果与讨论

2.1 氧气含量

生物滤池进出口处的氧气含量如图 2 所示。由于滤池前端的堆肥过程为强制通风系统, 排出气体中氧气的含量呈现先降低后升高的趋势。氧气含量总体在 8% - 14% 之间。氧气含量在堆肥前 10 d 低于 15%, 10 d 之后逐渐升高到空气中氧气含量。从图 2 可以看出, 生物滤池两个处理进口和出口的氧气含量几乎是一样的。未灭菌的 L1 处理, 滤料中微生物在转化堆肥气体的过程中对氧气的需求并不高, 只需要微量的氧气即可。本实验中, 氧气并不是限制生物滤池处理堆肥腐臭的一个因素, 与 Deshusses 等[27] 的研究结果相似。但 Cox 等[28] 发现在高有机质浓度条件下, 随着氧气浓度从 20% 增至 40%, 苯乙烯的最大去除负荷也增加了。由此看来, 氧气的限制作用是在一定条件下发生的。

2.2 NH\textsubscript{3} 去除率

两个处理滤池中 NH\textsubscript{3} 浓度变化及对 NH\textsubscript{3} 的去除率如图 3 所示。滤池入口处 NH\textsubscript{3} 浓度在 0 – 400 mg·m-3 之间。L1 和 L2 处理, 无论是否灭菌, 在 0 – 12 d, 气体经过生物滤池后均未能检测到 NH\textsubscript{3}。滤池可 100% 的去除 NH\textsubscript{3}。从第 13 d 开始, 在滤池的 10 cm 出口处开始有 NH\textsubscript{3} 排出。未灭菌的 L1 滤池 10 cm 出口处 NH\textsubscript{3} 的浓度逐渐升高后又降低。但出口处浓度始终低于入口浓度, 保持在 10 – 55 mg·m-3 之间。NH\textsubscript{3} 浓度出现先升高后降低的趋势, 一方面可能与过滤浓度变化有关, 另一方面可能与微生物转化速率有关。因此, L1 处理 10 cm 出口处 NH\textsubscript{3} 的去除率在堆肥的前 12 d 为 100%, 从第 13 d 开始逐渐降至 55%, 第 22 d 开始有逐渐回升至 80% 左右。L2 灭菌处理前 12 d 的 NH\textsubscript{3} 去除率为 100%。由此可以判断, 生物滤料最初主要通过物理吸附作用吸附 NH\textsubscript{3}, 当吸附饱和之后, 堆肥中硝化细菌可将 NH\textsubscript{3}-N 进一步转化为 NO\textsubscript{3}-N。由于微生物对于 NH\textsubscript{3}-N 的转化存在一定的适应性, L1 处理 10 cm 滤池在吸附饱和之后, NH\textsubscript{3} 的去除率先降低后逐渐升高, 而 L2 处理滤料经灭菌之后, 微生物失去活性, 只存在物理吸附作用。因此, 10 cm 滤料经过 13 d 对 NH\textsubscript{3} 吸附饱和之后, 出口处 NH\textsubscript{3} 的浓度逐渐增加, 甚至高于入口 NH\textsubscript{3} 浓度。由于滤料中吸附的 NH\textsubscript{3}-N 无法进行转化, 随着 NH\textsubscript{3} 的不断累积, 达到极限值之后将重新吸附固定的 NH\textsubscript{3}, 然后随排放出去, 使得 L2 滤池 10 cm 出口处的 NH\textsubscript{3} 浓度在 20 d 后为负值。随着滤池高度的逐渐增加, 滤料对 NH\textsubscript{3} 的累积吸附能力逐渐减弱, 当最底层滤料吸附饱和之
后，滤料上层很容易达到吸附饱和。滤池底部滤料承受着去除 NH₃ 的主要作用，这一结果与很多研究是相同的[25]。L1 处理在 20 cm 出口处 NH₃ 的浓度已经达到 90% 以上，30 cm 高度的滤料几乎可达 100% 的去除率。然而，滤池底部 NH₃ 的去除能力低于 L1 处理的整体会降低，20 cm 出口处去除率在 50% 以上，30 cm 出口处的去除率在 85% 以上，达到 50 cm 出口处的去除率接近 100%。统计分析表明，滤池底部滤料对于 NH₃ 的去除有显著效果（P<0.001），滤料是否具有对于 NH₃ 的去除效率的显著差异（P>0.044）。腐熟堆肥中微生物的降解作用在一定程度下可以降低滤池的深度。

整个堆肥周期中进入每个生物滤池的 NH₃ 累积量为 4778 mg。滤池不同高度出口处 NH₃ 累积排出量见图 4。L1 处理滤池 10 cm 出口处累积 NH₃ 排放量为 487 mg，20 cm 出口处为 60 mg，30 cm 出口处为 7.6 mg，40 cm 和 50 cm 出口处没有 NH₃ 排出。10 cm 出口处 NH₃ 的累积排放量为入口 NH₃ 累积量的 10.2%，20 cm 出口处排放量为 10 cm 出口处的 12.4%，30 cm 出口处排放量约为 20 cm 出口处的 12.5%。可以发现，滤池每增加 10 cm 的高度，出口处 NH₃ 累积排放量约为入口处的 10%~12%。然而，滤料经灭菌之后，不同高度 NH₃ 累积排放量随滤池增加分别为 1123、2139、60、15.4 mg。滤池每增加 10 cm 的高度，出口处 NH₃ 累积排放量为入口处的 21%~25%，可以看出，同样高度的生物滤池无论是否灭菌都存在吸收饱和的问题。对于 L1 处理主要通过物理吸附和微生物分解两种途径去除 NH₃，两种方式总贡献率可达到 95% 以上。L2 处理滤料经灭菌后，对于 NH₃ 的去除只有物理吸附作用，物理吸附作用贡献率为 75%~80%。根据算，滤池中微生物吸附作用的贡献率为 15%~25%。综上结果也可以解释上世纪 80 年代后期滤池中无机滤料逐渐出现的问题，一方面由于有机滤料的矿化会使滤料老化，另一方面也因为无机滤料，如沸石、火山岩、煤炭和活性炭等具备较高的物理吸附能力，仅物理吸附作用也可以去除绝大部分的 NH₃。为了达到更好的去除效果，无机和有机滤料混合构建的复合滤料以及设计多层滤池都是目前较多的选择[30-32]。

由以上分析可以看出，滤池不同高度 NH₃ 累积进入量和累积排放量存在一定的关系。两个处理滤池的高度 x 和 NH₃ 累积排放 y 之间的关系及拟合方程如图 4 所示。根据拟合方程计算结果，对于 L1 处理，当滤池高度为 25 cm 时，NH₃ 可接近零排放，滤料经灭菌后，当滤池的高度为 50 cm 时，NH₃ 也可接近零。
排放。因此可以得出：对于未灭菌的 L1 处理的滤料经过 1 个堆肥周期后仍未饱和，不需要更换，可以持续使用 2 个堆肥周期；灭菌的 L2 处理在经过 1 个堆肥周期的吸附之后，滤料基本已经饱和，需要更换滤料。这表明腐熟堆肥中微生物的生物转化作用延长了滤料的寿命和使用时间。

2.3 滤料物理化学性质

图 5 显示，由于腐熟堆肥中微生物的存在，L1 处理滤料在实验结束后氨氮和硝氮的含量发生了变化：滤池 0~10 cm 层的滤料，由于吸附了大量的 NH₃，尽管大部分 NH₃ 已经被硝化细菌和亚硝化细菌转化为 NO₃⁻-N 和 NO₂⁻-N，但 NH₃-N 的含量仍高于滤料初始含量；10~50 cm 层的滤料，吸附的 NH₃ 相对较少，滤料中 NH₃-N 在硝化细菌和亚硝化细菌的作用下几乎全部转化为硝态氮。而 L2 处理经灭菌后，滤料中不同高度硝态氮含量与初始含量相同，NH₃-N 含量在
0~10 cm层有大幅增加，其他各层略有增加，增加量与滤料吸附的NH₃量成正比。这进一步说明：L2处理对于NH₃的去除是通过物理吸附作用，L1处理先经过物理吸附作用固定NH₃，然后在微生物的作用下进一步转化。Liu等通过观察微生物数量发现腐熟堆肥滤料中细菌和霉菌的数量有明显的增加，可见腐熟堆肥作为生物滤料去除堆肥过程中产生的臭气时，微生物活动起到一定的生物转化作用。从物理角度来看，灭菌和不灭菌对于NH₃-N的吸附固定差异不大，吸附固定的机理是颗粒表面的负价吸附点，两个处理应该吸附点相同。一般滤料不吸附NO₃-N，因为颗粒表面吸附点位很少有正电团，本实验滤料主要材料是腐熟堆肥，腐熟堆肥中含有大量大分子的腐植酸，腐植酸含有带负电的基因。考虑到微生物因素，未灭菌的滤料中氢素形态转化是动态的，吸附的NH₃在微生物存在条件下转化为NO₃。

以上结果表明，综合利用下未灭菌的滤柱单位时间吸附和转化NH₃的效率高于灭菌处理。灭菌处理的滤柱，没有微生物转化作用，仅是物理的吸附固定作用，当达到吸附饱和后就维持平衡了。未灭菌L1处理NH₃不断被吸附，又不断地被转化为NO₃，NH₃吸附转化效率较高；经灭菌的L2滤料，因为只存在物理吸附，所以吸附累积的NH₃很多，但NO₃很少，保持了初始原料中所含有的NO₃量，未见增加。

滤料除NH₃-N和NO₃-N的形态外，其他物理化学指标（TOC、TN、pH和含水率）也发生了相应的变化（表2）。两个处理TOC的含量与滤料初始含量相差不大，但由于L1处理微生物的活动需要消耗碳源，L1滤料中TOC含量低于初始含量，L2处理与初始值基本相当。TN含量均有所增加，随着滤池高度的增加，TN含量逐渐减少，0~10 cm层滤料中TN增加量最大，与滤料对于NH₃的去除规律一致。总体来看，L1处理滤料中TN含量高于L2处理，L1滤料的C/N比降低幅度大于L2。从pH值的变化可以看出，L1处理随着滤池高度的增加，滤料中pH值逐渐降低。滤料中微生物在代谢过程中生成含氮代谢产物HNO₃，以及含硫代谢产物H₂SO₄等酸性物质，使滤料的pH值降低，但由于都在中性范围内，并未发生滤池酸化。L2处理的pH值变化较L1小，基本与滤料初始值相同，略降低。两个处理滤料的含水率基本与初始值相同，经过28天的生物过滤后，并未导致滤料含水率的变化。

3 结论

（1）腐熟堆肥作为生物滤料在一定的滤池高度下可100%去除堆肥过程中产生的NH₃。较单纯通过物理吸附作用去除NH₃相比，在同等的NH₃去除率情况下，腐熟堆肥中微生物生物转化作用可以适当降低滤池高度。

（2）腐熟堆肥作为滤料主要通过物理吸附和微生物生物转化两种作用去除NH₃，物理吸附作用主要作用，贡献率为75%~80%。微生物的生物转化作用贡献率为15%~25%，经吸附固定的NH₃在硝化细菌的作用下转化为硝态氮。

（3）未经灭菌的L1处理，滤池高度与NH₃的累积排放量之间的关系可表示为：y=7 727.4e⁻⁰.³⁰₆x，R²=

表2 滤料物理化学性质变化

<table>
<thead>
<tr>
<th>处理</th>
<th>TOC/%</th>
<th>TN/%</th>
<th>C/N</th>
<th>NH₃-N/μg·kg⁻¹·DM</th>
<th>NO₃-N/μg·kg⁻¹·DM</th>
<th>pH</th>
<th>含水率/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1（不灭菌）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>初始</td>
<td>5.61</td>
<td>0.45</td>
<td>12.47</td>
<td>0.26</td>
<td>1.11</td>
<td>5.62</td>
<td>33.35</td>
</tr>
<tr>
<td>结束(10 cm)</td>
<td>5.37</td>
<td>0.75</td>
<td>7.41</td>
<td>0.51</td>
<td>2.70</td>
<td>7.03</td>
<td>32.83</td>
</tr>
<tr>
<td>结束(20 cm)</td>
<td>5.43</td>
<td>0.59</td>
<td>9.27</td>
<td>0.04</td>
<td>1.73</td>
<td>7.07</td>
<td>32.55</td>
</tr>
<tr>
<td>结束(30 cm)</td>
<td>5.17</td>
<td>0.57</td>
<td>9.01</td>
<td>0.02</td>
<td>1.61</td>
<td>7.09</td>
<td>33.42</td>
</tr>
<tr>
<td>结束(40 cm)</td>
<td>5.30</td>
<td>0.55</td>
<td>9.72</td>
<td>0.02</td>
<td>1.60</td>
<td>7.18</td>
<td>33.96</td>
</tr>
<tr>
<td>结束(50 cm)</td>
<td>5.03</td>
<td>0.54</td>
<td>9.31</td>
<td>0.02</td>
<td>1.58</td>
<td>7.26</td>
<td>33.05</td>
</tr>
<tr>
<td>L2（灭菌）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>初始</td>
<td>5.60</td>
<td>0.45</td>
<td>12.44</td>
<td>0.57</td>
<td>0.79</td>
<td>7.56</td>
<td>32.73</td>
</tr>
<tr>
<td>结束(10 cm)</td>
<td>5.75</td>
<td>0.55</td>
<td>10.45</td>
<td>2.37</td>
<td>0.80</td>
<td>7.66</td>
<td>32.42</td>
</tr>
<tr>
<td>结束(20 cm)</td>
<td>5.64</td>
<td>0.51</td>
<td>11.08</td>
<td>0.93</td>
<td>0.79</td>
<td>7.43</td>
<td>32.08</td>
</tr>
<tr>
<td>结束(30 cm)</td>
<td>5.39</td>
<td>0.51</td>
<td>10.67</td>
<td>0.69</td>
<td>0.79</td>
<td>7.39</td>
<td>32.94</td>
</tr>
<tr>
<td>结束(40 cm)</td>
<td>5.33</td>
<td>0.49</td>
<td>10.79</td>
<td>0.63</td>
<td>0.79</td>
<td>7.40</td>
<td>33.04</td>
</tr>
<tr>
<td>结束(50 cm)</td>
<td>5.26</td>
<td>0.48</td>
<td>11.07</td>
<td>0.58</td>
<td>0.78</td>
<td>7.38</td>
<td>33.96</td>
</tr>
</tbody>
</table>
0.9839（其中y为NH₃累积排放量，x为滤池高度），
当滤池高度为25 cm时，NH₃的累积排放量可接近零；灭菌的1.2处理，滤池高度与NH₃的累积排放量之间的关系可表示为：\(y = 4 \times 0.606e^{-0.134x} \)，\(R^2 = 0.9915 \)。滤池的高度为50 cm时，方可达到NH₃零排放。

参考文献：

LUO Yi-ming, LI Guo-xue, Frank, et al. Effects of additive superfos-

LONG Lan-fang. Study on biofilter treatment of malodor produces in animal husbandry[D]. Ya’an, Sichuan Agricultural University, 2009.

