康四军,杨金辉,杨 斌,等.改性烟末生物质吸附剂对水中NO;的吸附特性与机理[J].农业环境科学学报,2018,37(9):2014-2020.

KANG Si-jun, YANG Jin-hui, YANG Bin, et al. Adsorption characteristics and mechanism of modified tobacco powder biomass adsorbent for NO₃ in water [J]. *Journal of Agro-Environment Science*, 2018, 37(9): 2014–2020.

改性烟末生物质吸附剂对水中NOi的吸附特性与机理

康四军1,杨金辉1*,杨 斌2,谢水波1,王劲松1,黎传书1

(1. 南华大学土木工程学院, 湖南 衡阳 421001; 2. 南华大学核三力技术有限公司, 湖南 衡阳 421001)

摘 要:为探究改性烟末生物质吸附剂对水中NO5的吸附机理,以烟末为原料,通过吡啶催化法改性制备改性烟末生物质吸附剂(Modified Tobacco Powder Biomass Adsorbents,MTPBA),吸附水中的NO5。根据X-射线衍射(XRD)、扫描电子显微镜(SEM)、能谱分析(EDS)和傅里叶变换红外光谱(FTIR)对 MTPBA 的表征分析,结果显示:烟末改性后,表面 Zeta 电位、孔隙结构和纤维素上官能团的变化有利于吸附NO5。采用静态吸附实验方法,研究 MTPBA 对水中NO5 的吸附特性,结果表明:当NO5初始浓度为 30 mg·L⁻¹,MTPBA 投加量为 $4.0~{\rm g}\cdot{\rm L}^{-1}$,溶液 pH=6.68,吸附时间为 30 min 时,MTPBA 对水中 NO5 吸附效果最佳。吸附过程与准二级动力学模型 $(R^2>0.99)$ 、Langmuir 和 Freundlich 等温模型 $(R^2>0.92)$ 能较好地拟合,Langmuir 拟合结果表明:MTPBA 对水中 NO5 有较高的吸附容量 $(Q_{\rm max}=28.458~{\rm mg}\cdot{\rm g}^{-1})$,优于改性蒙脱石和生物炭,研究表明:MTPBA 具有较高的吸附容量,优于改性蒙脱石和生物炭,其对 NO5 的吸附机理以与叔胺基团的静电及离子交换吸附为主,多孔结构材料的物理吸附并存。

关键词:改性烟末生物质吸附剂;NO3;吸附特性;吸附机理

中图分类号:X52 文献标志码:A 文章编号:1672-2043(2018)09-2014-07 doi:10.11654/jaes.2018-0035

Adsorption characteristics and mechanism of modified tobacco powder biomass adsorbent for NO₃ in water

KANG Si-jun¹, YANG Jin-hui^{1*}, YANG Bin², XIE Shui-bo¹, WANG Jin-song¹, LI Chuan-shu¹

(1.School of Civil Engineering, University of South China, Hengyang 421001, China; 2.Nuclear Sanli Technology Co., Ltd., University of South China, Hengyang 421001, China)

Abstract: To explore the mechanism of adsorption of NO_3^- by modified tobacco powder biomass adsorbent (MTPBA) in water, scrap tobacco (tobacco powder) was used as the raw material to obtain MTPBA with the pyridine-catalyzed method. The characterization of MTPBA by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Fourier-transform infrared spectroscopy (FTIR) were used to investigate the mechanism of MTPBA adsorption. The static adsorption test method was used to explore the characteristics of NO_3^- adsorption by MTPBA. The results showed the adsorption effect of NO_3^- in water was greatest when the initial concentration of NO_3^- was 30 mg·L⁻¹, the dosage of MTPBA was 4.0 g·L⁻¹, the pH value was 6.68, and the adsorption time was 30 min. The adsorption process is well fitted to the pseudo-second order kinetic model (R^2 >0.99). The experimental data fit well with the Langmuir and Freundlich isothermal models (R^2 >0.92). The Langmuir fitting results show that MTPBA had a higher adsorption capacity for NO_3^- in water (Q_{max} =28.458 mg·g⁻¹) than that of modified montmorillonite and biochar. The adsorption mechanism of NO_3^- is mainly based on electrostatic and ion exchange adsorption with tertiary amine groups, and the physical adsorption of porous structural materials.

Keywords: modified tobacco powder biomass adsorbent; NO3; adsorption characteristics; adsorption mechanism

收稿日期:2018-01-05 录用日期:2018-04-09

作者简介:康四军(1993—),男,河南驻马店人,硕士研究生,从事水处理技术与理论研究。E-mail:913274010@qq.com

^{*}通信作者:杨金辉 E-mail:yanjinhui126@126.com

基金项目:国家自然科学基金项目(21177053)

工农业生产中的含NO:废水直接排入自然水体, 将严重危害到人体健康和生态环境。经济高效地处 理含NO5废水成为急需解决的生态问题[1-2]。传统的 化学还原法、电化学还原法、膜分离法、微生物脱氮技 术等含NO5废水处理方法存在转化不完全、电极材料 易腐蚀钝化、经济效益低、处理条件严苛等不足的。因 此去除率高、处理成本低的由农业废料生产的纤维吸 附材料被广泛应用于水中阴离子的去除吗。陈卓的利 用改性丝瓜络吸附硝态氮的吸附率高达97%;莫蔚明 等10利用改性木薯秸秆对NO;进行动态吸附取得了很 好的吸附效果;许醒四制备的改性阳离子型麦草秸杆 吸附剂对 NO₅的最大吸附容量(20 ℃)为 68.5 mg·g⁻¹。 烟草废料(烟末)图因其优良的孔隙结构、高含量的木 质纤维素以及丰富的功能基团,而对NO。具有很好的 吸附效果。改性后引入带正电荷的叔胺基团的使烟末 吸附效果显著提高。

本文以环氧氯丙烷、烟末为原料,N,N二甲基甲 酰胺(DMF)为反应介质,在吡啶的催化条件下以三乙 胺为胺类引入基团对烟末中纤维素进行修饰,获得了 改性烟末生物质吸附剂(MTPBA),并对MTPBA的性 质进行表征分析,研究了MTPBA对NOi的吸附特性 与机理,期望给我国新型吸附剂的研制、生物质固体 废弃物的资源化以及水环境的污染修复以启发。

1 材料与方法

1.1 主要试剂与仪器

主要试剂:烟末,卷烟厂下脚料,60目以下;环氧 氯丙烷、N,N二甲基甲酰胺、吡啶、99%的三乙胺、盐 酸、氢氧化钠、氨基磺酸、硝酸钾均为市面销售分析 纯;实验用水为去离子水。

主要仪器:TU-1901 双光束紫外可见分光光度计 (北京普析通用仪器有限责任公司);傅里叶变换红外 光谱仪(NICOLET6700型,美国Thermo Fisher公司); X射线能谱仪(X-Max型,英国OXFORD公司);扫描 电子显微镜(JSM-7500F型,日本JEOL公司);X射线 衍射(ULTIMAIV型,日本Rigku公司);JS94H微电泳 仪(上海中晨数字技术设备有限公司)。

1.2 烟末的预处理

称取一定质量的烟末,用去离子水反复清洗,至 滤液澄清透明,除去样品中的水溶态和游离态杂质[10], 干燥后研磨至60目以下,得到烟末生物质吸附剂 (Tobacco Powder Biomass Adsorbents, TPBA), 置于燥 器中存储以备用。

1.3 烟末的改性

称取 2.0 g备用的 TPBA 置于 250 mL三口烧瓶, 加入10 mL环氧氯丙烷、10 mL DMF^[11],100 ℃搅拌反 应 60 min; 再加入8 mL吡啶, 100 ℃搅拌反应 60 min; 接着加入10 mL 99%的三乙胺[12],100℃继续搅拌180 min;冷却后产物依次用50%的乙醇、去离子水清洗 至中性,干燥,研磨至60目以下得到改性烟末生物质 吸附剂(MTPBA),置干燥器中存储以备用。

1.4 MTPBA 吸附试验

取一定浓度 NO3溶液 25 mL于75 mL锥形瓶中, 调节其pH值。加入0.02gMTPBA,采用恒温摇床 150 r·min⁻¹振荡吸附若干时间,用定性滤纸过滤,采 用双光束紫外可见分光光度计(TU-1901)测定其吸 光度,重复3次,取平均值计算剩余NO;浓度,并按式 (1)和式(2)计算MTPBA对NOi的吸附量及NOi的吸 附率。

$$q = \frac{(C_0 - C_e) \times V}{m} \tag{1}$$

$$R = \frac{C_0 - C_e}{C_0} \times 100\% \tag{2}$$

式中:q为MTPBA对NO3的吸附量,mg·g⁻¹;R为NO3的 吸附率、%; C_0 为吸附前溶液 NO;浓度,mg·L⁻¹; C_0 为吸 附后溶液 NO3浓度, mg·L⁻¹; V为溶液体积, L; m为MT-PBA 质量,g。

2 结果与分析

2.1 改性前后Zeta电位变化

用微电泳仪分别测定25 ℃条件下TPBA 改性前 后表面带电情况。结果表明,改性前TPBA表面Zeta 电位为-17.6 mV, 改性产物 MTPBA 表面 Zeta 电位为 +34.7 mV。分析认为,改性前TPBA中的纤维素、木 质素带有大量的-OH、-COOH等电负性基团致使其 表面呈负电性,Zeta电位为负;改性后,由于木质素和 半纤维素水解醚化,且改性反应消耗掉纤维素上部 分-OH,而使得-COOH和-OH总量减少,同时改性修 饰向材料接入了带正电荷的叔胺基团,从而导致电性 发生转变, MTPBA的Zeta电位为正。MTPBA强大的 正电荷性质为其吸附水体中NO3提供了良好的静电 吸附能力。

2.2 TPBA、MTPBA 的 X 射线衍射(XRD)分析

在对改性产物 MTPBA 官能团分析的基础上,利 用 XRD 对 TPBA 和 MTPBA 的体相结构进行了表征。 如图 1 可知,谱线在 $2\theta=21^{\circ}$ 和 $2\theta=15^{\circ}$ 附近出现很强非 晶散射峰,21°处的主峰代表了高度有序的纤维素结 2016 农业环境科学学报 第37卷第9期

构;15°处的次峰则代表了TPBA中有序度较低的多糖结构。MTPBA的主峰和次峰的峰强度均高于TPBA的,在2 θ =27°处的峰强度明显降低,改性后MTPBA的结晶程度增加。在改性合成反应条件下,烟末纤维中的灰分、可抽取物、SiO₂等少量晶体杂质被去除,纤维结构的有序度大幅提高。在2 θ =42°和2 θ =50°处峰强度明显增加,表明改性过程成功引入了叔胺基团和氯烷基。

图 1 TPBA和MTPBA的XRD图谱 Figure 1 XRD patterns of TPBA and MTPBA

2.3 MTPBA 投加量对 MTPBA 吸附 NO5的影响

MTPBA的投加量直接影响其与NO5的结合位点数目,从而影响NO5的吸附率^[12]。在NO5初始浓度为30 mg·L⁻¹,pH=6.68,温度为30 ℃,吸附时间为3.0 h的条件下,研究不同MTPBA投加量(0.4、0.8、1.6、2.4、3.2、4.0、4.8 g·L⁻¹)对NO5吸附效果的影响。如图 2 所示,随着MTPBA投加量的增加,NO5吸附率逐渐升高,吸附量却逐渐降低。由于随着MTPBA投加量的增大,NO5吸附位点数量增多,从而使NO5的吸附率升高。同时,也导致了MTPBA片层团聚效应增加,有效吸附位点数量降低,单位质量吸附剂吸附的NO5减少,使吸附量降低^[13]。当投加量为4.0 g·L⁻¹时,NO5吸附率达到96.66%;继续增加投加量至4.8 g·L⁻¹,MTP-BA对NO5的吸附率无明显变化。因此,本实验条件下MTPBA对NO5吸附最佳投加量为4.0 g·L⁻¹。

2.4 pH对MTPBA吸附NO3的影响

在 NO₃初始浓度为 30 mg·L⁻¹, MTPBA 投加量为 4.0 g·L⁻¹, 吸附温度为 30 ℃的条件下,将 pH 值分别调至 2.0、4.0、6.0、7.0、8.0、10.0、12.0,吸附 60 min, 过滤取上清液测定溶液中剩余 NO₃浓度,探究 pH 值对 MTPBA 吸附 NO₃的影响。如图 3 所示,当溶液初始 pH 值范围在 4.0~10.0之间时, NO₃吸附率基本在 85% 以上,表明该吸附剂对溶液 pH 的适用范围较大。当

图 2 MTPBA 投加量对吸附 NO3的影响

Figure 2 Effect of MTPBA amount on NO₃ adsorption

Figure 3 Effect of pH on NO₃ adsorption by MTPBA

家游加松 日左去 4 0 居 4 70 2 0 时 子 花 4 10 0

溶液初始pH值由4.0减小到2.0时,或者由10.0增加到12.0时,吸附率均迅速下降。这是因为在强酸条件下,H*浓度越高相应的CI⁻浓度也越高,大量的CI⁻附着在MTPBA表面使其显负电性^[14],增加吸附剂与NO₃之间的静电斥力,阻碍NO₃被吸附,吸附率较低。同理,在pH值较高条件下,由于OH⁻的存在与NO₃形成竞争关系^[15],导致NO₃吸附率迅速降低。通过吸附反应后,碱性样品溶液的pH值出现不同程度的降低,也印证了OH⁻参与了吸附过程。因此,本实验条件下MTPBA对NO₃吸附最佳初始pH为KNO₃溶液本身pH=6.68。

2.5 NO3初始浓度对MTPBA吸附NO3的影响

在吸附温度为30℃,pH=6.68,MTPBA投加量为4.0g·L⁻1的条件下,分别对NO₃初始浓度为2、10、30、50、100、150、200 mg·L⁻1的溶液吸附60 min,过滤取上清液测定溶液中剩余NO₃浓度,研究NO₃初始浓度对MTPBA吸附NO₃的影响。如图4所示,随着NO₃初始浓度的升高,MTPBA的吸附量逐渐增大,但NO₃的吸附率却逐渐减小。因为在NO₃初始浓度较高时,其浓

图4 NO3初始浓度对吸附的影响

Figure 4 Effect of initial concentration on NO₃ adsorption

度梯度($\Delta C = C_0 - C_e$)较大^[16],促进 NO3向 MTPBA的表面及内部扩散,使 NO3与 MTPBA中吸附位点结合的概率增大。又因 MTPBA中可吸附位点有限,当吸附达到饱和时,过量的 NO3制约了吸附过程的自发进行^[17],造成吸附率减小。因此,废水中 NO3浓度范围在 2~50 mg·L⁻¹时,在实践中的处理效果最佳。

2.6 温度对MTPBA吸附NO3的影响

在NO₃初始浓度为2~200 mg·L¹,pH=6.68,MTPBA 投加量为4.0 g·L¹,分别在20、30、40 ℃下测定MTPBA 对NO₃的吸附等温曲线(图5)。对实验数据分别按照 Langmuir和Frundlich等温方程进行拟合,描述吸附体 系达到吸附平衡时,MTPBA内吸附量与溶液中剩余 NO₃浓度之间关系^[13]。其拟合参数见表1。

由图 5 可知,3条吸附等温曲线均在 C_c大于 60 mg·L⁻¹后基本达到最大吸附容量。当 C_c较低时,3条曲线基本重合,表明温度变化对于 NO₅的吸附影响不大^[18]。当 NO₅浓度继续升高,3条曲线间距逐渐增大,吸附效果随着温度的增加而减弱,最大吸附量的顺序

图 5 不同温度的吸附等温曲线

Figure 5 Adsorption isotherms at different temperatures

表1 吸附等温模型拟合参数

Table 1 Isotherm model fitting parameters

温度/		angmuir G/Q _{max} +1/b	$Q_{ m max}$	Freundlich ${ m ln}q_c = { m ln}K_{ m f} + { m ln}C_c/n$			
	$Q_{\mathrm{max}}/\mathrm{mg} \cdot \mathrm{g}^{-1}$	b	R^2	$K_{\rm f}$	n	R^2	
20	28.46	0.185	0.998	3.515	1.831	0.923	
30	27.56	0.099	0.986	2.205	1.600	0.924	
40	25.52	0.070	0.973	1.587	1.516	0.931	

注:q。为平衡时的吸附量;Qmax为最大吸附量;C。为平衡时NO3的浓度;b为吸附平衡常数;K为Freundlich 吸附系数;n为Freundlich 常数。

为 20 \mathbb{C} > 30 \mathbb{C} > 40 \mathbb{C} 。 这表明该吸附过程放热,低温促进吸附过程正向进行。

由表 1 中相关系数 R^2 可知,两个方程的拟合程度均较高,说明不同温度下的 MTPBA 对 NO_5 的吸附同时符合 Langmuir 等温方程与 Freundlich 等温方程。因此,MTPBA 对 NO_5 的吸附是介于单层和多层吸附之间 [19]。在 Langmuir 模型中,20 ℃下,最大吸附量为28.46 $mg \cdot g^{-1}$,优于改性蒙脱石 (14.26 $mg \cdot g^{-1}$)和生物炭 (14.67 $mg \cdot g^{-1}$)[20]。在 Freundlich 模型中,3 个温度下的 n 值都大于 1,为"优惠型"吸附[21],即在较低的浓度下也能有较大的吸附量,表明 MTPBA 适用于处理低浓度含 NO_5 废水。

2.7 MTPBA对NO3的吸附动力学

在吸附温度为30℃,pH=6.68,NO₃初始浓度分别为2、10、20、30 mg·L⁻¹,MTPBA投加量为4.0 g·L⁻¹的条件下,研究吸附时间对MTPBA吸附NO₃的影响。由图6可知,在快速吸附(0~10 min)阶段,4条曲线的瞬时吸附速率均较高,且初始浓度越高,吸附速率越大;在慢速吸附(10~20 min)阶段,曲线平缓上升,吸附过程逐渐达到平衡;在平衡吸附(20~80 min)阶段,曲线停止上升,吸附达到平衡。此外,平衡吸附量随初始浓度的增加而增加,表明初始浓度从2 mg·L⁻¹到30 mg·L⁻¹的吸附过程,均未达到MTPBA的最大吸附量,这也与之前的吸附等温线的结果互相印证。

为深入研究 MTPBA 对 NO $_3$ 的吸附动力学特征,采用准一级动力学模型、准二级动力学模型和颗粒内扩散模型进行实验数据拟合(表2)。从表2可知,准二级动力学方程对数据的拟合度优于准一级动力学方程,且其理论平衡吸附量 $(q_{e,cal})$ 更接近实际平衡吸附量 $(q_{e,cal})$,因此,准二级动力学模型能更好地描述MTPBA 对 NO $_3$ 的吸附动力学过程。这表明 MTPBA 吸附 NO $_3$ 的过程以化学吸附为速控步骤 $^{[22]}$ 。此外,颗粒内扩散模型的拟合曲线与 Y 轴截距不为零,说明吸附

2018 农业环境科学学报 第37卷第9期

图 6 吸附时间对吸附 NO 的影响

Figure 6 Effect of time on NO3 adsorption

速率不是由颗粒内扩散单一步骤控制,而是由多种吸附机理共同控制[23]。

2.8 MTPBA 吸附 NO 前后扫描电镜及能谱分析

图 7 为 MTPBA 吸附 NO₃前后的 SEM 图像。由图 7(a)可见,MTPBA 吸附 NO₃之前呈不规则片层结构,片层之间存在一定间距,表面存在大量细小孔洞,大幅增加了 MTPBA 的孔隙率,裸露出更多的结合位点。对比图 7(a)和图 7(b)可知,吸附 NO₃后 MTPBA 表面较吸附前平滑,表面孔洞及片层之间已被吸附的 NO₃填充,这说明 MTPBA 对 NO₃具有良好的吸附效果。

(b) 吸附后

图 7 MTPBA 吸附 NO3前后的 SEM 图像 Figure 7 SEM images of MTPBA before and after adsorption of NO3

图 8 为吸附 NO;前后的 EDS 分析图。从图 8(a) 可以看出,吸附前,由于 MTPBA 中存在叔胺基团,故其主要由 C、O、N、Cl元素构成,没有 NO;的存在;图 8(b)吸附后,MTPBA 中 N 元素的质量百分比增加了6.43%,O元素的质量百分比增加了8.22%,Cl元素的质量百分比减少了1.81%,表明 MTPBA 对 NO;具有较强的吸附能力。MTPBA 对 NO;吸附可能是由于叔胺基团、氯烷基等官能团与 NO;之间发生了静电及离子交换吸附。

2.9 MTPBA 吸附 NO3前后红外光谱分析

图 9 中曲线 a、b 分别为 MTPBA 吸附 NO₃前后的 FTIR 图。根据文献[24]对吸收谱带进行分析,在曲线 a中,3433 cm⁻¹处是纤维素及半纤维素结构中羟基对应的强振动吸收峰;2922 cm⁻¹是 CH₃-CO-基团的伸

图 8 MTPBA 吸附前和吸附 NO5后的 EDS 图谱 Figure 8 EDS spectra of MTPBA before and after adsorption

表2 吸附动力学拟合参数

Table 2 Kinetic parameters of NO₃ adsorption on MTPBA

$C_0/\mathrm{mg} \cdot \mathrm{L}^{-1}$	$q_{ m e,exp}/{ m mg} {f \cdot} { m g}^{-1}$ —	准一级动力学模型 $\ln(q_e-q_\iota)=\ln q_e-k_1 t$		准二级动力学模型 $t/q_i=1/k_2q_e^2+t/q^e$			颗粒内扩散模型 q_i = $k_{\rm dif}$ · $t^{1/2}$ + C			
		k_1	$q_{ m e,cal}$	R^2	k_2	$q_{ m e,cal}$	R_2	С	$k_{ m dif}$	R^2
2	0.483	0.215	0.279	0.979	2.441	0.489	0.999	0.199	0.082	0.912
10	2.415	0.239	1.618	0.964	0.499	2.446	0.999	0.996	0.413	0.913
20	4.831	0.269	3.938	0.940	0.250	4.897	0.999	2.001	0.824	0.903
30	7.251	0.260	5.564	0.940	0.167	7.349	0.999	3.030	1.230	0.898

注: $q_{e,cal}$ 为理论平衡吸附量; $q_{e,eap}$ 为实际平衡吸附量; q_e 为平衡时的吸附量; q_i 为时刻吸附量; k_i 为准一级吸附速率常数; k_2 为准二级吸附速率常数; k_{dir} 为内扩散速率常数;C为边界层的常数。

缩振动吸收峰:1635 cm-1 处是 C=N 基团的伸缩振动 吸收峰:1460 cm⁻¹ 外的吸收峰对应木质素结构中芳香 环的特征振动;1304 cm⁻¹处的强吸收峰,为引入的叔 胺基团特征吸收峰:620 cm⁻¹处是引入的氯烷基振动 吸收峰。

对比曲线b可见,吸附NO5后,羟基、叔胺基团、氯 烷基均出现偏移,表明-OH、叔胺基团、氯烷基为主要 吸附位点。但吸附前后的红外光谱变化不大,表明 MTPBA 吸附 NO5后自身结构并未发生改变[25]。在 3438 cm⁻¹处出现峰型的移动和增宽,说明 MTPBA 所 含的羟基可能与NO5发生了离子交换。在1460 cm⁻¹ 处的吸收峰增强,说明芳香环可能与NO5发生了硝化 反应。在1314 cm⁻¹处出现强度增大的谱峰,说明叔 胺基团与NO;可能发生了静电吸附反应。在593 cm⁻¹ 处出现峰强增加和峰型的移动,说明 MTPBA 中引入 的氯烷基与NO。可能发生了离子交换反应。

图 9 MTPBA 吸附 NO3前后的 FTIR Figure 9 FTIR spectra for MTPBA before and after adsorption of NO3

结论

- (1)经改性修饰得到的MTPBA表面Zeta电位为 正电位,成功引入叔胺基团和氯烷基,有利于MTPBA 对水中NOi的吸附。
- (2)静态吸附实验研究表明 MTPBA 投加量、溶 液pH值等因素对MTPBA吸附NO5的影响较大;吸附 动力学研究表明:吸附过程主要为快速的表面吸附, 30 min 内达到理论最大吸附容量的98.67%。
- (3)将实验数据等温拟合,结果与Langmuir等温 模型拟合度较好,推算MTPBA对NO3的最大吸附量 Q_{max} =28.46 mg·g⁻¹,优于改性蒙脱石和生物炭。
- (4)现代分析仪器结果表明 MTPBA 对 NOi 的吸 附机理主要是与叔胺基团的静电吸附,以及与MTP-BA中氯烷基的离子交换吸附。

参考文献:

- [1] Sehaqui H, Mautner A, Perez d L U, et al. Cationic cellulose nanofibers from waste pulp residues and their nitrate, fluoride, sulphate and phosphate adsorption properties[J]. Carbohydrate Polymers, 2016, 135(2): 334-340
- [2] Kim J, Hwang M J, Lee S J, et al. Efficient recovery of nitrate and phosphate from wastewater by an amine-grafted adsorbent for cyanobacterial biomass production[J]. Bioresour Technol, 2016, 205(4):269-273.
- [3] 王 冰, 赵闪闪, 秦治家, 等. 生物质炭对黑土吸附-解吸硝态氮性 能的影响[J]. 农业环境科学学报, 2016, 35(1):115-121.
 - WANG Bing, ZHAO Shan-shan, QIN Zhi-jia, et al. Effect of biochar on adsorption-desorption characteristics of nitrate nitrogen in black soil [J]. Journal of Agro-Environment Science, 2016, 35(1):115-121.
- [4] 平 巍, 李 波, 董建丰, 等. 生物质改性吸附材料的制备工艺优化 及对氨氮的吸附特性[]]. 农业环境科学学报, 2017, 36(12):2521-
 - PING Wei, LI Bo, DONG Jian-feng, et al. Optimization of preparation technology for biomass-modified adsorption material and its adsorption properties for ammonia nitrogen[J]. Journal of Agro-Environment Science, 2017, 36(12):2521-2526.
- [5] 陈 卓. 改进型生物质离子交换纤维制备及其硝态氮吸附性能研 究[D]. 武汉:武汉理工大学, 2014.
 - CHEN Zhuo. Preparation of improved biomass ion exchange fiber and its adsorption properties of nitrate nitrogen[D]. Wuhan: Wuhan University of Technology, 2014.
- [6] 莫蔚明, 唐庆松, 李 旺, 等. 改性木薯秸秆对硝酸根的动态吸附及 脱附[J]. 环境化学, 2013, 32(9):1668-1673.
 - MO Wei-ming, TANG Qing-song, LI Wang, et al. Dynamic adsorption and desorption of nitrate by modified cassava stalks[J]. Environmental Chemistry, 2013, 32(9):1668-1673.
- [7] 许 醒. 阳离子型生物质吸附剂的研制及其去除水中阴离子的效 能及再生研究[D]. 济南:山东大学, 2014.
 - XU Xing. Preparation of cationic biomass adsorbent and its removal of water in the anion efficiency and regeneration[D]. Jinan: Shandong University, 2014.
- [8] 唐天宽, 汪意湘, 彭邱强, 等. 烟草废弃物利用研究概况[J]. 农业与 技术, 2012, 32(8):22, 28.
 - TANG Tian-kuan, WANG Yi-xiang, PENG Qiu-qiang, et al. Overview of tobacco waste utilization research[J]. Agriculture and Technology, 2012, 32(8):22, 28.
- [9] Kalaruban M, Loganathan P, Shim W G, et al. Enhanced removal of nitrate from water using amine-grafted agricultural wastes[J]. Science of the Total Environment, 2016, 565(9):503-510.
- [10] 陈春强, 吴 娟, 邬欣慧, 等. 水热氢氧化钾改性花生壳对染料的 吸附性能[J]. 农业环境科学学报, 2016, 35(11): 2224-2230. CHEN Chun-giang, WU Juan, WU Xin-hui, et al. Preparation and adsorption performance of peanut shells based adsorbent by potassium hydroxide-assisted hydrothermal method[J]. Journal of Agro-Environ-
- [11] Mishra P C, Islam M, Patel R K. Removal of nitrate-nitrogen from

ment Science, 2016, 35(11):2224-2230

- aqueous medium by adsorbents derived from pomegranate rind[J]. *Desalination & Water Treatment*, 2014, 52(28/29/30):5673–5680.
- [12] Hamzah F I, Khalid K, Hanafiah M A K M. Adsorption of Ni(II) onto chemically modified spent grated coconut (cocos nucifera) [C]//Materials Science and Engineering Conference Series. Materials Science and Engineering Conference Series, 2017.
- [13] 王 亮, 谢水波, 杨金辉, 等. 氧化石墨烯/二氧化硅复合材料对铀(IV)的吸附性能[J]. 中国有色金属学报, 2016, 26(6):1264-1271.
 - WANG Liang, XIE Shui-bo, YANG Jin-hui, et al. Adsorption of uranium (IV) by graphene oxide/silica composite[J]. *Chinese Journal of Nonferrous Metals*, 2016, 26(6):1264-1271.
- [14] 马骁飞, 吕苗苗, 唐向阳, 等. 累托石负载聚吡咯制备及其对硝酸根的吸附[J], 实验室研究探索, 2017, 36(6):28-31.
 - MA Xiao-fei, LÜ Miao-miao, TANG Xiang-yang, et al. Preparation of reactor supported polypyrrole and its adsorption on nitrate[J]. *Progress Research*, 2017, 36(6):28–31.
- [15] 李际会. 改性生物炭吸附硝酸盐和磷酸盐研究[D]. 北京:中国农业科学院, 2012.
 - LI Ji-hui. Modified biochar adsorption of nitrate and phosphate[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012.
- [16] Hu Q, Chen N, Feng C, et al. Nitrate removal from aqueous solution using granular chitosan-Fe(■)-Al(■) complex: Kinetic, isotherm and regeneration studies[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 63(6):216-225.
- [17] 陈华柏, 谢水波, 刘金香, 等. 厌氧颗粒污泥吸附铀(W) 的特性与机理[J]. 中国有色金属学报, 2014, 24(9):2418-2425.

 CHEN Hua-bo, XIE Shui-bo, LIU Jin-xiang, et al. Characteristics and mechanism of anaerobic granular sludge adsorbing uranium (W) [J]. Chinese Journal of Nonferrous Metals, 2014, 24(9):2418-2425.
- [18] Xue L H, Gao B, Wan Y S, et al. High efficiency and selectivity of Mg-

- Fe-LDH modified wheat-straw biochar in the removal of nitrate from aqueous solutions[J]. *Journal of the Taiwan Institute of Chemical Engineers*, 2016, 63(6):312-317.
- [19] 周菁菁. 茶叶对废水中铅锌镉离子的吸附性能研究[D]. 长沙: 湖南大学, 2013.
 - ZHOU Jing-jing. Study on adsorption of Pb, Zn, Cd in wastewater by tea leaves[D]. Changsha; Hunan University, 2013.
- [20] Chen L, Chen X L, Zhou C H, et al. Environmental-friendly montmorillonite-biochar composites: Facile production and tunable adsorption-release of ammonium and phosphate[J]. *Journal of Cleaner Pro*duction, 2017, 156(10):648-659.
- [21] Golie W M, Upadhyayula S. Continuous fixed-bed column study for the removal of nitrate from water using chitosan/alumina composite[J]. *Journal of Water Process Engineering*, 2016, 12(8):58-65.
- [22] Yang J, Li H, Zhang D, et al. Limited role of biochars in nitrogen fixation through nitrate adsorption[J]. Science of the Total Environment, 2017, 592(8):758-765.
- [23] Mazarji M, Aminzadeh B, Baghdadi M, et al. Removal of nitrate from aqueous solution using modified granular activated carbon[J]. *Journal* of Molecular Liquids, 2017, 233(5):139-148.
- [24] Wang X, Xia L S, Tan K X, et al. Studies on adsorption of uranium (VI) from aqueous solution by wheat straw[J]. Environmental Progress & Sustainable Energy, 2012, 31(4):566-576.
- [25] 谢水波, 罗景阳, 刘 清, 等. 羟乙基纤维素/海藻酸钠复合膜对六价铀的吸附性能及吸附机制[J]. 复合材料学报, 2015, 32(1):268-275
 - XIE Shui-bo, LUO Jing-yang, LIU Qing, et al. The adsorption properties and adsorption mechanism of hexavalent uranium on hydroxyethylcellulose/sodium alginate composite membrane[J]. *Chinese Journal of Composite Materials*, 2015, 32(1):268–275.