2017,36(2):401-408

景建元, 孙 晓, 杨 阳, 等. 施氮水平对冬小麦冠层氨挥发的影响[J]. 农业环境科学学报, 2017, 36(2):401-408. JING Jian-yuan, SUN Xiao, YANG Yang, et al. Ammonia volatilization of winter wheat canopy under different nitrogen rates[J]. *Journal of Agro-Environment Science*, 2017, 36(2):401-408.

施氮水平对冬小麦冠层氨挥发的影响

景建元1,孙 晓1,杨 阳3,李 娜1,田肖肖1,吕慎强1,王林权1,2*

(1.西北农林科技大学资源环境学院,陕西 杨凌 712100;2.农业部西北植物营养与农业环境重点实验室,陕西 杨凌 712100; 3.中国科学院合肥物质科学研究院技术生物与农业工程研究所,合肥 230031))

摘 要:为探索冬小麦全生育期冠层氨挥发规律、主要影响因素及其对麦田氨挥发的贡献率,设置 0、90、180 kg N·hm⁻² 三种氮素水 平,利用改进型通气式氨气捕获装置,原位分析冬小麦冠层氨挥发速率及其与叶片氮素生理指标的关系。结果表明:麦田氨挥发主 要发生在施肥后 2~3 周,全生育期累积挥发量为 3.773~8.704 kg N·hm⁻²,施氮显著提高了麦田氨挥发累积量(*P*<0.05),土壤与冠层 氨挥发累积量分别为 3.289~7.773 kg N·hm⁻² 和 0.750~1.461 kg N·hm⁻²,对麦田氨挥发的贡献率分别为 87.2%~89.3%和 15.4%~ 19.9%。不施氮条件下,冠层无氨气吸收;低施氮(90 kg N·hm⁻²)下,冠层氨气吸收主要发生在苗期;高施氮(180 kg N·hm⁻²)下,苗期、 返青期和灌浆前期冠层均有氨气吸收发生。冠层氨挥发主要发生在开花期、灌浆末期至枯死期,分别占冠层氨挥发的 4.5%~9.3%和 79.1%~99.0%;冠层氨挥发速率与叶片氨气补偿点、质外体 NH;浓度显著正相关(*P*<0.05),与谷氨酰胺合成酶(GS)活性、质外体溶 液 pH 相关关系不显著(*P*>0.05)。总之,开花前,不施肥条件下冬小麦冠层向大气中释放氨,施肥后,冠层从大气中吸收氨。冬小麦开花后,不论施肥与否,冠层都向大气层释放氨。

关键词:冠层氨挥发;冬小麦;质外体 NH 浓度;氨气补偿点;谷氨酰胺合成酶(GS)

中图分类号:S512.1 文献标志码:A 文章编号:1672-2043(2017)02-0401-08 doi:10.11654/jaes.2016-1233

Ammonia volatilization of winter wheat canopy under different nitrogen rates

JING Jian-yuan¹, SUN Xiao¹, YANG Yang³, LI Na¹, TIAN Xiao-xiao¹, LÜ Shen-qiang¹, WANG Lin-quan^{1,2*}

(1.College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; 2.Key Laboratory of Plant Nutrition and the Agri–Environment in Northwest China, Ministry of Agriculture, Yangling 712100, China; 3.Institute of Technical Biology & Agricul– ture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China)

Abstract: A single factor field experiment with three nitrogen rates (0, 90, and 180 kg $N \cdot hm^{-2}$) was conducted in winter wheat during the 2015—2016 growth season. Ammonia volatilization from both soil and canopy in winter wheat field were measured with the modified vented ammonia trap chambers. Glutamine synthetase(GS) activity in leaves, apoplastic NH_{*}^{+} concentration and pH, and ammonia compensation point were determined simultaneously. Obtained results showed that field ammonia volatilization mainly occurred within the 2~3 weeks after N fertilization. In the whole growing season, ammonia volatilization totaled in 3.773~8.704 kg $N \cdot hm^{-2}$, and it increased significantly with the increase of N fertilization rates, of which 3.289~7.773 kg $N \cdot hm^{-2}$ were from soil, accounting for 87.2%~89.3% of the total; and 0.750~1.461 kg $N \cdot hm^{-2}$ from the canopy, accounting for 15.4%~19.9% of the total. It was found that the canopy absorbed volatilized ammonia during seedling stage under lower nitrogen application rate(90 kg $N \cdot hm^{-2}$), and during seedling, returning green and early grain filling stage under higher N application rate(180 kg $N \cdot hm^{-2}$), but did not under no N fertilization. The net canopy ammonia volatilization mainly occurred at flowering and late grain filling stage, accounting for 4.5%~9.3% and 79.1%~99.0% of total canopy ammonia volatilization during the whole growing season, respectively. Canopy ammonia fluxes were positively correlated with the ammonia compensation point and apoplastic NH_{*}^{+}

收稿日期:2016-09-23

作者简介:景建元(1990—),男,山西晋中人,硕士研究生,主要从事旱地养分调控方面的研究。E-mail:jjy@nwsuaf.edu.cn

^{*} 通信作者:王林权 E-mail:linquanw@nwsuaf.edu.cn

基金项目:国家公益性行业(农业)科研专项(201503124)

Project supported : The Special Fund for Agro-scientific Research in the Public Interest of China (201503124)

农业环境科学学报 第36卷第2期

concentration, but showed no relation to the GS activity in leaves and apoplastic pH. In summary, winter wheat canopy volatilizes ammonia to the atmosphere past flowering no matter fertilization or not, but it absorbs ammonia from the atmosphere with N fertilization, and emits ammonia without N fertilization during the vegetative stages.

Keywords: canopy ammonia volatilization; winter wheat; apoplastic NH⁺₄ concentration; ammonia compensation point; glutamine synthetase(GS)

近年来,大气活性氮含量日益增加,经生物地球 化学循环以沉降形式返回陆地生态系统,并对生态系 统健康与功能构成巨大威胁^[1-3],我国的氮沉降以铵态 氮为主^[4]。农业系统是氨气排放的主要来源^[5],其中 29.4%~47.4%的氨气来自化学肥料^[6]。受人口增长、有 效耕地面积减少等影响,我国农业生产只能持续依靠 氮肥^[2],这将进一步加剧氨气的排放。

目前针对农田氨挥发的影响因素、控制措施已 有大量研究^[7-9],但多集中于农田土壤氨挥发,对植物 冠层氨挥发研究较少。植物冠层可吸收土壤释放的 氨气,捕获量占土壤挥发量的2.5%~76%^[10-13],也可向 大气释放氨气^[14]。冠层氨挥发受叶片谷氨酰胺合成 酶(GS)活性、叶片氨气补偿点、质外体 NH₄浓度等影 响^[15-17]。目前对冠层氨挥发的研究多在生长箱内进行, 对田间条件下作物冠层氨挥发缺乏连续跟踪,限制了 对冠层氨挥发机制的理解。

我国农田施氮量大,具有很高的氨挥发风险。系 统研究农田系统与大气氨气交换过程、探讨减少氨挥 发的技术措施与作用机制,对减氮增效、提高氮肥利 用效率和改善生态环境具有重大的科学价值与现实 意义。作为农田氨挥发的变数之一,作物冠层在农田 氨挥发中的作用有待深入研究。本研究以我国主要粮 食作物——冬小麦为对象,采用改进的通气式氨气捕 获装置,对冠层氨挥发动态变化进行原位监测,分析 冠层氨挥发规律及其对麦田氨挥发的贡献率,探讨影 响冠层氨挥发的生理因素。目的是揭示小麦全生育期 的冠层氨挥发特征,进一步加深对农田土壤-冠层-大气之间氨气交换过程的理解,为提高氮肥利用率提 供理论依据。

1 材料与方法

1.1 试验设计

试验地点位于西北农林科技大学旱地养分高效 利用试验园区(34°17′35″N,108°04′12″E,海拔520 m),属半湿润易旱区。小麦生长季 239 d,生长季平均 气温 10.2 ℃,平均空气湿度 65%,总降水量为 216.3 mm。土壤为土垫旱耕人为土(Earth-cumuli-Orthic Anthrosol),耕层土壤(0~20 cm)主要理化性质为:有 机质 13.02 g·kg⁻¹,全氮 0.92 g·kg⁻¹,矿质氮(NH[‡]-N 和 NO³₃-N)6.69 mg·kg⁻¹,速效磷 4.77 mg·kg⁻¹,速效钾 141.35 mg·kg⁻¹,pH 8.5(土水比 1:2.5)。

供试冬小麦品种为小偃 22(*Triticum aestivum* L. cv. Xiaoyan22),播种量 120 kg·hm⁻²。供试肥料为尿素(含 N 46%)和过磷酸钙(含 P₂O₅ 46%)。试验设置 3 个施氮水平(0、90 kg N·hm⁻² 和 180 kg N·hm⁻²),分别以 N0(未施氮处理)、N90(低施氮处理)和 N180(高施氮 处理)表示。各小区均施磷肥 90 kg P₂O₅·hm⁻²。小区面积 6 m×2.6 m=15.6 m²。各处理随机排列,3 次重复。播种前将肥料(各处理 2/3 尿素+全部磷肥)均匀撒施到地表,翻耕使土肥混匀,平整地面。各小区按 25 cm 行距开沟播种。剩余 1/3 尿素于拔节期雨前沟施到各小区。2015 年 10 月 19 日施肥播种,2016 年 3 月 18 日追肥。播种施肥当日安放氨气捕获装置进行氨气采集,于 10 月 26 日幼苗出土后开始测定冠层氨挥发,2016 年 6 月 15 日结束测定。

1.2 采样与测定

1.2.1 氨气的采集与测定

对 Yang 等⁷⁷的通气式氨挥发装置进行改进,用于 小麦冠层氨挥发原位监测(图 1)。装置由 5 节有机玻 璃管(每节高 20 cm,内径 15 cm)、2 层吸收海绵(厚 5 cm,直径 15 cm,聚氨基甲酸乙酯材质)、有机玻璃遮 雨板(直径 25 cm,厚 0.5 cm)和 3 个吸盘(支撑遮雨板

图 1 通气式氨挥发捕获装置 Figure 1 Vented chamber for trapping ammonia volatilized

2017年2月 景建元,等:施氮水平对冬小麦冠层氨挥发的影响

于装置上方)构成。吸收海绵采用 20~30 mL H₃PO₄ (0.8 mol·L⁻¹)和甘油(0.7 mol·L⁻¹)的混合液预先浸润, 其中下层海绵吸收土壤和冠层释放的氨气,上层海绵 用于排除外界大气中的氨气对试验的干扰。遮罩冬小 麦的装置,其下层海绵距离冬小麦顶部5 cm,捕获冬小 麦与土壤释放的氨气(表示为 NO、N90、N180);不遮 罩冬小麦的装置,其下层海绵捕获土壤释放的氨气 (表示为 CK-N0、CK-N90、CK-N180)。参照王朝辉等 ¹¹⁸的方法,对该装置下层海绵不同高度的氨气回收率 进行测定,结果为 75.8%~98.4%。每小区安装 2 个装 置,分别位于播种行上(遮罩小麦植株)和小麦行间, 插入地下 5 cm 处。随冬小麦高度的增长适时增加装 置玻璃管数,玻璃管之间用金属箍密封固定。

小麦播种后,开始隔天采样,采样时间为上午10 时至12时,一周后视氨挥发量逐渐延长采样时间直 至冬季土壤上冻。小麦返青后每周采样,视氨挥发量 调整采样频率,遇雨天顺延,直至收获。采样当天进行 提取与测定。海绵中NHi-N用1mol·L⁻¹KCl浸提,靛 酚蓝比色法测定。采用以下公式计算氨挥发参数:

 $SAF=M_{(CK-N)}/(S \times T \times R) \times 10\ 000$ $CAF=(M_N - M_{(CK-N)})/(S \times T \times R) \times 10\ 000$ $ASAV=\sum (M_{(CK-N)})/(S \times R) \times 10\ 000$

 $ACAV = \sum (M_N - M_{(CK-N)}) / (S \times R) \times 10000$

 $AWAV = \sum (M_N + M_{(CK-N)})/(2 \times S \times R) \times 10000$

FALR=(AWAV-AWAV_{N0})/NFR×100%

式中:SAF 为土壤氨挥发速率,kg N·hm⁻²·d⁻¹;CAF 为 冠层氨挥发速率,kg N·hm⁻²·d⁻¹;ASAV 为土壤氨挥发 累积量,kg N·hm⁻²;ACAV 为冠层氨挥发累积量,kg N·hm⁻²;AWAV 为麦田氨挥发累积量,kg N·hm⁻²;FALR 为氮肥氨挥发损失率,%;NFR 为施氮量,kg N·hm⁻²; $M_{(CK-N)}$ 为不遮罩植物装置平均每次测得的氨挥发量, kg N; M_N 为遮罩植物装置平均每次测得的氨挥发量, kg N;T为每次连续收集的时间,d;S 为收集装置的横 截面积,3.14×0.075² m²;R 为不同海绵高度氨捕获装 置的氨气回收率;AWAV_{N0} 为不施氮小区麦田氨挥发 累积量,kg N·hm⁻²;10 000 为换算成公顷的系数。 1.2.2 叶片质外体溶液提取及其 NHi浓度,pH 测定

根据文献[19]提取冬小麦叶片质外体溶液:将新 鲜叶片用去离子水洗净,用滤纸吸干,称取约5g,置 于 200 mL注射器中,堵住出水口,加入约150 mL 280 mmol·L⁻¹山梨醇溶液,通过抽动、排液、挤压等过程使 叶片大部分变为深绿。取出叶片,吸干表面液体,在4 ℃下以1000×g 离心10 min,得到质外体提取液。质外 体溶液 pH 值用 pH 计(E201P,上海雷磁)测定,NH:浓度(mmol·L⁻¹)用靛酚蓝比色法测定。

1.2.3 叶片氨气补偿点的计算

根据文献[20]计算叶片氨气补偿点(nmol NH₃・ mol⁻¹空气)。当质外体 pH 在一定范围内,*K*_d<<[H⁺]_{apo}(质外体 H⁺浓度)时,25 ℃下,氨气补偿点可用如下公式计算:

 $X_{s} = \Gamma \times K_{H} \times K_{d}$

式中: X_s 为氨气补偿点; Γ 为质外体 NH₄浓度和质外体 H⁺浓度之比,代表不依赖于温度的氨气交换潜力; $K_{\rm H}$ 和 $K_{\rm d}$ 是热动力学常数,其值分别为 10^{-1.76} L·mol⁻¹ 和 10^{-9.25} mol·L⁻¹(25 ℃)。

通过以下公式,结合计算得到的25℃时氨气补 偿点,计算实际温度下氨气补偿点:

 $\ln \frac{X_{\rm s} T_{\alpha}}{X_{\rm s} T_{\rm ref}} = \frac{\left(\Delta H_{\rm dis}^0 + \Delta H_{\rm vap}^0\right)}{R} \times \left(\frac{1}{T_{\rm ref}} - \frac{1}{T_{\alpha}}\right)$

式中: T_{α} 为实际温度,K,本试验中实际温度为采样当 日平均气温; T_{ref} 为 298.15 K(25 °C); $X_s T_{\alpha}$ 为实际温度 下氨气补偿点; $X_s T_{ref}$ 为 25 °C下氨气补偿点; ΔH_{ds}^{0} 为 NH;解离焓,52.21 kJ·mol⁻¹; ΔH_{vap}^{0} 为蒸发焓,34.18 kJ· mol⁻¹;R 为气体常数,0.008 31 kJ·K⁻¹·mol⁻¹。

1.2.4 叶片谷氨酰胺合成酶(GS)测定

参考文献[21]测定 GS 活性(A·mg⁻¹ protein·h⁻¹)。

称取叶片 1 g(抽穗之后只取旗叶)于研钵中,加 3 mL 提取缓冲液(0.05 mol·L⁻¹ Tris-HCl, pH 8.0, 内 含 2 mmol·L⁻¹ Mg²⁺, 2 mmol·L⁻¹ DTT, 0.4 mol·L⁻¹ 蔗 糖),冰浴研磨成匀浆,转移至离心管中,在4℃、12 000 r·min⁻¹条件下离心 20 min,上清液即为粗酶液。

吸取 1.6 mL 反应混合液 B (0.1 mol·L⁻¹ Tris-HCl 缓冲,含盐酸羟胺,pH 7.4)加入离心管中,另取一个 离心管加 1.6 mL 反应混合液 A(0.1 mol·L⁻¹ Tris-HCl 缓冲,pH 7.4)作为对照,加入 0.7 mL 粗酶液和 0.7 mL 40 mmol·L⁻¹ ATP 溶液,混匀,于 37 ℃下保温 0.5 h;加 入显色剂(0.2 mol·L⁻¹ TCA,0.37 mol·L⁻¹ FeCl₃和 0.6 mol·L⁻¹ HCl 混合液)1 mL, 摇匀并放置片刻后,于 5000 r·min⁻¹条件下离心 10 min,取上清液测定 540 nm 处的吸光值。利用考马斯亮蓝法测定粗酶液中可溶性 蛋白质,根据以下公式计算 GS 活性,用产生的 γ-谷 氨酰基异羟肟酸与铁络合物 540 nm 处吸光值的大小 来表示 GS 活性:

$$GS = \frac{A}{P \times V \times T}$$

式中:A 为 540 nm 处的吸光值;P 为粗酶液中可溶性 蛋白含量,mg·mL⁻¹;V 为反应体系中加入的粗酶液体 404

积,0.7 mL;T 为反应时间,0.5 h。

1.3 统计分析

采用 SAS 8.2 进行单因素方差分析与相关分析, 以 Origin 2015 绘制数据图像。

2 结果与分析

2.1 土壤与冠层氨挥发速率及累积量

2.1.1 越冬前土壤与冠层氨挥发速率

播种施肥后前 20 d 为麦田氨挥发的主要时期, 且土壤氨挥发速率与施氮量成正比(图 2a)。土壤氨 挥发速率于施肥后第 7~9 d 达到峰值,施氮处理峰值 (0.086~0.156 kg N·hm⁻²·d⁻¹)比未施氮处理(0.044 kg N·hm⁻²·d⁻¹)高 95.5%~254.5%。施肥后第 8~11 d,CK-N90、CK-N180 的氨挥发速率分别高于 N90、N180,而 N0 处理呈相反趋势(图 2a)。

2.1.2 返青后土壤与冠层氨挥发速率

追肥后 10 d 内, 土壤氨挥发速率波动明显, 于第 9 d 达峰值, 施氮处理峰值(0.080~0.097 kg N·hm⁻²·d⁻¹) 比未施氮处理(0.030 kg N·hm⁻²·d⁻¹)高 166.7%~ 223.3%。返青-拔节期(图 2b), N180 的氨挥发速率略 低于 CK-N180, 而 N0 与 N90 处理呈相反趋势。小麦 灌浆后(图 2c), N0、N90 和 N180 的氨挥发速率明显 高于 CK-N0、CK-N90 和 CK-N180(灌浆前期 N180 处理略低于 CK-N180)。5 月下旬(灌浆末期)以后, CK-N0、CK-N90 和 CK-N180 氨挥发速率波动较小, 而 N0、N90 和 N180 的氨挥发速率增加显著。

2.1.3 氨挥发累积量

施氮显著提高了麦田氨挥发累积量(表1),施氮 处理比未施氮处理高103.2%~130.7%,施氮处理间也 存在显著差异(P<0.05)。随施氮量的提高,麦田氮肥 氨挥发损失率从4.3%(N90)降至2.7%(N180)。土壤 氨挥发对麦田氨挥发的贡献率达87.2%~89.3%,施氮 处理比未施氮处理高107.3%~136.3%,各处理间差异 显著(P<0.05);冠层氨挥发对麦田氨挥发贡献率为 15.4%~19.9%,施氮处理比未施氮处理高56.9%~ 94.8%。

越冬前,施肥后 20 d 之内是土壤氨挥发的主要 时期,且土壤氨挥发累积量随施氮量的增加显著提高 (P<0.05),施氮处理比未施氮处理高 220.1%~357.4% (表1);施氮处理冠层对土壤挥发氨气存在净吸收,吸 收量占土壤挥发氨气的 7.1%~9.7%;随施氮量的增 加,冠层对土壤挥发氨气的吸收量占土壤氨累积挥发 量的比率降低;而未施氮处理冠层发生氨气的净释

农业环境科学学报 第36卷第2期

放,占同时段土壤挥发氨气的 8.6%。施肥 20 d 之后, 各处理冠层均为氨气的净释放。返青后,各生育期施 氮处理土壤氨挥发累积量比未施氮处理显著提高 80.2%~179.1%(P<0.05)。在返青-拔节期与灌浆前 期,高施氮处理冠层对土壤挥发氨气发生净吸收,低 施氮处理与未施氮处理的冠层发生氨气净释放。生育 后期(灌浆末-枯死期)是冠层氨挥发的主要时期,冠

405

表 1 施氮对小麦不同生长时期土壤、冠层和麦田氨挥发的影响

Table 1 Effects of nitrogen treatments on soil, canopy and wheat field ammonia volatilization in different growing stages

生长时期 Growing stages		处理 Treatment	ASAV∕ kg N∙hm⁻²	ACAV∕ kg N∙hm⁻²	AWAV/ kg N•hm ⁻²	FALR/%
越冬前	肥后 20 d	NO	$0.338 \pm 0.005 c$	0.029±0.011 a	$0.352{\pm}0.004{\rm c}$	
10月—12月	20 d past base fertilization	N90	$1.082 \pm 0.029 \mathrm{b}$	-0.105±0.025a	$1.029{\pm}0.042\mathrm{b}$	0.75
		N180	1.546±0.194a	-0.110±0.224a	1.491±0.111a	0.63
	肥后 20~63 d 20~63 d past base fertilization	NO	0.583±0.027a	0.081±0.043a	0.623±0.033a	
		N90	0.714±0.105a	0.013±0.080a	0.721±0.088a	0.11
		N180	0.681±0.050a	0.062±0.039a	0.712±0.057a	0.05
返青后	返青-拔节期 Green turning-Jointing stage	NO	$0.314 \pm 0.009 \mathrm{b}$	0.005±0.033a	$0.316{\pm}0.009\mathrm{b}$	
3月—6月		N90	0.769±0.057a	0.012±0.055a	$0.775 \pm 0.065 a$	0.51
		N180	0.832±0.123a	-0.077±0.069a	$0.794 \pm 0.098 a$	0.27
	孕穗-开花期	NO	$0.798{\pm}0.164{\rm b}$	0.030±0.280a	$0.813{\pm}0.050{\rm b}$	
	Booting-Flowering stage 灌浆前期 Early grain filling stage	N90	1.527±0.051a	0.029±0.241a	1.542±0.146a	0.81
		N180	1.438±0.155a	0.192±0.082a	1.533±0.115a	0.40
		NO	$0.569{\pm}0.034\mathrm{b}$	0.012±0.022a	$0.575{\pm}0.036\mathrm{b}$	
		N90	1.352±0.083a	0.064±0.285a	1.384±0.191a	0.90
		N180	1.318±0.115a	-0.011±0.008a	1.313±0.112a	0.41
	灌浆末-成熟期	NO	$0.495{\pm}0.032{\rm c}$	$0.283{\pm}0.063{\rm b}$	$0.637{\pm}0.002{\rm c}$	
	Late grain filling–Mature	N90	$1.023{\pm}0.085\mathrm{b}$	$0.483 \pm 0.063 \mathrm{ab}$	$1.264 \pm 0.070 \mathrm{b}$	0.70
	stage	N180	1.319±0.064a	0.743±0.261a	1.691±0.066a	0.59
	枯死期	NO	$0.301{\pm}0.027\mathrm{c}$	$0.310{\pm}0.060{\rm b}$	$0.456{\pm}0.027{\rm c}$	
Drying stage		N90	$0.611{\pm}0.044\mathrm{b}$	0.682±0.128a	$0.952{\pm}0.024\mathrm{b}$	0.55
		N180	0.840±0.053a	0.662±0.092a	1.171±0.014a	0.40
生长季		NO	$3.289 \pm 0.161 c$	$0.750 \pm 0.288a$	$3.773 {\pm} 0.075 {\rm c}$	
Whole season		N90	$6.819{\pm}0.106\mathrm{b}$	1.177±0.459a	$7.667{\pm}0.334\mathrm{b}$	4.33
		N180	7.773±0.114a	1.461±0.350a	8.704±0.114a	2.74

注:ASAV为土壤氨挥发累积量;ACAV为冠层氨挥发累积量;AWAV为麦田氨挥发累积量;FALR为氮肥氨挥发损失率。ACAV负值代表冠层从外界吸收氨气,正值代表冠层向外界释放氨气。同列不同小写字母代表不同氮处理下差异显著(P<0.05)。

Note: ASAV, accumulative soil ammonia volatilization; ACAV, accumulative canopy ammonia volatilization; AWAV, accumulative wheat fields ammonia volatilization; FALR, fertilizer ammonia loss rate. Negative ACAV values indicate ammonia absorped by the canopy. Different small letters indicate significant-ly difference among nitrogen treatments at 5% level.

层氨挥发占土壤氨挥发的 65.1%~74.5%, 施氮处理比 未施氮处理提高 96.5%~136.9% (P<0.05)。

2.2 与冠层氨挥发相关的影响因子

2.2.1 质外体 NH:浓度、pH、叶片氨气补偿点变化

灌浆末期,各处理质外体 NH:浓度均高于其他生 育期,且施氮处理显著高于未施氮处理(图 3a,P< 0.05)。拔节-灌浆前期质外体 NH:浓度处于较低水 平,抽穗期施氮处理显著低于未施氮处理(P<0.05), 开花期与灌浆末期则呈相反趋势。质外体溶液pH 值 (图 3b)变化范围为 5.73~6.82,在开花期达到峰值,生 育后期有降低趋势,在灌浆末期降至最低。除孕穗-抽 穗期外,施氮处理的质外体 pH 均高于未施氮处理。 开花期与灌浆末期,叶片氨气补偿点出现 2 个峰值 (图 3c),冠层氨气补偿点为 8.2~64.1 nmol·mol⁻¹,且 施氮处理叶片氨气补偿点显著高于未施氮处理(P< 0.05);其他生育期叶片氨气补偿点较低,波动范围为 1.3~16.0 nmol·mol⁻¹。

2.2.2 GS 活性变化

返青后叶片 GS 活性先降低、后升高、再降低,在 拔节期和开花期出现 2 个峰值,并在灌浆末期降至最 低(图 3d)。拔节期与灌浆前期,N0 处理 GS 活性最 高,显著高于 2 种施氮处理(P<0.05),且随施氮量的 提高,GS 活性降低;抽穗期,N0 处理显著低于施氮处 理(P<0.05),且随施氮量的提高,GS 活性提高;其余 时期各处理间 GS 活性没有显著差异(P>0.05)。 2.2.3 冠层氨挥发速率与各影响因子相关性

冠层氨挥发速率与叶片氨气补偿点呈极显著正 相关(P<0.01),与质外体 NH‡浓度显著正相关(P<

图 3 不同生育时期叶片质外体 NH₄浓度、质外体 pH、叶片氨气补偿点、GS 活性变化

Figure 3 Apoplastic NH⁺ concentration and pH, ammonia compensation point and GS of leaves in different growing stages

0.05),但与叶片 GS 活性、质外体溶液 pH 没有显著 相关性(表 2)。

3 讨论

3.1 冠层氨挥发

土壤与冠层是麦田氨挥发的主要来源,对麦田氨 挥发的贡献率分别为 87.2%~89.3%和 15.4%~19.9% (表1)。土壤氨挥发主要发生在施肥后 1~2 周内,而 冠层氨挥发主要发生在生育后期(图 2b,图 2c),符合 一般农田土壤的氨挥发规律^[7-8,14]。

冠层氨气吸收主要出现在生育前期,并受施肥影

响。低施氮处理,冠层氨气吸收主要发生在苗期;高施 氮处理,苗期、返青期和灌浆前期均有冠层氨气吸收 发生。Harper等^[22]报道,缺氮时冠层会从大气中吸收 氨气。但本研究发现 NO 处理冠层并没有发生明显的 氨气吸收现象,可能是因为不施肥处理土壤氨挥发少 (图 1),冠层空气中氨气浓度低于叶片氨气补偿点所 致。相反,施氮处理土壤氨挥发强烈,空气中的氨气 浓度可能高于叶片氨气补偿点,因此冠层有氨气吸 收发生。Herrmann等^[20]报道,施肥刈割后,尽管新生 黑麦草叶片的质外体 NH₄浓度及其氨挥发潜势升 高,但始终低于空气中氨气浓度,因此存在冠层氨气

Table 2 Correlation between canopy ammonia fluxes and various factors $(n=16)$								
R	GS	质外体 NH森渡 Apoplastic NH4 concentration	质外体 pH Apoplastic pH	氨气补偿点 NH3 compensation point				
CAF	-0.119	0.502*	0.057	0.603**				
F	0.23	5.39	0.05	9.13				

表 2 冠层氨挥发速率与各影响因子相关性(n=18) ble 2 Correlation between canopy ammonia fluxes and various factors(n=1

注:CAF代表冠层氨挥发速率;*,**分别表示F检验在5%、1%水平上差异显著。

Note: CAF, canopy ammonia fluxes; *indicates significantly difference at 5% level and ** indicates significantly difference at 1% level.

吸收的可能性。

冬小麦冠层氨挥发主要发生在开花期与灌浆末-枯死期(图 2b,图 2c),分别占冠层氨挥发的 4.5%~ 9.3%和 79.1%~99.0%(表 1)。这是因为生育后期植物 叶片以氮素转运为主,尤其是到了衰老期,蛋白质水 解产生大量的 NH4(图 3a),为叶片氨挥发提供了直 接来源,也导致较高的叶片氨气补偿点(图 3c)。

3.2 影响冠层氨挥发的因素

质外体 NHt 是冠层氨挥发的直接来源,叶片氨气 补偿点是调控植物与大气氨气交换方向与强度的主 要参数,其数值越大表明植物叶片氨挥发越强烈^[20]。 影响氨气补偿点的因素有施氮量四、细胞代谢或物质 运输^网等,这些因素也是影响质外体 NH₄浓度的关 键。相关性分析也表明,冠层氨挥发速率与叶片氨气 补偿点极显著正相关(P<0.01),与质外体 NH 浓度显 著正相关(P<0.05,表 2),而与 GS 活性相关性不显 著。有研究¹⁵¹表明,叶片氨挥发与 GS 活性密切相关, 利用 MSO(GS 抑制剂)降低 GS 酶活性会增加冠层氨 挥发速率。这是因为降低 GS 活性会造成氨同化作用 受到限制,导致细胞和质外体中 NHt的累积。但在正 常情况下,营养生长期叶片 GS 活性不会受到强烈抑 制,且生长越旺盛,酶活性越高,氨同化越快,此时控 制冠层氨气交换方向的主要因素是大气氨气浓度。高 施氮处理土壤氨挥发强烈,大气氨气浓度高于氨气补 偿点,冠层从大气中吸收氨气。

冠层氨挥发主要发生于灌浆末期与枯死期,此时 冠层氮代谢以分解转运为主,氨同化不是主导氮素代 谢方向的关键因素;同时土壤氨挥发少,大气氨气浓 度低于氨气补偿点,冠层以氨挥发为主。在营养生长 和生殖生长的交汇期(花期),GS活性(图 3d)与冠层 氨挥发速率(图 2b)均出现峰值,说明氮代谢和氨挥 发都很旺盛。可能是由于光呼吸氮循环释放的 NH; 多,其释放速率超过 GS/GOGAT 途径的同化速率^[25], 造成质外体 NH;浓度上升和冠层氨气释放。冠层氨挥 发也可能来源于植株下部老叶或者地上的枯枝落 叶^[26]。因此,冬小麦冠层在土壤-大气氨气交换过程中 的作用受生育期、施肥和营养状况等影响。

4 结论

冬小麦麦田氨挥发主要出现在施肥后 2~3 周内, 且随施氮量的增加而提高,此时施氮处理冠层发生氨 气吸收现象。冠层氨挥发主要发生在生殖生长期,特 别是灌浆末-枯死期。冠层氨气扩散方向主要受氨气 补偿点和质外体 NH₄浓度控制,与 GS 活性关系不大。在未来的氮素调控方面,应充分考虑冠层在农田 氮素循环中的作用。

参考文献:

- Felix J D, Elliott E M, Gish T, et al. Examining the transport of ammonia emissions across landscapes using nitrogen isotope ratios[J]. *Atmo-spheric Environment*, 2014, 95(1):563–570.
- [2] 王敬国,林 杉,李保国. 氮循环与中国农业氮管理[J]. 中国农业科学, 2016, 49(3): 503-517.

WANG Jing-guo, LIN Shan, LI Bao-guo. Nitrogen cycling and management strategies in Chinese agriculture[J]. *Scientia Agricultura Sinica*, 2016, 49(3):503-517.

- [3] Kuang F, Liu X J, Zhu B, et al. Wet and dry nitrogen deposition in the central Sichuan Basin of China[J]. *Atmospheric Environment*, 2016, 143:39–50.
- [4] Liu X J, Zhang Y, Han W X, et al. Enhanced nitrogen deposition over China[J]. Nature, 2013, 494(7438):459–462.
- [5] Morán M, Ferreira J, Martins H, et al. Ammonia agriculture emissions: From EMEP to a high resolution inventory[J]. Atmospheric Pollution Research, 2016, 7(5):786–798.
- [6] 王书伟, 廖千家骅, 胡玉婷, 等. 我国 NH₃-N 排放量及空间分布变化 初步研究[J]. 农业环境科学学报, 2009, 28(3):619-626.
 WANG Shu-wei, LIAO QIAN Jia-hua, HU Yu-ting, et al. A preliminary inventory of NH₃-N emission and its temporal and spatial distribution of China[J]. *Journal of Agro-Environment Science*, 2009, 28(3): 619-626.
- [7] Yang Y, Zhou C J, Li N, et al. Effects of conservation tillage practices on ammonia emissions from Loess Plateau rain-fed winter wheat fields[J]. *Atmospheric Environment*, 2015, 104:59–68.
- [8]山 楠,赵同科,毕晓庆,等.不同施氮水平下小麦田氨挥发规律研究[J].农业环境科学学报,2014,33(9):1858–1865. SHAN Nan, ZHAO Tong-ke, BI Xiao-qing, et al. Ammonia volatilization from wheat soil under different nitrogen rates[J]. Journal of Agro-Environment Science, 2014, 33(9):1858–1865.
- [9] 董文旭, 胡春胜, 陈素英, 等. 保护性耕作对冬小麦-夏玉米农田氮 肥氨挥发损失的影响[J]. 中国农业科学, 2013, 46(11):2278-2284. DONG Wen-xu, HU Chun-sheng, CHEN Su-ying, et al. Effect of conservation tillage on ammonia volatilization from nitrogen fertilizer in winter wheat-summer maize cropping system[J]. Scientia Agricultura Sinica, 2013, 46(11):2278-2284.
- [10] 李世清,赵 琳,邵明安,等. 植物冠层与大气氨交换的研究进展
 [J]. 西北植物学报, 2004, 24(11):2154-2162.
 LI Shi-qing, ZHAO Lin, SHAO Ming-an, et al. Ammonia exchange between plant canopy and the atmosphere: A review[J]. Acta Botanica Boreali-Occidentalia Sinica, 2004, 24(11):2154-2162.
- [11] Walker J T, Jones M R, Bash J O, et al. Processes of ammonia air-surface exchange in a fertilized Zea mays canopy[J]. Biogeosciences Discussions, 2012, 9(6):7893-7941.
- [12] Martha Júnior G B, Trivelin P C O, Corsi M. Tanzania grass leaf ab-

408

sorption of ammonia volatilized from N¹⁵-urea applied to soil[J]. *Revista Brasileira De Ciência Do Solo*, 2009, 33(1):103–108.

- [13] Ping J L, Bremer E, Janzen H H. Foliar uptake of volatilized ammonia from surface-applied urea by spring wheat[J]. *Communications in Soil Science and Plant Analysis*, 2000, 31(1/2):165–172.
- [14] 陈 刚, 徐阳春, 沈其荣. 施氮水平对水稻生育后期地上部氨挥发的影响[J]. 应用生态学报, 2008, 19(7):1483–1488.
 CHEN Gang, XU Yang-chun, SHEN Qi-rong. Effects of N fertilization levels on ammonia volatilization from rice shoot at later growth stages
 [J]. Chinese Journal of Applied Ecology, 2008, 19(7):1483–1488.
- [15] 陈明霞, 周彩云, 李明军, 等. 光呼吸和谷氨酰胺合成酶抑制剂对 水稻冠层 NH₃ 挥发的影响[J]. 植物科学学报, 2011, 29(2):206-211.

CHEN Ming-xia, ZHOU Cai-yun, LI Ming-jun, et al. Effects on ammonia volatilization from shoot of rice by inhibitor[J]. *Plant Science Journal*, 2011, 29(2):206-211.

- [16] Mattsson M, Häusler R E, Leegood R C, et al. Leaf-atmosphere NH₃ exchange in barley mutants with reduced activities of glutamine synthetase[J]. *Plant Physiology*, 1997, 114(4):1307–1312.
- [17] Farquhar G D, Firth P M, Wetselaar R, et al. On the gaseous exchange of ammonia between leaves and the environment: Determination of the ammonia compensation point[J]. *Plant Physiology*, 1980, 66(4):710– 714.
- [18] 王朝辉, 刘学军, 巨晓棠, 等. 田间土壤氨挥发的原位测定——通 气法[J]. 植物营养与肥科学报, 2002, 8(2):205-209.
 - WANG Zhao-hui, LIU Xue-jun, JU Xiao-tang, et al. Field *in situ* determination of ammonia volatilization from soil: Venting method [J]. *Plant Nutrition and Fertilizer Science*, 2002, 8(2):205–209.

- [19] O'Leary B M, Rico A, Mccraw S, et al. The infiltration-centrifugation technique for extraction of apoplastic fluid from plant leaves using phaseolus vulgaris as an example[J]. *Freshwater Biology*, 2010, 55 (11):2319–2331.
- [20] Herrmann B, Mattsson M, Jones S K, et al. Vertical structure and diurnal variability of ammonia exchange potential within an intensively managed grass canopy[J]. *Biogeosciences and Discussions*, 2009, 6(1): 15–23.
- [21] Meng S, Zhang C X, Su L, et al. Nitrogen uptake and metabolism of Populus simonii in response to PEG-induced drought stress[J]. Environmental and Experimental Botany, 2016, 123:78–87.
- [22] Harper L A, Sharpe R B, Langdale G W, et al. Nitrogen cycling in a wheat crop: Soil, plant, and aerial nitrogen transport[J]. Agronomy Journal, 1987, 79(6):965–973.
- [23] Massad R S, Loubet B, Tuzet A, et al. Ammonia stomatal compensation point of young oilseed rape leaves during dark/light cycles under various nitrogen nutritions[J]. A griculture Ecosystems & Environment, 2009, 133(3):170–182.
- [24] Massad R S, Loubet B, Tuzet A, et al. Relationship between ammonia stomatal compensation point and nitrogen metabolism in arable crops: Current status of knowledge and potential modelling approaches[J]. Environmental Pollution, 2008, 154(3): 390–403.
- [25] Lea P J, Blackwell R B, Joy K W. Ammonia assimilation in higher plants[M]. New York: Oxford Scientific Publishers, 1992:153–186.
- [26] Nemitz E, Sutton M A, Gut A, et al. Sources and sinks of ammonia within an oilseed rape canopy[J]. Agricultural and Forest Meteorology, 2000, 105(4):385–404.

农业环境科学学报 第36卷第2期