常旭卉, 贾书刚, 王淑平, 等. 粪源环丙沙星对潮土中抗生素抗性基因的影响[J]. 农业环境科学学报, 2018, 37(12): 2727-2737. CHANG Xu-hui, JIA Shu-gang, WANG Shu-ping, et al. Impacts of ciprofloxacin in duck feces on antibiotic resistance genes in ustic cambosols[J]. *Journal of Agro-Environment Science*, 2018, 37(12): 2727-2737.

粪源环丙沙星对潮土中抗生素抗性基因的影响

常旭卉1, 贾书刚2, 王淑平1*, 周志强1

(1.中国科学院大学资源与环境学院,北京 100049; 2.广西师范学院,北部湾环境演变与资源利用教育部重点实验室,南宁 530001)

摘 要:为了探究粪源环丙沙星(Ciprofloxacin, CIP)对潮土中抗生素抗性基因(Antibiotic resistance genes, ARGs)的影响,布置培养 试验(81 d),设置5个处理,分别为Ⅰ:CK(对照),Ⅱ:CIP(外源添加CIP),Ⅲ:DF(不含CIP的鸭粪),Ⅳ:DF+CIP(Ⅲ基础上外源添 加CIP),V:DF(CIP)(粪源CIP)。采用PCR技术分析土壤中6大类27种抗生素抗性基因和4种可移动遗传元件的检出情况,并利 用荧光定量 PCR技术对检出频率较高的目的基因及总细菌基因(16S rRNA)的绝对丰度进行检测。结果表明:不同处理土壤中共 检出6种 ARGs(*tetG*,*sul* I, *qnrA*, *qnrS*, *aadA2*, *aadD*)和1种可移动遗传元件(*int* I),且检测到的目的基因基本一致。DF(CIP)和 DF+CIP处理对土壤中细菌和不同种类 ARGs 的影响不同。DF(CIP)、DF+CIP处理均显著降低了土壤中16S rRNA、*tetG*的绝对 丰度;DF(CIP)处理显著增加了土壤中 *sul* I、*aadA2*的绝对丰度;DF+CIP处理显著增加了土壤中 *qnrA*的绝对丰度。不同种类的 ARGs与*int* I、土壤理化性质的偏相关性分析表明,土壤中*int* I与*sul* I、*aadA2*呈正相关,与*qnrA*呈负相关,*qnrA*与CIP残留量呈 正相关,*tetG*与有机质呈正相关。研究结果可为科学地评价氟喹诺酮类抗生素的环境风险以及粪肥的合理施用提供一定的理论 依据。

关键词:鸭粪;环丙沙星;潮土;抗生素抗性基因;可移动遗传元件;土壤理化性质 中图分类号:X53 文献标志码:A 文章编号:1672-2043(2018)12-2727-11 doi:10.11654/jaes.2018-0401

Impacts of ciprofloxacin in duck feces on antibiotic resistance genes in ustic cambosols

CHANG Xu-hui¹, JIA Shu-gang², WANG Shu-ping^{1*}, ZHOU Zhi-qiang¹

(1.College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; 2.Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Guangxi Teachers Education University, Nanning 530001, China) **Abstract**: In order to explore the impacts of ciprofloxacin in duck feces on antibiotic resistance genes (ARGs) in ustic cambosols, an 81-d soil culture experiment was conducted with five treatments: CK(control), CIP(ciprofloxacin), DF(duck feces), DF + CIP(DF with added CIP), and DF(CIP)(DF containing CIP). Twenty-seven kinds of ARGs and four kinds of mobile genetic elements (MGEs) were detected by polymerase chain reaction(PCR) testing. Absolute abundance of target genes with relatively high detection rates and total bacterial gene (16S rRNA) were determined by quantitative real time PCR testing. The results showed that six ARGs (*tetG*, *sul* I, *qnrA*, *qnrS*, *aadA2*, and *aadD*) and one MEG(*int* I) were found in different treatments, and these genes were essentially identical. The effects of DF(CIP) and DF + CIP on ARGs and bacteria in soil were different. Compared with DF, DF(CIP) and DF + CIP significantly reduced the absolute abundance of *sul* I and *aadA2*, and DF + CIP enhanced the absolute abundance of *sul* I and *aadA2*, and DF + CIP enhanced the absolute abundance of *sul* I. and *aadA2*, and DF + CIP enhanced the absolute abundance of *sul* I and *aadA2*, and DF + CIP enhanced the absolute abundance of *sul* I and *aadA2*, and DF + CIP enhanced the absolute abundance of *qnrA*. Partial correlation analysis among ARGs, MGEs and soil physicochemical properties, showed that *int* I was significantly reduced that *significantly*.

收稿日期:2018-03-26 录用日期:2018-07-09

***通信作者:**王淑平 E-mail:wshuping@ucas.ac.cn

基金项目:中国科学院知识创新工程方向项目(KZCX2-EW-QN606)

作者简介:常旭卉(1993—),女,内蒙古呼伦贝尔人,硕士研究生,主要研究方向为土壤生态学。E-mail:changxuhui@ucas.ac.cn

Project supported : The Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences (KZCX2-EW-QN606)

ly positive correlated with *sul* I and *aad*A2, but was significantly negatively correlated with *qnr*A. The positive correlation was observed between *qnr*A and residual contents of ciprofloxacin, and between *tet*G and soil organic matter. The results of this study provide a theoretical basis for scientific assessment of environmental risks posed by fluoroquinolones and suitable application of manure.

Keywords: duck feces; ciprofloxacin; ustic cambosols; antibiotic resistance genes; mobile genetic elements; soil physicochemical properties

抗生素在保障人类健康、促进畜禽养殖业发展等 方面起重要作用。我国畜禽养殖较为发达,经预测, 到 2020年每年畜禽粪便的产量将达到 42.4亿t^[3],畜 禽粪便农用造成的抗生素和抗生素抗性基因(Antibiotic resistance genes, AGRS)的污染问题已经引起了 广泛的关注。世界卫生组织(WHO)早在 2000年的报 告中就将抗生素抗药性列为本世纪人类在健康领域 面临的重大挑战之一^[5]。

畜禽养殖业长期使用兽用抗生素以促进动物生 长、预防和治疗动物疾病等,但约25%~75%的抗生素 未被机体吸收而随粪尿排出体外进入环境^[8]。抗生 素残留会诱导土壤中ARGs的产生和积累^[9-11]。饲料 中的抗生素会显著改变肠道中的微生物群落结构,导 致肠道中含有抗生素抗性基因的微生物显著增加^[13]。 进一步的研究表明,动物肠道内的抗性细菌随着粪便 排出体外后,其携带的抗生素抗性遗传信息可以借助 于整合子、转座子、质粒等可移动遗传单元(Mobile genetic elements, MGEs),通过水平基因转移(Horizontal gene transfer, HGT)机制转移到环境微生物中,最 终通过直接接触或生物富集给人类健康带来巨大的 威胁^[5,11,14-19]。

已有研究表明,家养鸡较养殖场鸡的肠道菌群更 具多样性,目抗生素抗性基因在养殖场鸡的肠道菌群 中分布更广泛[13],说明动物肠道中含有丰富的耐药菌 和抗性基因,肠道内的ARGs 随粪尿排出体外,造成 畜禽粪便中 ARGs 的检出。现有许多学者在畜禽粪 便中检测出大量 ARGs, 如邹威等[22] 对华北地区天津 市和河北省不同类型、不同规模的养殖场粪便进行检 测,研究结果发现,四环素抗性基因、磺胺类抗性基 因、大环内酯抗性基因的检出频率达到100%,其他的 抗生素抗性基因检出频率基本都在80%以上。ARGs 随畜禽粪便进入土壤环境,同时畜禽粪便中残留的抗 生素,也会进一步诱导ARGs产生,造成土壤中ARGs 的检出。研究表明,在畜禽养殖场及周边土壤检出大 量的抗性基因,李锦等四发现在辽宁地区畜禽粪便和 周边土壤中,磺胺类和四环素类抗性基因均普遍存 在,其中磺胺类抗性基因 sul [和 sul]] 在两种介质中 检出率均为100%。同时,也有研究表明畜禽粪便作

为有机肥农用不仅会增加农田系统中抗性基因的丰度,并通过测序发现粪肥施用也会增加土壤中抗生素抗性基因的多样性^[10,14,25-28]。

目前整合子(Integron)在广泛的环境介质中被频 繁检出,其中I类整合子在各类环境中最为常见,携 带的抗药基因盒目前发现100种以上^[19,29],也有研究 表明整合子与ISCR(Insertion sequence common regions)耦合可以进行水平转移^[5,30–31]。Dang等^[33]研究 发现,海河沉积物中I类整合子*int*I与磺胺类基因 *sul*I的相对丰度之间存在显著相关性,并证实*sul*I 在环境中的水平传播与*int*I的介导有关。赵祥等^[35] 通过对山东4个地区长期使用粪肥的9个典型设施菜 地土壤中的ARGs和MGEs进行检测和相关分析,发 现可移动元件总量*int*I与磺胺类抗性基因及大环内 酯类抗性基因呈现极显著相关。ARGs可借助MGEs 进行水平转移,ARGs不仅影响了土壤环境,还会对农 产品甚至人类健康造成危害。

白洋淀区域畜禽养殖业十分发达,按照原国家环 境保护总局发布的[2004]43号文件提供的系数测算, 鸭粪年排放量达21.33万t^[37]。我国每年生产的氟喹 诺酮类抗生素(Fluoroquinolones,FQs)有一半是用于 畜禽养殖。Zhao等^[39]检测发现畜禽粪便中环丙沙星、 恩诺沙星的含量每千克达到几十微克。Li等^[41]对白 洋淀区域河流及底泥中的氟喹诺酮类等22种抗生素 进行检测,发现底泥中氟喹诺酮类抗生素含量达到 65.5~1166μg·kg⁻¹。

针对以上情况,本研究选择环丙沙星作为研究对 象,借助室内培养试验,采用基因扩增技术检测培养 81 d 土壤中的 ARGs 和 MGEs 的浓度,并进一步对 ARGs、MGEs 与土壤理化性质之间的相关性进行分 析,探究粪源环丙沙星对潮土中 ARGs 的影响,以期 为科学评价氟喹诺酮类抗生素的环境风险和粪肥安 全合理施用提供理论依据。

1 材料与方法

1.1 供试土壤

供试土壤为潮土,在土壤系统分类中为干润雏形 土(The ustic cambosols)。2012年7月采自河北省某

2018年12月 常旭卉,等:粪源环丙沙星对潮土中抗生素抗性基因的影响

地无污染表层(0~20 cm)土壤,土壤有机质 27.1 g·kg⁻¹,碱解氮 103 mg·kg⁻¹,有效磷 3.26 mg·kg⁻¹,pH 值 7.99,土壤中无环丙沙星检出。

1.2 土壤处理与试验设计

采集新鲜土样过2 mm(10目)筛,充分混匀后放 置于人工气候箱中25 ℃恒温培养一周,使土壤中微 生物活化。然后取土装盆(培养盆规格为顶部直径 12.0 cm×底部直径8.5 cm×高10.0 cm),每盆装350 g 鲜土,其中含鸭粪的处理则按干土4%比例添加;调 节每个培养盆中土壤含水率至田间最大持水量70% 左右,置于人工气候箱中25 ℃非密闭培养,并模拟实 际光照周期变化(昼夜各12 h),每日通过称重法补充 因蒸发损失的水分,以保持恒定的土壤含水量。

试验共设置5个处理,每个处理3次重复,分别为 I:CK(对照); II:CIP(外源添加CIP); II:DF(添加 不含CIP的鸭粪); IV:DF+CIP(在Ⅱ的基础上外源添 加CIP); V:DF(CIP)(粪源CIP)。其中,含CIP的3个 处理中每盆CIP的初始含量保持一致,均为17.15 mg· kg⁻¹。试验所使用的鸭粪从同时饲养的两批鸭子获 得,一种是不含环丙沙星的鸭粪; 另一种是喂含环丙 沙星的饲料所得到的鸭粪。试验选取培养81 d的土 样进行检测^[43]。

1.3 试验方法

1.3.1 土壤 DNA 提取

称取约0.500 g供试土样,用FastDNA Spin Kit for Soil(MP Biomedicals, USA)试剂盒,按照生产商提供 的方法提取土壤总DNA,再用1%的琼脂糖凝胶进行 电泳验证。提取的土壤DNA样品用微量核酸蛋白质 分析仪(Nanodrop 2000)检测浓度和纯度,所提取的 DNA样品的A₂₆₀/A₂₈₀值在1.8~2.0之间,表明DNA纯 度较高。

1.3.2 ARGs和MGEs的PCR定性检出

本试验选取共6大类抗生素27种ARGs,包括四 环素类抗性基因(tetA、tetB、tetC、tetD、tetE、tetG),磺胺 类抗性基因(sul I、sul II、sul II),氯喹诺酮类抗性基 因(qnrA、qnrS),氨基糖苷类抗性基因[aacC2、aacC4、 aadA1、aadA2、aadB、aadD、aac(3)-Ia、aac(3)-IIa、 aph(3)-IIa],氯霉素类抗性基因(Cat1、CmlA、Flor) 及 β -内酰胺类抗性基因(CTX-M、OXA、SHV、TEM);4 种MGEs,包括整合子int I、int II,插入序列共同区域 (Insertion sequence common regions, ISCRs) orf 513 和 ISCR2 以及细菌 16S rRNA 基因进行了 PCR 检测^[15]。 具体目标基因及引物序列见表1,引物合成由北京新 科开源基因科技有限公司完成。

PCR (Polymerase chain reaction)反应总体系 25 μL,包括:10×PCR Buffer 2.5 μL,dNTP Mix 2 μL,10 μmol·L⁻¹上下游引物各1 μL,r-Tap 酶 0.25 μL,模板 DNA 2 μL,纯水补足至 25 μL。扩增条件为:94 ℃预 变性 6 min;95 ℃变性 30 s,55 ℃退火 40 s,72 ℃延伸 1 min,共36个循环;72 ℃延伸7 min。取5 μL扩增后 产物,利用1%琼脂糖凝胶电泳进行检测。将目的基 因的 PCR 阳性产物送至美吉生物公司进行测序,测 序结果与 NCBI 数据库进行 BLAST 同源性比对,证实 与已发表相似序列的同源性在95%~100%。

1.3.3 ARGs和MGEs的q-PCR定量检测

采用实时荧光定量 PCR 技术(Real-time fluorescence quantitative PCR, q-PCR) 对土壤样品中的 ARGs和MGEs的丰度进行测定。q-PCR选用Thermo Scientific公司生产的Maxima SYBR Green/ROX qPCR Master Mixture(2X),将标准品用纯水按10倍进行5~ 6个梯度稀释,每个样品设置3个平行,同时设置无模 板阴性对照,反应在ABI-7300仪器上进行。反应体 系包括:SYBR Mix 12.5 μ L, 10 μ mol·L⁻¹上下游引物各 0.5 μ L,模板 DNA 1 μ L(约1~10 ng),纯水补足至 25 μ L。反应程序为:95 °C预变性10 min;95 °C变性30 s, 55 °C退火40 s,72 °C延伸1 min,80 °C收集荧光信号1 min,共进行40个循环;72 °C延伸10 min;PCR扩增完 后按照仪器自带程序进行溶解曲线绘制。定量 PCR 产物用1.0%的琼脂糖凝胶电泳检测特异性。

1.3.4 土壤理化性质的测定

土壤有机质采用水合热重铬酸钾氧化-比色法测定^[47],有效磷采用Olsen法测定^[47],碱解氮采用碱解 扩散法测定(LY/T 1229—1999),pH采用1:5土水比 测定。

1.4 仪器与主要试剂

本试验主要用到的仪器包括:人工气候箱(宁波 江南仪器厂:RXZ-430E)、凝胶电泳成像分析系统 (BIO-RAD: Universal Hood II)、电泳仪(JUNYI: JY3000+)、PCR仪(BIO-RAD:T100TM Thermal Cycler)、生物安全柜(苏洁净化:BHC-1300 II A/B2)、快 速核酸提取仪(MP:FastPrep -24)、超微量分光光度 计(Thermo Fisher Scientific: Nanodrop 2000)、Real Time PCR System(ABI-7300)。主要的试剂包括:环 丙沙星(Sigma公司)、Fast DNA Spin Kit for Soil试剂 盒(MP公司)、10×PCR Buffer(Mg⁺ plus)、dNTP Mixture、r-Taq DNA Polyersss(TaKaRa公司)。

表1 基因种类及引物序列信息

Table 1 Gene types and information of primer sequence

种类 Species	目的基因 Target gene	5'-引物序列-3' 5'-primer sequence-3'	长度/bp Length/bp	参考序列 RefSeg	参考文献 Reference	种类 Species	目的基因 Target gene	5′-引物序列-3′ 5′-primer sequence-3′	长度/bp Length/bp	参考序列 RefSeg	参考文献 Reference
氟喹诺酮	qnrA	F:AGAGGATTTCTCACGCCAGG R:TGCCAGGCACAGATCTTGAC	580	DQ989302	[1]	磺胺	sul I	F:TTTCCTGACCCTGCGCTCTAT R:GAGCGGACGTAGTCAGCGCCA	425	AM295981	[2]
	qnrS	F:GCAAGTTCATTGAACAGGGT R:TCTAAACCGTCGAGTTCGGCG	428	DQ989302	[1]		sul II	F:CCTGTTTCGTCCGACACAGA R:GAAGCGCAGCCGCAATTCAT	435	HJ705354	[4]
氨基糖苷	aacC2	F:GGCAATAACGGAGGCAATTCGA R:CTCGATGGCGACCGAGCTTCA	698	EU022315	[6]		sul Ⅲ	F:ATGAGCAAGATTTTTTGGAATCGTAA R:CTAACCTAGGGCTTTGGATATTT	792	AY316203	[7]
	aacC4	F:CGATGCTCTATGAGTGGCTAA R:GTCCGTTTGGATCTTGGTGA	356	AJ009820	[12]	四环素	tetA	F:TTGGCATTCTGCATTCACTC R:GTATAGCTTGCCGGAAGTCG	494	X75761	[20]
	aadA1	R:TTTGCTGGTTACGGTGAC F:GCTCCATTGCCCAGTCG	497	AY224165	[21]		tetB	F:CAGTGCTGTTGTTGTCATTAA R:GCTTGGAATACTGAGTGTAAA	571	V00611	[23]
	aadA2	F:CATCCCGTGGCGTTATCC R:CTGGGCAGGTAGGCGTTT	370	GU120477	[20]		tetC	F:CTGGGCTGCTTCCTAATGC R:AGCTGTCCCTGATGGTCG	482	J01749	[32]
	aadB	F:GCGAAATCTGCCGCTCTG R:TGCGAGCCTGTAGGACTC	412	FJ381671	[34]		tetD	F:GCAAACCATTACGGCATTCT R:GATAAGCTGCGCGGTAAAAA	546	X65876	[36]
	aadD	F:TATATCCGTGTCGTTCTGTCCA R:CTCTATTTTGCCGATTTATGATTC	419	AF051917	[38]		tetE	F:TATTAACGGGCTGGCATTT R:AGCTGTCAGGTGGGTCAAAC	544	L06940	[40]
	<i>aac</i> (3)– I a	F:TGCGGGCTGCTCTTGATCTT R:ATCTCGGCTTGAACGAATTG	436	X15852	[42]		tetG	F:GCTCGGTGGTATCTCTGCTC R:CAAAGCCCCTTGCTTGTTAC	550	AF133140	[44]
	<i>aac</i> (3)− ∏ a	F:TGGCTGAAACGCTGACGG R:ACAGGTAGCACTGGGCAAA	369	X13543	[45]	β-内酰胺	CTX-M	F:GCTGGGTAAAGCATTGGG R:TAGGTTGAGGCTGGGTGA	224	AF488377	[46]
	<i>aph</i> (3)− ∏ a	F:AATCAGGTGCGACAATCT R:TTACGCTCGTCATCAAAA	409	AJ002684	[48]		OXA	F:TTTTCTGTTGTTTGGGTTTC R:TTTCTTGGCTTTTATGCTTG	447	GQ896560	[20]
可移动 遗传元件	int I	F:CCTCCCGCACGATGATC R:TCCACGCATCGTCAGGC	280	M73819	[49]		SHV	F:TGTATTATCTCCCTGTTAGC R:TTAGCGTTGCCAGTGCTC	843	FJ668798	[50]
	int II	F:CACGGATATGCGACAAAAAGGT R:GTAGCAAACGAGTGACGAAATG	789	L10818	[51]		TEM	F:CAGAAACGCTGGTGAAAG R:TTACCAATGCTTAATCAGTGAG	788	FJ668751	[50]
	orf 513	F:ATGGTTTCATGCGGGTT R:CTGAGGGTGTGAGCGAG	475	L06418	[53]	氯霉素	Cat1	F:AACGGCATGATGAACCTGAA R:ATCCCAATGGCATCGTAAAG	547	NC003384	[54]
	ISCR2	F:CACTGGCTGGCAATGTCTAG R:CTTTGGACCGCAGTTGACTC	1793	AF231986	[56]		CmlA	F:GGCCTCGCTCTTACGTCATC R:GCGACACCAATACCCACTAGC	683	AJ487033	[57]
细菌	16S rRNA	F:CGGTGAATACGTTCYCGG R:AAGGAGGTGATCCRGCCGCA	193	KC554673	[20]		Flor	F:ATGACCACCACACGCCCCG R:AGACGACTGGCGACTTCTCG	1213	DQ206638	[20]

1.5 数据分析

抗生素抗性基因的拷贝数的计算:根据目的基因标准品的拷贝数和其扩增的CT值计算标准曲线,代入样品CT值得到土壤样品中各目的基因的拷贝数,并以基因拷贝数/土壤质量(g,干土)为单位进行分析。质粒浓度换算成每微升质粒溶液所携带的绝对模板拷贝数的公式为:

copies • μ L⁻¹ = [x/(a+b)×660]×10⁻⁹×6.02×10²³ 式中:x为质粒浓度,ng• μ L⁻¹;a为载体长度,bp;b为目 的基因长度,bp。生成标准曲线的 R^2 值应大于0.98, 越接近于1,结果可信度越高;扩增效率 $E=10^{-1/4)*}-1$, E的范围应在0.8~1.2,越接近于1越理想。

采用 IBM SPSS Statistics 22 对数据进行方差分析,并用软件中的偏相关分析方法进行分析,当P值

小于0.05或0.01时,表明在95%或99%的置信区间 内具有统计学意义上的显著差异。用Origin 9.0作 图。

2 结果与讨论

2.1 不同处理土壤中ARGs和MGEs的检出情况

本研究对不同处理土壤中32种基因进行检测, 包括6大类抗生素(四环素、氟喹诺酮、磺胺、氨基糖 苷、氯霉素及β-内酰胺类)抗性基因,4种可移动遗传 元件(整合子*int* I、*int* II,插入序列共同区域*orf*513和 *ISCR2*)以及细菌16S rRNA基因。对比分析以上基因 在各处理中的检出差异,结果如表2所示。在调查的 32种基因中共检出4大类6种抗性基因(*tetG、sul* I、*qn*rA、*qnrS、aad*A2、*aad*D)和1种可移动遗传元件(*int* I)。各 2018年12月

	Table 2 T	ypes ar	nd detec	tion ra	tes of ARG	Gs, MGEs a	and 16S rRNA	in soil of	differe	nt treatn	nents		
抗生素 Antibiotics	基因 Gene	СК	CIP	DF	DF+CIP	DF(CIP)	抗生素 Antibiotics	基因 Gene	СК	CIP	DF	DF+CIP	DF(CIP)
细菌	16S rRNA	+	+	+	+	+	磺胺类	sul I	+	+	+	+	+
合计/个	1	1	1	1	1	1		sul II	-	-	-	-	-
可移动遗传元件	int I	+	+	+	+	+		sul Ⅲ	-	-	-	-	-
	$int \ {\rm I\!I}$	-	-	-	-	-	合计/个	3	1	1	1	1	1
	orf 513	-	-	-	-	-	四环素类	tetA	-	-	-	-	-
	ISCR2	-	-	-	-	-		tetB	-	-	-	-	-
合计/个	4	1	1	1	1	1		tetC	-	-	-	-	-
氟喹诺酮类	qnrA	+	+	+	+	+		$tet\mathbf{D}$	-	-	-	-	-
	qnrS	+	+	+	+	+		tet E	-	-	-	-	-
合计/个	2	2	2	2	2	2		tetG	+	+	+	+	+
氨基糖苷类	aacC2	-	-	-	-	-	合计/个	6	1	1	1	1	1
	aacC4	-	-	-	-	-	氯霉素类	Cat1	-	-	-	-	-
	aadA1	-	-	-	-	-		CmlA	-	-	-	-	-
	aadA2	+	+	+	+	+		Flor	-	-	-	-	-
	aadB	-	-	-	-	-	合计/个	3	0	0	0	0	0
	aadD	-	-	-	+	+	β-内酰胺类	СТХ-М	-	-	-	-	-
	<i>aac</i> (3)–I a	-	-	-	-	-		OXA	-	-	-	-	-
	<i>aac</i> (3)– ∏ a	-	-	-	-	-		SHV	-	-	-	-	-
	<i>aph</i> (3)− ∏ a	-	-	-	-	-		TEM	-	-	-	-	-
合计/个	9	1	1	1	2	2	合计/个	4	0	0	0	0	0

表2 不同处理土壤中 ARGs、MGEs 及 16S rRNA 的检出种类及检出率

注:+表示有检出;-表示无检出。

Note: + indicates check out; - indicates no check out.

处理土壤中氟喹诺酮类、磺胺类、四环素类的检出率 分别为2/2、1/3和1/6(检出基因数目/检测基因数目); 氨基糖苷类抗性基因在CK、CIP及DF处理中检出率 为1/9,在DF+CIP、DF(CIP)处理中检出率为2/9。在 所检测的4种 MGEs 中仅检出 int I,在各处理中的检 出率为1/4。同时各处理中均检出16SrRNA,检出率 为1/1。

2.2 不同处理土壤中ARGs、int I 和细菌的定量分析

为了进一步研究不同处理土壤中ARGs和int [的 浓度特征,以及粪源环丙沙星对土壤中ARGs、int I和 细菌的影响,本试验利用g-PCR技术,选取各处理中 检测率较高的基因(根据表2的PCR检出结果),包括 四环素类抗性基因(tetG)、磺胺类抗性基因(sul I)、 氨基糖苷类抗性基因(aadA2)、氟喹诺酮类抗性基因 (qnrA)、I 类整合子(int I),对不同土壤样品中的目 标基因进行定量分析。各目的基因标准曲线的R²在 0.985~0.995之间,扩增效率E在0.88~1.01之间。图1 即为不同处理土壤中各目标基因的绝对丰度。

2.2.1 不同处理土壤中ARGs、int I 和细菌的浓度特征 培养81d后, 土壤中不同目标基因在不同处理中 绝对浓度范围波动较大,在107~1016 copies · g⁻¹之间 (图1)。各处理中氟喹诺酮类抗性基因 gnrA 的检出 浓度在10¹⁰~10¹¹ copies · g⁻¹之间,与CK相比,DF、DF+ CIP、DF(CIP)处理中qnrA绝对丰度均显著增加(图 1b, P<0.05)。在CK、CIP处理中四环素类抗性基因 tetG和磺胺类抗性基因 sul I 的检出浓度均在 10°~ 10¹⁰ copies · g⁻¹之间(图 1c、图 1e),氨基糖苷类抗性基 因 aadA2 的检出浓度在 $10^7 \sim 10^9$ copies $\cdot g^{-1}$ 之间 (图 1f);在DF、DF+CIP和DF(CIP)处理中tetG检出浓度 较高(检出浓度在10¹²~10¹⁴ copies · g⁻¹),其次是 sul I (检出浓度在10¹²~10¹³ copies · g⁻¹)和 aad A2(检出浓度 在 10¹¹~10¹² copies · g⁻¹); 施加鸭粪的3个处理与CK、 CIP处理相比,tetG、sul I、aadA2的绝对丰度均增加 3~4个数量级,且差异均达到显著水平(P<0.05)。在 DF、DF+CIP和DF(CIP)处理中int I的检出浓度为 10¹³ copies · g⁻¹左右(图 1d), 16S rRNA 检出浓度在 10¹⁶ copies·g⁻¹左右(图1a),与CK、CIP处理中int I的浓度 (10¹² copies · g⁻¹左右)和16S rRNA 的浓度(10¹⁵ copies · g⁻¹左右)相比均增加1个数量级,且差异均达到显著 水平(P<0.05)。综合上述分析,添加鸭粪的处理均显

不同小写字母表示各类型抗生素抗性基因在不同处理土壤中的差异显著性(P<0.05) Different lowercase letters indicate significant differences at 0.05 level between antibiotic resistance genes of each type in different treatment soils

Figure 1 Effects of different treatments on antibiotic resistance genes, int I and 16S rRNA in ustic cambosols

著增加了土壤中 tetG、sul I、aadA2、int I和16S rRNA的绝对丰度(P<0.05)。已有研究证明畜禽粪便作为有机肥农用会增加土壤中抗性基因的丰度。Schimitt等^[27]研究发现施用猪粪后土壤中磺胺类和四环素类抗性基因数量明显增加。Zhu等^[52]对饲喂抗生素的猪粪以及施用猪粪的土壤进行检测,发现有63种ARGs相比对照显著增加。黄福义等^[14]利用高通量荧光测序对水稻土中295个ARGs进行了定量分析,发现未施猪粪的对照组检出66个抗性基因,施猪粪组检出107个抗性基因,并且约一半ARGs显著富集,表明猪粪施入不仅会增加土壤中ARGs的丰度,也会增加土壤中ARGs的种类,并改变土壤中抗生素抗性基因多

样性。

2.2.2 粪源环丙沙星对土壤中细菌、不同类型 ARGs 和 int I 的影响

单独施加环丙沙星对土壤中不同种类 ARGs 的 影响不同。CIP与CK处理相比, qnrA绝对丰度显著 增加(图 1b, P<0.05); tetG的绝对丰度增加 4.97×10° copies $\cdot g^{-1}$, sul I、aadA2、int I和 16S rRNA的绝对丰 度分别降低 1.13×10°、1.30×10⁸、3.69×10¹¹ copies $\cdot g^{-1}$ 和 9.54×10¹³ copies $\cdot g^{-1}$, 但差异均未达到显著水平(图 1a、图 1c、图 1d、图 1e、图 1f); 说明培养 81 d后, 单独 施加环丙沙星会增加土壤中 qnrA的绝对丰度, 但对 tetG、sul I、aadA2、int I和细菌丰度无显著影响。 粪源环丙沙星和等量鸭粪基础上外源添加环丙 沙星处理对培养81d土壤中细菌影响不同。经检测 DF(CIP)和DF+CIP处理中环丙沙星的残留量为 7.68、4.09 mg·kg⁻¹。DF(CIP)、DF+CIP与DF处理相 比,16S rRNA的绝对丰度分别减少1.51×10¹⁵、0.99× 10¹⁵ copies·g⁻¹,差异均达到显著水平(P<0.05),说明 鸭粪中残留的环丙沙星对细菌存在抑制作用。且与 DF处理相比,DF(CIP)处理对细菌的抑制作用强于 DF+CIP处理。此结果与周志强等¹⁵⁵¹用磷脂脂肪酸方 法检测的不同处理对土壤中细菌的变化情况一致。 DF+CIP、DF(CIP)与CK相比,土壤中细菌的绝对丰度 均显著增加,主要原因为鸭粪对细菌数量的增加高于 环丙沙星对细菌数量的抑制。

粪源环丙沙星和等量鸭粪基础上外源添加环丙 沙星处理对培养81d土壤中不同种类ARGs和int] 的影响不同。DF(CIP)、DF+CIP与CIP处理相比, anrA绝对丰度均显著降低(P<0.05), DF(CIP)、DF+ CIP处理中鸭粪降低了土壤中的 gnrA 的丰度;与 DF 处理相比, DF+CIP处理土壤中qnrA绝对丰度显著增 加(P<0.05), DF(CIP)处理中 gnrA 绝对丰度降低 0.78×10¹⁰ copies • g⁻¹, 但差异未达到显著水平; 即 DF (CIP)处理中残留的环丙沙星对土壤中 qnrA 无显著 影响,DF+CIP处理中残留的环丙沙星会增加土壤中 *qnr*A的丰度(图 1b)。DF(CIP)、DF+CIP与CIP处理 相比,tetG绝对丰度均显著增加(P<0.05),DF(CIP)、 DF+CIP处理中鸭粪增加了土壤中tetG绝对丰度;DF+ CIP、DF(CIP)与DF处理相比,tetG绝对丰度均显著降 低(P<0.05),即DF(CIP)、DF+CIP处理中残留的环丙 沙星降低了土壤中 tetG 的绝对丰度(图 1c)。DF (CIP)、DF+CIP与CIP处理相比, sul I、aadA2绝对丰 度均显著增加 P<0.05), DF(CIP)、DF+CIP处理中的 鸭粪会增加土壤中sul I、aadA2绝对丰度;DF+CIP与 DF处理相比, sul I、aadA2绝对丰度分别增加3.08× 10¹²、0.54×10¹¹ copies · g⁻¹,但差异未达到显著水平;DF (CIP)与DF处理相比,sul I、aadA2绝对丰度均显著 增加(P<0.05),即DF(CIP)处理中残留的环丙沙星会 增加土壤中 sul I、aadA2绝对丰度(图 1e 和图 1f)。 DF+CIP、DF(CIP)与CIP处理相比, int I 绝对丰度均 显著增加(P<0.05), DF+CIP、DF(CIP)处理中鸭粪会 增加土壤中int I 绝对丰度; DF+CIP、DF(CIP)与DF 处理相比,int I 绝对丰度均降低,但差异未达到显著 水平,表明CIP+DF、DF(CIP)处理中鸭粪对土壤中 int I 绝对丰度无显著影响(图 1d)。

综合上述 DF(CIP)和 DF+CIP处理中鸭粪和残留的环丙沙星对 ARGs和 int I影响的分析, DF(CIP)、 DF+CIP与CK处理相比,土壤中qnrA、tetG、sul I、 aadA2、int I的绝对丰度均显著增加,说明在本试验 中,培养81d后DF(CIP)和DF+CIP处理均增加了土壤 中qnrA、tetG、sul I、aadA2、int I的绝对浓度。与DF 处理相比, DF(CIP)、DF+CIP处理均显著降低了土壤 中tetG的绝对丰度(P<0.05); DF(CIP)处理显著增加 了土壤中sul I和 aadA2的绝对丰度(P<0.05); DF+CIP 处理显著增加了土壤中qnrA的绝对丰度(P<0.05)。

本试验中DF(CIP)与DF+CIP处理对土壤中同种 ARGs的影响存在差异。DF(CIP)与DF+CIP处理相 比,qnrA、tetG、16S rRNA的绝对丰度显著降低(图1a、 图1b和图1c,P<0.05),sul I、aadA2的绝对丰度显著 增加(图1e和图1f,P<0.05)。这两个处理中ARGs丰 度不同的原因可能是由于DF(CIP)给鸭子饲喂CIP 后,CIP造成鸭子肠道中微生物群落结构和多样性的 改变,排出的污染的鸭粪与外源添加CIP的鸭粪中微 生物组成和结构多样性存在差异,施用后对土壤中 ARGs产生不同的影响,具体还需进一步研究分析。

CK处理中均有不同种类ARGs的检出,其中qnrA、 sul I、tetG的浓度较高,检出浓度在10°~10¹⁰copies·g⁻¹ 之间。这一方面是由于土壤中微生物的内在抗性, Farias等¹⁵⁸¹研究发现在自然环境中,即使没有抗生素 存在,ARGs也存在于微生物群落中。楼晨露¹¹⁰¹在不 施用猪粪的土壤中也检测到较高浓度的tetA、tetG、 sul I和sul II,相对丰度在10⁻⁴~10⁻³之间,与Ji等¹¹⁶¹研 究的检出结果一致。另一方面可能是由于外界环境 污染,李娟等¹⁵⁹¹对北京地区7个典型传统的养猪场废 水、周边土壤中氟喹诺酮类耐药基因的污染情况进行 监测,从养猪场废水和土壤中均检出了qnrD、qepA、 oqxB、qnrS和oqxA等耐药基因。高敏等¹⁶⁰¹研究发现, 养殖场粪便是空气中ARGs的重要来源,且养殖场舍 内浓度远高于舍外。

2.3 不同处理土壤中 ARGs、*int* I 丰度与土壤理化性质的偏相关分析

影响抗性基因的产生和转移的因素有很多。理 论上抗生素作为抗生素抗性基因的直接选择压力,两 者之间存在一定的相关性,但并不是唯一因素。越来 越多的研究表明,其他环境因子,如重金属、其他非对 应抗生素、pH、有机质、可移动遗传元件等也都对 ARGs产生影响。本试验对5个处理中各目的基因绝 对拷贝数与16S rRNA绝对拷贝数的比值进行计算, 得到目标基因的相对丰度,再利用偏相关分析对土壤 样品中各类型 ARGs、*int* I 的相对丰度与土壤理化性 质的相关关系进行分析,分析结果如表3所示。

本试验中不同种类的ARGs与int I 的相关性不同 (表3)。在固定其他变量影响的情况下,int [与sul]、 aadA2均呈极显著正相关(P<0.01),与qnrA呈显著负 相关(P<0.05),与tetG无相关性。Selvaraj等[61]发现在 链霉素压力下,有氧生物反应器中int I 与氨基糖苷 类抗性基因存在显著相关性。赵祥等[35]发现长期使 用粪肥的设施菜地土壤中可移动元件总量int | 与磺 胺类及大环内酯类抗性基因呈现极显著相关。Shi 等^[62]研究表明在 int I 的可变盒中,未检测到任何的四 环素类抗性基因,进一步探究发现,在土霉素压力下, 某些四环素类抗性基因可能是通过转座子进入到质 粒,从而进行细菌之间的水平转移。上述研究结果均 与本研究结论一致。赵祥等[35]研究表明在长期使用 粪肥的9个设施菜地土壤中检测到int I 和多种氟喹 诺酮类抗性基因(gepA、gnrB、gnrS),分析表明 int I 与 氟喹诺酮类抗性基因无相关性,与本试验中qnrA与 int I 呈负相关性的结果有区别,原因有待进一步分 析。

本试验中不同种类的 ARGs 与土壤理化性质的 相关性不同(表3)。在固定其他变量影响的情况下, qnrA与 CIP残留量呈极显著正相关(P<0.01),sul I、 aadA2、tetG与 CIP残留量均无相关性;TetG与有机质 呈极显著正相关(P<0.01),qnrA、sul I、aadA2与有机 质均无相关性;土壤中各 ARGs与有效磷、pH之间均 无相关性。已有研究表明土壤中 ARGs 与土壤理化 性质存在相关关系。王凤花等^[63]发现四环素类抗生 素不仅与四环素类抗性基因具有相关性,与氨糖苷 类、磺胺类抗生素性基因也存在相关性,此结果也与 本试验中添加鸭粪和 CIP,增加了土壤中 sul I、aadA2 相对丰度结果类似。同时,王凤花等^[63]在含有高浓度

农业环境科学学报 第37卷第12期

四环素抗生素残留的再生水浇灌后的土壤样品中,检测出高浓度的四环素类和磺胺类抗性基因,也检测出 int I 和转座酶基因。赵祥等^[35]发现长期使用粪肥的 设施菜地土壤中重金属含量与氟喹诺酮类抗性基因 呈极显著相关。楼晨露等^[10]研究表明在对长期定量 施用猪粪的稻田土壤中四环素类与磺胺类抗生素抗 性基因的相对丰度与土壤 pH、有机质、重金属 As、 Cd、Cu、Zn之间存在相关性。

3 结论

(1)本试验中共检出6种抗生素抗性基因(tetG、 sul I、qnrA、qnrS、aadA2、aadD)和1种可移动遗传元 件(int I),不同处理土壤中检测到的目的基因基本 一致。DF(CIP)和DF+CIP处理对土壤中细菌和不 同种类ARGs的影响不同。DF(CIP)、DF+CIP处理 均显著降低了土壤中16SrRNA、tetG的绝对丰度;DF (CIP)处理显著增加了土壤中sul I、aadA2的绝对丰 度;DF+CIP处理显著增加了土壤中qnrA的绝对丰 度。DF(CIP)与DF+CIP处理相比,土壤中qnrA、tetG 和细菌的绝对丰度显著降低,sul I和aadA2的绝对丰 度显著增加,原因有待后续研究。

(2)不同种类的ARGs与int I、土壤理化性质的 偏相关性不同。土壤中int I与sul I、aadA2呈正相 关,与qnrA呈负相关,与tetG无相关性。QnrA与CIP 残留量呈极显著正相关,sul I、aadA2、tetG与CIP残 留量均无相关性。TetG与有机质呈极显著正相关, qnrA、sul I、aadA2与有机质均无相关性。土壤中各 种ARGs与有效磷、pH之间均无相关性。

参考文献:

[1] Wu J J, Ko W C, Tsai S H, et al. Prevalence of plasmid-mediated quinolone resistance determinants, *qnrA*, *qnrB*, and *qnrS*, among clinical isolates of Enterobacter cloacae in a Taiwanese hospital[J]. *Internation*-

衣 5 上俵中ANGS、IIII 1 及上俵埕化住灰的两伯大刀仍	表 3	3 土壤中ARGs、int I 及土壤理化性质的保	扁相关分析
----------------------------------	-----	---------------------------	-------

Table 3	The partial	correlation	analysis o	f ARGs,	int I	and soil	physicocl	hemical	properties
---------	-------------	-------------	------------	---------	-------	----------	-----------	---------	------------

项目	偏相关系数(P值)Partial correlation coefficient(P value)								
Items	qnrA	sul I	aadA2	tetG	int I				
int I	-0.672*(0.048)	0.834**(0.005)	0.862**(0.003)	-0.282(0.462)	-				
CIP残留量/mg·kg ⁻¹	0.793**(0.006)	0.564(0.090)	0.568(0.087)	-0.071(0.846)	$0.882^{**}(0.001)$				
pH	0.425(0.221)	-0.028(0.939)	-0.137(0.707)	-0.130(0.720)	0.433(0.211)				
有效磷/mg·kg ⁻¹	0.144(0.754)	0.353(0.317)	0.271(0.449)	-0.198(0.583)	$0.687^{*}(0.028)$				
有机质/%	0.367(0.296)	-0.613(0.060)	-0.597(0.069)	0.792**(0.006)	-0.175(0.629)				

注:** 表示差异极显著(P<0.01);* 表示差异显著(P<0.05)。

Note:** indicate the significant difference at 0.01 level; * indicate the significant difference at 0.05 level.

2018年12月 常旭卉,等:粪源环丙沙星对潮土中抗生素抗性基因的影响

2735

al Journal of Antimicrobial Agents, 2007, 29(4):1223-1227.

- [2] Castanheira M, Pereira A S, Nicoletti A G, et al. First report of plasmid-mediated qnrA1 in a ciprofloxacin-resistant Escherichia coli strain in Latin America[J]. Antimicrobial Agents & Chemotherapy, 2007, 51(4):1527-1529.
- [3] 刘振东,李贵春,杨晓梅,等我国农业废弃物资源化利用现状与发展趋势分析[J]. 安徽农业科学, 2012, 40(26):13068-13070. LIU Zhen-dong, LI Gui-chun, YANG Xiao-mei, et al. Status and development trend of resource utilization ways of agricultural residues in China[J]. Journal of Anhui Agricultural Sciences, 2012, 40(26):13068-13070.
- [4] Fontana M R, Pizza M, Masiganani V, et al. Gonococcal proteins and nucleic acids[P]. GB 20010003424, 2007.
- [5]张 昱,杨 敏,王春艳,等生产过程中抗生素与抗药基因的排放 特征、环境行为及控制[J].环境化学,2015,34(1):1-8. ZHANG Yu, YANG Min, WANG Chun-yan, et al. Antibiotics, antibiotic resistance genes, pollutant discharge characteristics, horizontal transfer mechanism, pollution control technology[J]. *Environmental Chemistry*, 2015, 34(1):1-8.
- [6] Ho P L, Wong R C, Lo S W, et al. Genetic identity of aminoglycosideresistance genes in *Escherichia coli* isolates from human and animal sources[J]. *Journal of Medical Microbiology*, 2010, 59(6):702-707.
- [7] Guerra B, Junker E, Helmuth R. Incidence of the recently described sulfonamide resistance gene sul3 among german salmonella enterica strains isolated from livestock and food[J]. Antimicrob Agents Chemother, 2004, 48(7):2712–2715.
- [8] Cheesanford J C, Aminov R I, Krapac I J, et al. Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities[J]. *Applied & Environmental Microbiology*, 2001, 67(4):1494–1502.
- [9] Gao P, Munir M, Xagoraraki I. Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant[J]. Science of the Total Environment, 2012, 421:173-183.
- [10] 楼晨露.长期定量施用猪粪稻田土壤中典型抗生素及其抗性基因 污染研究[D]. 杭州:浙江大学, 2016. LOU Chen-lu. The occurrence of typical antibitics and antibiotic resistance genes in paddy soils with long-term and quantitative manure application[D]. Hangzhou:Zhejjang University, 2016.
- [11] Hvistendahl M. China takes aim at rampant antibiotic resistance[J]. Science, 2012, 336(6083):795.
- [12] Hall R M, Brookes D E, Stokes H W. Site-specific insertion of genes into integrons: Role of the 59-base element and determination of the recombination cross-over point[J]. *Molecular Microbiology*, 1991, 5 (8):1941-1959.
- [13] 崔泽林, 冯婷婷, 周与华, 等. 家养及大型养殖场鸡肠道微生物菌 群及四环素耐药菌多样性的比较研究(英文)[J]. 微生物与感染, 2017, 12(3):146-155.

CUI Ze-lin, FENG Ting-ting, ZHOU Yu-hua, et al. Comparison of microbiota and dissemination of *tet* racycline resistant bacteria between chickens from a small farmhouse and a big feedlot[J]. *Journal*

of Microbes and Infections, 2017, 12(3):146–155.

- [14] 黄福义,李 虎,韦 蓓,等.长期施用猪粪水稻土抗生素抗性基因污染研究[J].环境科学,2014,35(10):3869-3873.
 HUANG Fu-yi, LI Hu, WEI Bei, et al. Long-term manure application induced shift of diversity and abundance of antibiotic resistance genes in paddy soil[J]. Environmental Science, 2014, 35(10):3869-3873.
- [15] Haefliger S, Hudson A, Hayes S, et al. P2. 01–012 Acquired chemotherapy resistance in vitro: MiRNA profiles of chemotherapy resistant squamous lung cancer cell lines[J]. *Journal of Thoracic Oncology*, 2017, 12(1):790–791.
- [16] Ji X, Shen Q, Liu F, et al. Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai, China[J]. Journal of Hazardous Materials, 2012, 235-236(20):178-185.
- [17] Akhtar M, Hirt H, Zurek L. Horizontal transfer of the tetracycline resistance gene tetM mediated by pCF10 among Enterococcus faecalis in the house fly (Musca domestica L.) alimentary canal[J]. Microbial Ecology, 2009, 58(3):509-518.
- [18] El S A, Walsh T R, Chouchani C. Extended spectrum β-lactamases, carbapenemases and mobile genetic elements responsible for antibiotics resistance in Gram-negative bacteria[J]. *Critical Reviews in Microbiology*, 2013, 39(2):113–122.
- [19] Gillings M, Boucher Y, Labbate M, et al. The evolution of class 1 integrons and the rise of antibiotic resistance[J]. *Journal of Bacteriology*, 2008, 190(14):5095-5100.
- [20] 张 忠. 宁夏地区大肠杆菌临床分离株的耐药性研究[D]. 银川: 宁夏大学, 2013.

ZHANG Zhong. Study on the drug resistance of clinically *Escherichia coil isolates* in Ningxia[D]. Yinchuan: Ningxia University, 2013.

- [21] Nadin-Davis S A, Simani S, Armstrong J, et al. Molecular and antigenic characterization of rabies viruses from Iran identifies variants with distinct epidemiological origins[J]. *Epidemiology & Infection*, 2003, 131(1):777-790.
- [22] 邹 威. 华北地区畜禽养殖粪便中抗生素抗性基因污染特征及碳/氮相关性研究[D]. 天津:南开大学, 2015. ZOU Wei. Research on the pollution characteristics of antibiotic resistance genes and correlations with carbon/nitrogen in livestock manure in North China[D]. Tianjin: Nankai University, 2015.
- [23] Hillen W, Schollmeier K. Nucleotide sequence of the Tn10 encoded tetracycline resistance gene[J]. Nucleic Acids Research, 1983, 11(2): 525-539.
- [24] 李 锦.辽宁地区畜禽粪便和周边土壤中抗生素抗性基因污染特征[D]. 天津:南开大学, 2013.
 LI Jin. The pollution characteristics of antibiotic resistance genes in

manure and the surrounding soil in Liaoning Province[D]. Tianjin: Nankai University, 2013.

- [25] Pei R, Kim S C, Carlson K H, et al. Effect of river landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes(ARG)[J]. Water Research, 2006, 40(12):2427–2435.
- [26] Heuer H, Schmitt H, Smalla K. Antibiotic resistance gene spread due to manure application on agricultural fields[J]. *Current Opinion in Mi*-

农业环境科学学报 第37卷第12期

crobiology, 2011, 14(3):236-243.

- [27] Schmitt H, Stoob K, Hamscher G, et al. Tetracyclines and tetracycline resistance in agricultural soils: Microcosm and field studies[J]. *Microbial Ecology*, 2006, 51(3):267–276.
- [28] 王佳佳, 张兰河, 高 敏, 等. 北京地区农田土壤抗生素抗性基因 分布状况的初步研究[C]. 深圳:2015年中国环境科学学会学术年 会, 2015.

WANG Jia-jia, ZHANG Lan -he, GAO Min, et al. A preliminary study on the farmland distribution of antibiotic resistance genes in Beijing area[C]. Shenzhen: Academic Annual Meeting of Chinese Society of Environmental Science, 2015.

- [29] Mazel D. Integrons: Agents of bacterial evolution[J]. Nature Reviews Microbiology, 2006, 4(8):608-620.
- [30] L' Abéelund T M, Sørum H. Class 1 integrons mediate antibiotic resistance in the fish pathogen Aeromonas salmonicida worldwide[J]. Microbial Drug Resistance, 2001, 7(3):263-272.
- [31] Toleman M A, Bennett P M, Walsh T R. ISCR elements: Novel genecapturing systems of the 21st century? [J]. Microbiology & Molecular Biology Reviews, 2006, 70(2):296-316.
- [32] Sutcliffe J G. Nucleotide sequence of the ampicillin resistance gene of Escherichia coli plasmid pBR322[J]. Proceedings of the National Academy of Sciences of the United States of America, 1978, 75(8): 3737– 3741.
- [33] Dang B, Mao D, Xu Y, et al. Conjugative multi-resistant plasmids in Haihe River and their impacts on the abundance and spatial distribution of antibiotic resistance genes[J]. Water Research, 2017, 111:81– 91.
- [34] Ajiboye R M, Solberg Odlee B M. Global spread of mobile antimicrobial drug resistance determinants in human and animal *Escherichia coli* and *Salmonella* strains causing community-acquired infections [J]. *Clinical Infectious Diseases*, 2009, 49(3):365-371.
- [35] 赵 祥.施用粪肥的设施菜地土壤中抗生素及抗性基因多样性及 丰度的研究[D].泰安:山东农业大学, 2017.
 ZHAO Xiang. Diversity and abundance of antibiotics and ARGs in vegetable soil with manure application[D]. Tai'an: Shandong Agricultural University, 2017.
- [36] Allard J D, Gibson M L, Vu L H, et al. Nucleotide sequence of class D tetracycline resistance genes from Salmonella ordonez[J]. Molecular & General Genetics Mgg, 1993, 237(1-2):301-305.
- [37] 刘嘉莉. 白洋淀鸭养殖粪便排放规律及源头减排效果研究[D]. 保定:河北农业大学, 2011.
 LIU Jia-li. Study on the law of manure emissions and the effect of reduction by duck farm controlled into the Baiyangdian from the source
 [D]. Baoding: Hebei Agricultural University, 2011.
- [38] Berg T, Firth N, Apisiridej S, et al. Complete nucleotide sequence of pSK41: Evolution of staphylococcal conjugative multiresistance plasmids[J]. *Journal of Bacteriology*, 1998, 180(17):4350-4359.
- [39] Zhao L, Dong Y H, Wang H. Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China[J]. Science of the Total Environment, 2010, 408(5):1069–1075.
- [40] Allard J D, Bertrand K P. Sequence of a class E tetracycline resis-

tance gene from *Escherichia coli* and comparison of related tetracycline efflux proteins[J]. *Journal of Bacteriology*, 1993, 175 (14) : 4554-4560.

- [41] Li W, Shi Y, Gao L, et al. Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China[J]. Chemosphere, 2012, 89(11):1307-1315.
- [42] Wohlleben W, Arnold W, Bissonnette L, et al. On the evolution of Tn 21-like multiresistance transposons: Sequence analysis of the gene (aacC1) for gentamicin acetyltransferase-3- I (AAC(3)- I), another member of the Tn 21 - based expression cassette[J]. Molecular & General Genetics Mgg, 1989, 217(2/3):202-208.
- [43] 周志强, 王淑平, 郭 丽, 等. 鸭粪和环丙沙星对潮土微生物群落 功能多样性的影响[J]. 生态毒理学报, 2014, 9(6):1118-1125.
 ZHOU Zhi-qiang, WANG Shu-ping, GUO Li, et al. Influences of duck feces and ciprofloxiacin on soil microbial community functional diversity in ustic cambosols[J]. Asian Journal of Ecotoxicology, 2014, 9(6):1118-1125.
- [44] Schnabel E L, Jones A L. Distribution of tetracycline resistance genes and transposons among phylloplane bacteria in Michigan apple orchards[J]. Appled & Environment Microbiology, 1999, 65(11):4898– 4907.
- [45] Allmansberger R, Bräu B, Piepersberg W. Genes for gentamicin-(3)-N-acetyl-transferases III and IV. II. Nucleotide sequences of three AAC(3)-III genes and evolutionary aspects[J]. Molecular General Genetics, 1985, 198(3):514-520.
- [46] Stiirenburg E, Kiihn A, Mack D, et al. A novel extended-spectrum beta-lactamase CTX-M-23 with a P167T substitution in the active-site omega loop associated with ceftazidime resistance[J]. Journal of Antimicrobial Chemotherapy, 2004, 54(2):406-409.
- [47] 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 2000.

LU Ru-kun. Analytical methods of soil agricultural chemistry[M]. Beijing: China Agricultural Science and Technology Press, 2000.

- [48] Oka A, Sugisaki H, Takanami M. Nucleotide sequence of the kanamycin resistance transposon Tn903[J]. Journal of Molecular Biology, 1981, 147(2):217-226.
- [49] Bissonnette L, Roy P H. Characterization of In0 of *Pseudomonas aeru-ginosa* plasmid pVS1, an ancestor of integrons of multiresistance plasmids and transposons of gram-negative bacteria[J]. *Journal of Bacteriology*, 1992, 174(4):1248-1257.
- [50] Leinberger D M, Grimm V, Rubtsova M, et al. Integrated detection of extended-spectrum-beta-lactam resistance by DNA microarraybased genotyping of *TEM*, *SHV*, and *CTX*-M genes[J]. *Journal of Clinical Microbiology*, 2010, 48(2):460-471.
- [51] Hansson K, Sundström L, Pelletier A, et al. Intl2 Integron integrase in Tn7[J]. Journal of Bacteriology, 2002, 184(6):1712.
- [52] Zhu Y G, Johnson T A, Su J Q, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(9): 3435–3440.
- [53] Cameron F H, Obbink D J G, Ackerman V P, et al. Nucleotide se-

2018年12月 常旭卉,等:粪源环丙沙星对潮土中抗生素抗性基因的影响

quence of the AAD (2") aminoglycoside adenylyltransferase determined *aadB*. Evolution relationship of this with those surrounding *addA* in R538-1 and dhfr II in R388[J]. *Nucleic Acids Research*, 1986, 14(21):8625-8635.

- [54] Parkhill J, Dougan G, James K D, et al. Complete genome sequence of a multiple drug resistant salmonella enterica serovar Typhi CT18[J]. *Nature*, 2001, 413(6858):848-852.
- [55] 周志强. 粪源环丙沙星对潮土微生物群落特征及其土壤肥力的影响[D]. 北京:中国科学院大学, 2014. ZHOU Zhi-qiang. The influence of ciprofloxacin on the microbial community characteristics and soil fertility of the soil[D]. Beijing:University of Chinese Academy of Sciences, 2014.
- [56] Cloeckaert A, Baucheron S, Flaujac G, et al. Plasmid-mediated florfenicol resistance encoded by the *floR* gene in *Escherichia coli* isolated from cattle[J]. *Antimicrobial Agents & Chemotherapy*, 2000, 44 (10):2858-2860.
- [57] Carattoli A, Tosini F, Giles W P, et al. Characterization of plasmids carrying CMY-2 from expanded-spectrum cephalosporin-resistant salmonella strains isolated in the United States between 1996 and 1998[J]. Antimicrobial Agents & Chemotherapy, 2002, 46(5): 1269– 1272.
- [58] Farias P, Espírito S C, Branco R, et al. Natural hot spots for gain of multiple resistances: Arsenic and antibiotic resistances in heterotrophic, aerobic bacteria from marine hydrothermal vent fields[J]. Applied & Environmental Microbiology, 2015, 81(7):2534-2543.
- [59] 李 娟, 吴永宁. 养猪场废水、周边土壤中质粒介导的喹诺酮类耐 药基因及其抗生素残留的监测[C]. 北京:中国毒理学会兽医毒理

学与饲料毒理学学术讨论会暨兽医毒理专业委员会第4次全国代表大会,2012:85-86.

LI Juan, WU Yong-ning. The determination of quinolone resistance genes and antibiotic residues in the surrounding soil of pig farm wastewater[C]. Beijing: China Toxicology Association Veterinary Toxicology and Feed Toxicology Academic Seminar and Veterinary Toxicology Professional Committee 4th National Congress Proceedings, 2012:85– 86.

- [60] 高 敏, 仇天雷, 秦玉成, 等. 养鸡场空气中抗性基因和条件致病 菌污染特征[J]. 环境科学, 2017, 38(2):510-516. GAO Min, QIU Tian-lei, QIN Yu-cheng, et al. Sources and pollution characteristics of antibiotic resistance genes and conditional pathogenic bacteria in concentrated poultry feeding operations[J]. Environmental Science, 2017, 38(2):510-516.
- [61] Selvaraj G-K, Tian Z, Zhang H, et al. Culture-based study on the development of antibiotic resistance in a biological wastewater system treating stepwise increasing doses of streptomycin[J]. *Amb Express*, 2018, 8(1):12.
- [62] Shi Y, Zhang H, Tian Z, et al. Characteristics of ARG-carrying plasmidome in the cultivable microbial community from wastewater treatment system under high oxytetracycline concentration[J]. Applied Microbiology and Biotechnology, 2018, 102(4):1847-1858.
- [63] 王凤花. 再生水回用和畜禽粪便施用对土壤中抗生素抗性基因的 影响[D]. 北京:中国科学院大学, 2014.
 - WANG Feng-hua. The effects of regenerative water reuse and animal manure on antibiotic resistance genes in soil[D]. Beijing: University of Chinese Academy of Sciences, 2014.