黄黎粤, 丁竹红, 胡 忻, 等. 生物炭施用对小麦和玉米幼苗根际和非根际土壤中 Pb、As 和 Cd 生物有效性的影响研究[J]. 农业环境科学学报, 2019, 38(2): 348-355.

HUANG Li-yue, DING Zhu-hong, HU Xin, et al. Effects of biochars on bioavailability of Pb, As, and Cd in the rhizosphere and non-rhizosphere soil of corn and wheat seedlings[J]. Journal of Agro-Environment Science, 2019, 38(2): 348-355.

生物炭施用对小麦和玉米幼苗根际和非根际土壤中 Pb、As和Cd生物有效性的影响研究

黄黎粤1,丁竹红1*,胡 忻2,陈逸珺2

(1.南京工业大学环境学院,南京 211816; 2.南京大学现代分析中心,南京 210093)

摘 要:用理化性质不同的废纸、木屑、脱水污泥等原材料在600℃限氧条件下热裂解分别制备了3种生物炭,继而利用根袋法盆 栽实验研究了这3种生物炭的施用对生长于矿区重金属污染土壤中的小麦和玉米幼苗的根际和非根际土壤中有效态有害元素以 及幼苗根系有害元素富集的影响。结果表明,施用这3种生物炭的小麦和玉米幼苗根际与非根际土壤中CaCl₂提取态、EDTA提取 态和稀 HCl提取态 As、Cd和Pb含量均低于未施用生物炭的对照处理组,并且随着生物炭施用量从0.5%增加到5%,3种提取态 As、Cd和Pb含量降低更为明显,但生物炭处理对非根际土壤中提取态As、Cd和Pb的降低总体比根际土壤明显。施用3种理化性 质不同生物炭的土壤中有效态 As、Cd和Pb含量与有效态提取剂(CaCl₂、EDTA和稀 HCl)和被提元素种类(As、Cd和Pb)相关,但未 表现出一致性的规律。小麦和玉米幼苗根际和非根际土壤中CaCl₂提取的水溶态 As、Cd和Pb无显著差异,而部分EDTA 及稀 HCl 提取的可交换态、碳酸盐结合态有害元素、铁锰氧化物和有机结合态 As、Cd和Pb存在显著差异。小麦和玉米幼苗根系 As、Cd和 Pb的富集量均低于未施用生物炭的对照处理组,并且随着生物炭施用量从0.5%增加到5%,提取态 As、Cd和Pb的含量降低更为 明显。因而,施用生物炭的对照处理组,并且随着生物炭施用量从0.5%增加到5%,提取态 As、Cd和Pb的含量降低更为

关键词:生物炭;有害元素;根际土壤;生物有效性;植物富集

中图分类号:X53 文献标志码:A 文章编号:1672-2043(2019)02-0348-08 doi:10.11654/jaes.2018-0463

Effects of biochars on bioavailability of Pb, As, and Cd in the rhizosphere and non-rhizosphere soil of corn and wheat seedlings

HUANG Li-yue¹, DING Zhu-hong^{1*}, HU Xin², CHEN Yi-jun²

(1.School of Environment, Nanjing University of Technology, Nanjing 211816, China; 2.Center of Material Analysis, Nanjing University, Nanjing 210093, China)

Abstract: Biochar is a carbon-rich composite derived from the slow pyrolysis of biomass feedstock in the absence of oxygen. It has been widely investigated for carbon sequestration, soil remediation/restoration, and soil fertility. In this study, biochars were prepared through the slow pyrolysis of scrap paper, wood chips, and dehydrated sludge under limited oxygen at 600 °C. Different levels (0.5% and 5%) of the resulting biochars were added to soil from a lead-zinc mining area of Qixia in Nanjing; the soil was contaminated with heavy metals. Laboratory experiments were then conducted on corn(*Zea mays* L. cv. Suyu 44) and wheat(*Triticum aestivum* L. cv. Nongmai 88) seedlings via rhizo-bag pot cultures. The bioavailability of Pb, As, and Cd in the rhizosphere and non-rhizosphere soil of the seedlings, and the accumulation of the former in the roots of the seedlings, were investigated. The results showed that the CaCl₂-extractable, EDTA-extractable, and dilute-HCl-extractable fractions of As, Cd, and Pb in the rhizosphere and non-rhizosphere soils of the seedlings in the groups treated with the bio-

*通信作者:丁竹红 E-mail:dzhuhong@njtech.edu.cn

收稿日期:2018-04-09 录用日期:2018-07-12

作者简介:黄黎粤(1990—),男,湖北宜昌人,硕士研究生,从事重金属污染修复土壤研究。E-mail:1833298876@qq.com

基金项目:国家自然科学基金项目(21677075)

Project supported : The National Natural Science Foundation of China (21677075)

chars were lower than those in the control group, to which the biochars were not added. With the increase in biochars levels from 0.5% to 5%, the extractable As, Cd, and Pb content decreased significantly; however, the reduction in the extractable fractions of As, Cd, and Pb in the non-rhizosphere soils was generally clearer than that in the rhizosphere soils. The effects of biochars with different physicochemical properties on the extractable As, Cd, and Pb in soils were related to the extractants (CaCl₂, EDTA, and dilute HCl) and the extracted elements (As, Cd, and Pb), but no unified rules were observed. There were no significant differences between the rhizosphere and non-rhizosphere soils from which the water-soluble As, Cd, and Pb had been extracted by CaCl2, but some of the exchangeable and carbonate-bound, iron/manganese-bound, and organic matter-bound fractions extracted by EDTA and dilute HCl differed significantly. The As, Cd, and Pb content in the roots of the seedlings in the groups treated with biochars were lower than those in the control group. With the increase in biochars from 0.5% to 5%, the decrease in contents of As, Cd, and Pb was more significant; wood chip- and sludge-based biochars were better at reducing As, Cd, and Pb enriched in the roots of the seedlings than the scrap paper-based biochar.

Keywords: biochar; heavy metals; rhizosphere soil; bioavailability; phyto-enrichment

土壤重金属污染是我国面临的严重环境问题之 一[1-3],因而重金属污染土壤的治理和修复一直是备 受关注的环境研究热点之一[4-5]。目前,由农林废弃 物等富含生物质的原料碳化而制备的生物炭作为土 壤修复剂和土壤改良剂的研究受到广泛的关注[6-7]。 实验室植物盆栽实验和现场大田实验的研究表明生 物炭能有效地降低土壤中重金属的迁移性和植物有 效性,从而固定土壤中重金属元素,因而有希望成为 一种新型的低成本的修复剂[8-10]。牛物炭修复重金属 污染土壤的研究主要关注土壤理化性质、营养元素和 重金属的生物有效性及植物富集等,少量研究涉及植 物的根际与非根际重金属形态的分析比较,而生物炭 如何影响植物根际土壤与本体土壤中重金属的迁移 性和植物有效性的研究对于探明生物炭固定污染土 壤重金属的效果和降低植物重金属富集机理等具有 重要的理论和实际意义[11-14]。因而相关研究有待进 一步开展。此外,根袋盆栽植物实验是植物根际和非 根际效应比较研究的经典方法[15]。采集植物根际土 壤与本体土壤,通过中性盐溶液、稀酸溶液、有机螯合 剂溶液和缓冲盐溶液等提取剂提取土壤中不同赋存 形态的重金属,探讨土壤中重金属的迁移性和植物有 效性,有助于科学评估生物炭的修复效果[16-17]。

小麦和玉米是我国两种常见的农作物,其重金属 富集可能直接影响居民身体健康,因而降低其有害元 素的富集研究具有重要意义。本文以理化性质不同 的废纸、木屑以及脱水污泥等3种常见原材料制备生 物炭,通过实验室根袋盆栽试验来研究生物炭的施用 对这两种植物幼苗根际及非根际土壤中有害元素生 物有效性的影响[18-19],为评价生物炭修复重金属污染 土壤提供科学参考。

材料与方法 1

1.1 实验材料

实验小麦(Triticum aestivum L.cv. Nongmai88,农 麦 88) 和玉米种子(Zea mays L. cv. Suyu44, 苏玉 44) 购于种子公司。实验土壤采集于南京市栖霞区铅锌 矿周边的农田,袋装运回实验室后自然风干,除去杂 物和较大石块后过2mm筛,置于聚乙烯塑料自封袋 中备用。按照《土壤农业化学分析方法》中的电位法 和水合热重铬酸钾氧化-比色法分别测定实验土壤 的 pH 和有机质^[20]。土壤 pH 为 6.81; 有机质含量为 5.52%。有害元素As、Cd和Pb的总量[经HNO3-HClO4-HF 消煮后,用电感耦合等离子体直读光谱仪(ICP-OES, Optima5300OES, PerkinElmer, USA)测定], 分别 为158、37.9、2975 mg·kg⁻¹。参照国家土壤环境质量 标准(GB 15618-2018),实验土壤中As、Cd、Pb的含 量均超过了土壤环境风险管制值,说明实验土壤中 As、Cd、Pb的污染比较严重。

分别收集废弃包装纸盒、锯木厂木屑、市政污水 处理厂的脱水污泥等原材料。将包装纸盒剪碎、清 洗,木屑也一并清洗,然后置于温度为85℃的烘箱中 36h充分干燥。将干燥的脱水污泥、包装纸盒碎片和 木屑分别放置在管式炉中,通入N₂,在600 ℃限氧的 条件下裂解2h,待自然冷却之后将热解制备的生物 炭取出研磨,过2mm筛后装袋备用。制备废纸基生 物炭、木屑基生物炭和污泥基生物炭分别记为PB、 WB和SB。这三种生物炭的基本理化性质见表1。

1.2 实验方法

实验设置每100g土壤分别施用0.5g和5g共两 个梯度的生物炭施用量,混合均匀,同时以不加生物

农业环境科学学报 第38卷第2期

	Table 1 BET characteristics, elemental compositions, ash contents(AC), and yields of three biochars									
项目	比表面积/m²⋅g⁻¹	孔隙容积/cm³⋅g⁻¹	平均孔径/nm	元素组	戎 Elemer	ntal compo	osition/%	产率/%		
Items	Specific surface area	Void content	Average pore size	С	Н	0	Ν	Ash content	Yield	
PB	270	0.158	2.34	59.9	1.75	1.01	0.314	36.9	26.7	
WB	375	0.203	2.71	88.4	2.36	4.94	0.152	4.34	35.8	
SB	45.7	0.095	8.32	16.1	0.82	5.98	1.810	75.3	51.9	

表1 三种生物炭的比表面积、孔径分布、元素组成、灰分以及产率

注:C、H、O、N和灰分均以质量分数计,O质量分数由差减法算得。

Note: C, H, O, N and ash are all measured by mass fraction, the quality fraction of O is calculated by subtraction.

炭土壤作为对照组。以聚乙烯塑料杯作为盆栽实验 容器,每份分别装入100g上述土壤,备用。每种处理 分别设置5个平行样。用300目尼龙网按文献方法制 作根袋^[21],待用。

将小麦和玉米种子洗净,置于托盘中湿润的脱脂 纱布中,置于生物光照培养箱中培养并保持湿润。待种 子发芽后开始移植。分别将萌发的小麦种子和玉米 种子移植到根袋中,每份小麦种子植入5颗,每份玉 米种子植入8颗,加少许土壤覆盖。通过称重法加水, 保持田间持水量的40%~50%。将所有容器移到生物 光照培养箱中进行培养,设置温度为24.5℃,每日光 照周期为12 h/12 h。用称重法每日向每份盆栽植物 施加自来水以保持土壤的湿润和植物的正常生长。

培养4周后收割小麦和玉米幼苗。将所有小麦 和玉米幼苗移出根袋,小心去除根际土壤,用自来水 清洗干净,再用超纯水清洗。放在烘箱中65℃下烘 干12h。将烘干后小麦和玉米幼苗的根和茎叶分开, 分别装于聚乙烯塑料自封袋备用。分别将小麦和玉 米根袋内的根际土和根袋外的非根际土取出,在 85℃的条件下烘干24h、研磨过100目筛,装于聚乙 烯塑料自封袋备用。

1.3 分析方法

植物样品用硝酸-高氯酸法进行消解^[22-23]。称取 0.100g根,置于25mL的烧杯中,分别加入3mL硝酸 和1mL高氯酸,电热板加热消解。同时设置试剂空 白。消解完成后用5%硝酸溶液定容至10mL,冰箱 保存,待测。土壤样品中生物有效态有害元素分别用 3种不同的提取方法提取:用浓度为0.01mol·L⁻¹的 CaCl₂溶液提取水溶态有害元素^[24];用浓度为0.05 mol·L⁻¹的EDTA溶液提取水溶态、可交换态和部分有 机结合态有害元素^[25];用浓度为1mol·L⁻¹的稀HCl溶 液提取水溶态、可交换态、碳酸盐结合态以及大量的 铁锰氧化物结合态和有机结合态有害元素^[26]。称取 1.000g根际土和非根际土,分别置于15mL的离心管 中,分别加入10 mL 0.01 mol·L⁻¹ CaCl₂溶液、0.05 mol· L⁻¹ EDTA 溶液和1 mol·L⁻¹HCl 溶液。同时设置空白 对照组。室温下摇动10 h,离心、过滤。收集滤液,冰 箱保存,待测。利用上述 ICP-OES 分析植物和土壤 样品中As、Cd、Pb的浓度。不同处理组间的方差多重 比较(Post hoc multiple comparisons)采用 LSD(Leastsignificant difference)方法;根际和非根际土壤中有效 态含量方差分析采用 Paired-samples t test;根际和非 根际土壤中有效态含量及其与植物根系富集量相关 分析采用 Pearson 相关分析。所有统计分析由 SPSS 16.0完成。

2 结果与讨论

2.1 生物炭对小麦和玉米幼苗根际土和非根际土中 有害元素迁移性的影响

小麦和玉米幼苗根际和非根际土壤中生物有效 态有害元素提取量分别见表2和表3。从表2和表3 可以看出,小麦和玉米幼苗根际和非根际土壤中有效 态As、Cd和Pb的含量高低顺序为稀HCl提取态> EDTA提取态>CaCl2提取态。这是因为CaCl2提取态主 要为水溶态有害元素^[24];EDTA提取态包含水溶态、可 交换态和部分有机结合态有害元素^[25];稀HCl提取态 包括水溶态、可交换态、碳酸盐结合态有害元素,以及 大量的铁锰氧化物结合态和有机结合态有害元素^[26]。

与对照组相比,生物炭处理组小麦和玉米幼苗根际和非根际土壤中生物有效态As、Cd和Pb的提取量有着不同程度的降低。如施用5%PB时,小麦幼苗根际土壤中EDTA提取态As、Pb和Cd的提取量分别降低了38%、19%和36%,非根际土壤中EDTA提取态As、Pb和Cd的提取量分别降低了22%、34%和20%; 玉米幼苗根际土壤中EDTA提取态As、Pb和Cd的提取量分别降低了25%、19%和9.2%,非根际土壤中EDTA提取态As、Pb和Cd的提取量分别降低了51%、20%和9.7%(表2和表3)。多重比较统计分析表明, 2019年2月 黄黎粤,等:生物炭施用对小麦和玉米幼苗根际和非根际土壤中Pb、As和Cd生物有效性的影响研究 351

与对照组相比,5%施用组3种生物炭均能显著的降 低小麦和玉米幼苗根际和非根际土壤中CaCl2提取 态、EDTA 提取态和稀 HCl 提取态有效态有害元素含 量。部分0.5%施用组生物炭显著降低小麦和玉米幼 苗根际和非根际土壤中CaCl2提取态、EDTA 提取态和 稀HCl提取态有效态有害元素含量。因而与对照组 相比,生物炭的施用量从0.5%增加到5%,小麦幼苗 根际和非根际土壤中有效态 As、Cd和Pb的含量显著 降低。5%施用量能降低水溶态、可交换态、碳酸盐结 合态、及部分铁锰氧化物结合态和有机结合态 As、Cd 和Pb的含量。这与文献报道相一致^[27-28]。如施用玉 米秸秆炭使污染土壤中交换态Cd的含量降低^[29];5% 稻草秸秆分别降低土壤中34.5%、50.1%、52.5%和 52.1% 有效态 Cd、Cu、Pb 和 Zn 的含量[30]。毛懿德等[31] 盆栽实验表明,与对照相比,0.1%和1.0%的竹炭及柠 条生物炭处理可使交换态Cd含量分别降低4.99%、

5.44% 和9.44%、16.64%。崔立强等[32]研究发现,加入 生物炭可使污染土壤 Pb 酸溶态、还原态和氧化态组 分显著降低并向残渣态转化。李季等[33]室内水稻培 养法研究发现,生物炭处理导致土壤Sb的生物可利 用性比对照显著降低了20%。在本研究中,5%的生 物炭施用量可显著降低小麦和玉米幼苗根际和非根 际土壤中生物有效态As、Cd和Pb的含量。3种理化 性质不同的生物炭处理组土壤中有效态 As、Cd和 Pb 含量变化与提取剂(CaCl, EDTA 和稀 HCl)相关,但 未表现出一致性的规律(表2和表3)。此外,3种生物 炭对有效态的影响存在较大的差异(表2和表3)。例 如:5% 生物炭处理组小麦幼苗根际土壤中 EDTA 提 取态As的PB处理组显著低于WB和SB,而非根际组 则不同(表2)。因而不仅与生物炭性质有关,还与提 取的As、Cd和Pb提取剂及根际效应有关,但也难以 总结出一致性的规律(表2和表3)。

表2 小麦幼苗根际土壤和非根际土壤生物有效态有害元	素提取量	$(mg \cdot kg^{-1})$
---------------------------	------	----------------------

Table 2 Bioavailable contents in the rhizosphere a	nd non–rhizosphere soil of wheat seedli	ngs(mg•kg ⁻¹)
--	---	---------------------------

项目Items	R-As	N-As	R-Cd	N-Cd	R-Pb	N-Pb
		CaC	Cl2提取态CaCl2-extrac	table		
СК	10.6±2.4a	12.3±1.5a	5.24±0.88a	6.81±1.26a	22.5±2.6a	24.3±2.5a
0.5%PB	8.95±1.55a	10.4±1.3a	5.16±1.18a	6.52±0.86a	20.1±1.8ab	16.1±1.7c
5%PB	$6.43 \pm 0.63 \mathrm{b}$	$5.82 \pm 0.82 c$	4.32±0.54a	$5.04\pm0.73\mathrm{b}$	16.8±1.7c	14.2±1.52c
0.5%WB	4.62±1.3c	8.21±1.26bc	5.23±0.64a	6.24±0.96a	18.4±1.8c	$20.7\pm2.7\mathrm{b}$
5%WB	$3.75 \pm 0.35 d$	3.62±1.37e	4.64±0.63a	5.84±0.88a	13.2±1.6d	$15.3 \pm 1.8 c$
0.5%SB	9.45±1.55a	9.92±0.95ab	5.08±0.52a	6.56±1.36a	21.8±1.7a	21.2±2.6ab
5%SB	$2.75{\pm}0.38{\rm d}$	5.21 ± 0.86 d	$3.04\pm0.82b$	3.32±1.32c	19.4±1.6bc	$20.3 \pm 1.6 \mathrm{b}$
		EDT	YA 提取态 EDTA-extra	ctable		
СК	46.1±3.7a	55.5±6.1a	20.6±2.2a	24.1±3.4a	1894±30a	2152±34a
0.5%PB	40.2±4.3b	50.4±5.1a	18.1±1.9a	20.4±2.7ab	1824±28a	1984±32c
5%PB	28.7±5.2c	43.2±5.2b	13.2±1.4b	$15.8\pm2.5\mathrm{b}$	$1528 \pm 30b$	1725±28d
0.5%WB	43.1±4.4a	53.2±4.7a	19.1±2.2a	22.5±2.6a	1751±32ab	2044±31b
5%WB	40.1±5.1b	50.1±4.1a	17.5±1.9ab	20.7±2.3ab	$1482 \pm 31 \mathrm{b}$	1935±33c
0.5%SB	43.1±3.9ab	44.7±4.7b	20.1±2.2a	21.1±2.1ab	1802±29a	$2033\pm32b$
5%SB	40.1±4.2b	35.4±4.5c	17.6±1.6ab	$18.4\pm2.7\mathrm{b}$	1685±31ab	1831±28c
		稀日	HCl提取态HCl-extrac	table		
СК	121±11.1a	132±6a	26.1±1.8a	28.2±2.2a	2336±35a	2592±31a
0.5%PB	118±12.9a	128±8a	25.6±1.4a	27.6±2.7a	$2208\pm27b$	2582±24a
5%PB	94.2±12.9c	122±8b	21.2±1.7b	$23.6\pm2.6b$	$2109\pm27c$	$2452\pm29b$
0.5%WB	$101 \pm 11b$	105±7c	23.8±2.1ab	25.7±2.7ab	$2124\pm36bc$	2502±26a
5%WB	$69.8{\pm}9.7{\rm d}$	81.5±7.6d	16.6±1.6c	16.6±1.7d	1868±28d	2246±26c
0.5%SB	110±11a	115±7b	24.6±2.2a	22.4±2.1bc	$2291{\pm}28\mathrm{b}$	2464±33b
5%SB	100±9b	106±8c	19.9±1.2b	20.5±3.4c	2211±30b	2081±32d

注:同一列数据不同小写字母表示差异显著(P<0.05,n=5);R为根际;N为非根际。表3同。

Note: Different lowercase letters in the same column indicates significant difference (P<0.05, n=5); R indicates root; N indicates non-root. The same table 3.

表33	E米幼苗根际土	壤和非根际土	瀼生物有效态有	害元素提取量($(mg \cdot kg^{-1})$
-----	---------	--------	---------	---------	----------------------

Table 3 Bioavailable contents in the rhizosphere and non-rhizosphere soil of corn seedlings (mg·kg⁻¹)

	R-As	N-As	R-Cd	N-Cd	R-Pb	N-Pb
		CaC	2提取态CaCl2-extracta	ble		
СК	10.4±1.8a	12.8±1.7a	5.97±0.63a	7.25±1.12a	24.3±3.1a	26.1±1.9a
0.5%PB	8.56±1.79ab	$10.8\pm2.4\mathrm{b}$	5.87±0.85a	6.88±1.46a	22.2±1.3b	25.3±2.1a
5%PB	$6.42 \pm 1.45 \mathrm{b}$	6.57±2.54c	5.21±0.33ab	$5.52 \pm 1.44 b$	20.6±1.6c	23.2±2.1b
0.5%WB	9.83±1.54a	$11.2\pm0.8b$	$5.04 \pm 0.66 \mathrm{b}$	$5.72 \pm 0.27 \mathrm{b}$	$18.8{\pm}1.3{\rm d}$	22.1±1.9b
5%WB	8.92±1.52a	$10.5 \pm 2.1 \mathrm{b}$	3.52±0.66c	4.03±0.89c	13.6±1.1f	16.3±1.8d
0.5%SB	9.29±1.35a	$11.1 \pm 1.7 b$	5.52±0.75a	5.83±0.41b	20.6±2.7c	22.1±1.5b
5%SB	8.12±1.46ab	$10.8 \pm 2.1 \mathrm{b}$	$4.95 \pm 0.72 \mathrm{b}$	4.72±0.59c	14.6±1.5e	18.2±1.5c
		EDTA	A提取态EDTA-extracta	able		
СК	47.5±3.9a	54.4±3.1a	20.4±1.2a	23.5±2.8a	2074±28a	1830±34a
0.5%PB	39.5±2.5e	50.2±2.6b	19.1±0.9b	22.5±1.8a	2026±32a	1757±32a
5%PB	35.6±2.2f	26.8±2.1f	18.1±0.8b	18.9±0.7c	1883±33b	$1652\pm29b$
0.5%WB	$45.7\pm2.4\mathrm{b}$	45.7±2.9c	18.5±1.8b	18.5±1.8c	$1887 \pm 35 b$	1800±30a
5%WB	43.9±3.5c	$30.5 \pm 3.0 \mathrm{d}$	12.2±1.2d	13.8±2.8e	1602±31d	1746±31a
0.5%SB	42.7±3.4d	45.4±2.9c	18.9±1.2b	20.6±1.6b	$1925\pm24b$	1682±31b
5%SB	39.9±2.4e	28.2±3.1e	16.2±1.2c	16.2±1.1d	1784±30c	1452±29c
		稀H	Cl提取态 HCl- extracta	ble		
СК	129±11a	137±6a	27.4±2.3a	32.8±2.4a	2707±29a	2516±31a
0.5%PB	121±7a	127±4a	27.1±1.4a	29.1±1.5b	2624±25a	2467±30a
5%PB	115±7b	119±5b	25.8±1.6b	26.2±2.2c	$2594 \pm 34 \mathrm{b}$	2314±32b
0.5%WB	116±10b	108±5c	25.9±2.2b	26.2±1.5c	2211±28c	2354±28b
5%WB	88.2±8.2c	92.9±4.8d	23.1±2.1c	23.2±0.7d	$2085 \pm 32 d$	1946±27d
0.5%SB	120±12a	115±5b	25.4±2.6b	27.1±2.2c	2233±28c	2236±27c
5%SB	113±7b	105±5c	20.5±2.9c	21.6±2.4e	2079±35d	1937±25d

以往研究表明[34-35],植物根际效应是影响土壤重 金属生物有效性与植物重金属富集的一个重要因素。 将根际和非根际土壤中3种方法提取的有效态含量 进行 Paired-samples t test 方差分析(表2和表3)和 Pearson 相关分析(表4)。Paired-samples t test分析结 果表明,总体而言小麦和玉米幼苗根际与非根际土壤 中 $CaCl_2$ 提取态As、Cd和Pb的含量无显著差异(表2 和表3)。小麦和玉米幼苗根际与非根际土壤中 EDTA 提取态和稀 HCl提取态 Cd 含量无显著差异(表 2和表3)。小麦幼苗非根际土壤中EDTA提取态Pb 除对照组外显著高于其根际土壤;而EDTA提取态As 含量除SB处理组外显著高于其根际土壤。小麦幼苗 非根际土壤中稀HCl提取态Pb除5%SB处理组外显 著高于其根际土壤;而除5%PB处理组外根际土壤与 非根际土壤中稀 HCl 提取态 As 的含量无显著差异 (表2)。玉米幼苗根际土壤中EDTA提取态Pb除 5%WB组外显著高于其非根际土壤;3种5%生物炭 处理组玉米幼苗根际土壤中 EDTA 提取态 As 的含量

显著高于其非根际土壤(表3)。玉米幼苗根际土壤 中稀HCl提取态Pb除0.5%WB和0.5%SB组外显著高 于其非根际土壤;而根际土壤与非根际土壤中稀HCl 提取态As的含量无显著差异(表3)。Pearson相关分 析表明,小麦和玉米幼苗根际土壤与非根际土壤中 CaCl2提取态As、Cd、Pb的含量呈显著相关;EDTA提 取态玉米Cd和小麦Cd、Pb的含量呈显著相关;除小 麦Pb外,稀HCl提取态As、Cd和Pb的含量呈显著相 关(表4)。这些表明,生物炭处理对根际与非根际土 壤中水溶态As、Cd和Pb无显著影响。总体而言,生 物炭处理明显降低非根际土壤中As、Cd和Pb的有效 态含量。

2.2 生物炭对小麦和玉米幼苗富集有害元素的影响

小麦和玉米幼苗根系As、Cd和Pb的含量见表5。 从表5可以看出,小麦和玉米幼苗根系对于As、Cd和 Pb的富集具有明显的植物种属差异。如玉米幼苗根 系中As和Pb的含量明显高于小麦幼苗根系的富集 量,但两种植物根系Cd含量无显著差异。与对照组

表4 小麦和玉米幼苗根系根际与非根际土壤提取态 有害元素含量的相关系数

Table 4 Pearson correlation coefficients of extractable fractions in the rhizosphere and non-rhizosphere soil

	C-As	C-Cd	C-Pb	W-As	W-Cd	W-Pb
CaCl ₂	0.93**	0.92**	0.98**	0.89**	0.99**	0.75^{*}
EDTA	0.61	0.93**	0.37	0.46	0.91**	0.76^{*}
HCl	0.88^{**}	0.90**	0.86**	0.89**	0.92**	0.42

注:*为显著相关(P<0.05);**为极显著相关(P<0.01);C为玉米; W为小麦。表6同。

Note: * indicates significant correlation (P<0.05); ** indicates extremely significant correlation (P<0.01); C indicates corn; W indicates wheat. The same table 6.

相比,施用生物炭均能不同程度地降低小麦和玉米幼 苗根系As、Cd和Pb的含量(表5),并且随着生物炭施 用量从0.5%增加到5%,小麦和玉米幼苗根系中As、 Cd和Pb含量也明显降低。如生物炭施用量为5% 时,小麦和玉米幼苗根系中As、Cd和Pb含量显著低 于对照组(表5)。与对照组相比,施用5%WB的小麦 幼苗根系中Pb含量降低最多,达到了74%;施用 5%SB的小麦幼苗根系中As和Cd含量降低最多,分 别达到了71%和40%;施用WB的玉米幼苗根系中As 和Pb含量降低最多,分别达到了69%和58%;施用 SB的玉米幼苗根系中Cd含量降低最多,达到了 61%。由此可见,不同生物炭的施用对作物根系有害 元素的富集具有不同的影响效果。

小麦和玉米幼苗根系有害元素含量与根际和非 根际土壤提取态含量的相关分析表明,玉米幼苗根际 土壤中 CaCl2提取态 As、Cd、Pb含量和小麦幼苗根际 土壤中CaCl2提取态Cd、Pb含量与根系中相应的富集 量无显著相关(表6)。从表6还可以看出,只有部分 处理组 EDTA 提取态和稀 HCl 提取态 As、Cd 或 Pb 含

表6 小麦和玉米幼苗根系有害元素含量与根际和 非根际土壤提取态含量的相关系数

Table 6 Pearson correlation coefficients between As, Cd and Pb in the roots of wheat and corn seedling and

their extractable fractions in soil

	C-As	C-Cd	C-Pb	W-As	W-Cd	W-Pb
R–CaCl ₂	0.73	0.36	0.63	0.79^{*}	0.70	0.67
R-EDTA	0.59	0.43	0.79^{*}	0.40	0.36	0.77^{*}
R-HCl	0.80^{*}	0.77^{*}	0.32	0.77^{*}	0.86^{*}	0.64
N-CaCl ₂	0.74	0.69	0.64	0.90^{**}	0.70	0.44
N-EDTA	0.92**	0.60	0.27	0.73	0.50	0.61
N-HCl	0.77^{*}	0.84^{*}	0.61	0.77^{*}	0.89**	0.89**

量与玉米小麦幼苗根系中相应的富集量有显著相关。 因而,难以通过单一提取态含量的分析来预测生物炭 处理污染土壤中 As、Cd和 Pb的植物有效性。文献报 道生物炭的施用可以降低植物有害元素的富集[36-39], 但其作用机理尚不清晰。一般认为,生物炭的加入改 变土壤理化性质,如提高土壤pH、增加有机质等[27], 从而降低有害元素生物有效性,减轻其生物富集。但 通过田间水稻种植试验,Chen等^[40]发现生物炭的施用 对当季水稻的Cd含量没有显著影响。因而,相关研 究有待进一步深入。

3 结论

(1)施用生物炭可以降低小麦和玉米幼苗根际土 壤和非根际土壤中有害元素的生物有效性。但根际 土壤和非根际土壤中水溶态(CaCl2提取态)As、Cd和 Pb的含量无显著差异。不同原料所制备的生物炭对 As、Cd和Pb的固定效果存在明显差异。

(2)施用生物炭可以有效降低小麦和玉米幼苗根 系As、Cd和Pb的富集量,且随着生物炭施用量的增 加有害元素富集量的降低更明显。

表5 小麦和玉米幼苗根系有害元素含量(mg·kg⁻¹)

				0	0 0	
	W-As	C-As	W-Cd	C-Cd	W-Pb	C-Pb
СК	58.4±3.6a	37.1±2.65a	8.11±1.27a	8.46±1.08a	353±14a	183±20a
0.5%PB	43.6±2.8ab	26.1±3.56b	6.78±1.09a	6.54±0.91ab	$286 \pm 17b$	158±29ab
5%PB	30.1±4.16c	12.6±1.91d	6.36±0.52ab	$4.54 \pm 1.07 \mathrm{c}$	203±25d	88.1±16.4c
0.5%WB	$39.2 \pm 3.42 \mathrm{bc}$	$23.3 \pm 3.07 \mathrm{bc}$	6.40±1.25ab	6.54±0.91ab	253±21c	157±23ab
5%WB	17.3±3.94d	11.6±2.35d	$4.92\pm2.10\mathrm{b}$	$5.67 \pm 1.03 \mathrm{bc}$	91.1±23.2e	76.4±27.3c
0.5%SB	30.7±2.79c	$26.9 \pm 2.68 \mathrm{b}$	6.32±1.59ab	4.93±1.72c	193±22d	161±22ab
5%SB	16.7±3.67d	18.2±3.24c	$4.81 \pm 0.72 \mathrm{b}$	3.32±0.62d	112±19e	137±19b

Table 5 Toxic element contents of wheat and corn seedling roots $(mg \cdot kg^{-1})$

注:同一列数据不同小写字母表示差异显著(P<0.05,n=5);W为小麦;C为玉米。

Note: Different lowercase letters in the same column indicates significant difference (P < 0.05, n=5); W indicates wheat: C indicates corn.

参考文献:

(1):1-11.

- Du Y, Hu X F, Wu X H, et al. Affects of mining activities on Cd pollution to the paddy soils and rice grain in Hunan province, Central South China[J]. *Environmental Monitoring & Assessment*, 2013, 185 (12) : 9843–9856.
- [2] Soares M A, Quina M J, Quinta-Ferreira R M. Immobilisation of lead and zinc in contaminated soil using compost derived from industrial eggshell[J]. Journal of Environmental Management, 2015, 164 (12) : 137-145.
- [3] 苏耀明, 陈志良, 雷国建, 等. 多金属矿区土壤重金属垂向污染特征及风险评估[J]. 生态环境学报, 2016, 25(1):130-134.
 SU Yao-ming, CHEN Zhi-liang, LEI Guo-jian, et al. Vertical pollution characteristic and ecological risk assessment of heavy metal of soil profiles in polymetallic ore mine[J]. *Ecology and Environmental Sciences*, 2016, 25(1):130-134.
- [4] Liu G, Tao L, Liu X, et al. Heavy metal speciation and pollution of agricultural soils along Jishui River in non-ferrous metal mine area in Jiangxi Province, China[J]. *Journal of Geochemical Exploration*, 2013, 132(3):156-163.
- [5] Zhang C, Li Z, Yang W, et al. Assessment of metals pollution on agricultural soil surrounding a lead-zinc mining area in the Karst region of Guangxi, China[J]. Bull Environ Contam Toxicol, 2013, 90(6):736– 741.
- [6] 陶 雪,杨 琥,季 荣,等.固定剂及其在重金属污染土壤修复中的应用[J].土壤,2016,48(1):1-11. TAO Xue, YANG Hu, JI Rong, et al. Stabilizers and their applications in remediation of heavy metal-contaminated soil[J]. Soils, 2016, 48
- [7] Rumble H, Gange A C. Microbial inoculants as a soil remediation tool for extensive green roofs[J]. *Ecological Engineering*, 2017, 102: 188– 198.
- [8] Jiang J, Xu R K, Jiang T Y, et al. Immobilization of Cu (II), Pb (II) and Cd (II) by the addition of rice straw derived biochar to a simulated polluted Ultisol[J]. *Journal of Hazardous Materials*, 2012, 229–230 (5):145–150.
- [9]高瑞丽,朱 俊,汤 帆,等.水稻秸秆生物炭对镉、铅复合污染土 壤中重金属形态转化的短期影响[J].环境科学学报,2016,36(1): 251-256.

GAO Rui-li, ZHU Jun, TANG Fan, et al. Fractions transformation of Cd, Pb in contaminated soil after short-term application of rice straw biochar[J]. *Acta Scientiae Circumstantiae*, 2016, 36(1):251–256.

- [10] 王丹丹,林静雯,丁海涛,等.牛粪生物炭对重金属镉污染土壤的 钝化修复研究[J].环境工程,2016,34(12):183-187.
 WANG Dan-dan, LIN Jing-wen, DING Hai-tao, et al. Immobilization of cadmium in soils by dairy dung biochar[J]. *Environmental Engineering*, 2016, 34(12):183-187.
- [11] 武 玉, 徐 刚, 吕迎春, 等. 生物炭对土壤理化性质影响的研究 进展[J]. 地球科学进展, 2014, 29(1):68-79.
 WU Yu, XU Gang, LÜ Ying-chun, et al. Effects of biochar amend-

ment on soil physical and chemical properties: Current status and knowledge gaps[J]. *Advances in Earth Science*, 2014, 29(1):68–79.

- [12] Gul S, Whalen J K, Thomas B W, et al. Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions[J]. Agriculture Ecosystems & Environment, 2015, 206:46-59.
- [13] Yang X, Liu J, Mcgrouther K, et al. Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil[J]. Environ Sci Pollut Res Int, 2016, 23(2):974-984.
- [14] 李卓瑞, 韦高玲. 不同生物炭添加量对土壤中氮磷淋溶损失的影响[J]. 生态环境学报, 2016, 25(2):333-338.
 LI Zhuo-rui, WEI Gao-ling. Effects of biochar with different additive amounts on the leaching loss of nitrogen and phosphorus in soils[J]. *Ecology and Environmental Sciences*, 2016, 25(2):333-338.
- [15] Romualdo J, Lima S, Silva W D M, et al. Effect of biochar on physicochemical properties of a sandy soil and maize growth in a greenhouse experiment[J]. *Geoderma*, 2018, 319(1):14-23.
- [16]张 丽,侯萌瑶,安 毅,等.生物炭对水稻根际微域土壤Cd生物 有效性及水稻Cd含量的影响[J].农业环境科学学报,2017,36 (4):665-671.

ZHANG Li, HOU Meng-yao, AN Yi, et al. Effects of biochar on Cd bioavailability in rhizosphere microenvironment of cadmium-polluted paddy and Cd content in rice[J]. *Journal of Agro-Environment Science*, 2017, 36(4):665-671.

- [17] Ahmed A, Kurian J K, Raghavan V. Biochar influences on agricultural soils, crop production and the environment: A review[J]. *Environmental Reviews*, 2016, 24(4):495–502.
- [18] Beesley L, Marmiroli M. The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar[J]. *Environmental Pollution*, 2011, 159(2):474-480.
- [19] Cao X, Ma L, Liang Y, et al. Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar[J]. *Envi*ronmental Science & Technology, 2011, 45(11):4884-4889.
- [20] 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 2000:12-13.

LU Ru-kun. Methods of soil agricultural chemical analysis[M]. Beijing:China Agricultural Science and Technology Press, 2000:12-13.

- [21] Mcgrath S P, Shen Z G, Zhao F J. Heavy metal uptake and chemical changes in the rhizosphere of *Thlaspi caerulescens* and *Thlaspi ochroleucum* grown in contaminated soils[J]. *Plant & Soil*, 1997, 188(1): 153-159.
- [22] 徐珑珀,赵向阳,杨浩,等.不同消解方法对HG-AFS测定植物样品硒含量的影响[J].中国测试,2015,41(3):61-64.
 XU Long-bo, ZHAO Xiang-yang, YANG Hao, et al. The influence of different digestion methods for the determination of selenium in plant samples by HG-AFS[J]. *China Measurement & Test*, 2015, 41(3): 61-64.
- [23] Masson P, Dalix T. Comparison of open digestion methods for the determination of rare earth elements in plant samples by ICP-MS[J]. *Communications in Soil Science & Plant Analysis*, 2016, 47 (16) : 1866-1874.

黄黎粤,等:生物炭施用对小麦和玉米幼苗根际和非根际土壤中Pb、As和Cd生物有效性的影响研究 355

[24] Novozamsky I, Lexmond T M, Houba V J G. A single extraction procedure of soil for evaluation of uptake of some heavy metals by plants[J]. *International Journal of Environmental Analytical Chemistry*, 1993, 51 (1/2/3/4):47-58.

2019年2月

- [25] Wear J I, Evans C E. Relationship of zinc uptake by corn and sorghum to soil zinc measured by three extractants[J]. Soil Science Society of America Journal, 1968, 32(4):543-546.
- [26] Snape I, Scouller R C, Stark S C, et al. Characterisation of the dilute HCl extraction method for the identification of metal contamination in Antarctic marine sediments[J]. *Chemosphere*, 2004, 57(6):491–504.
- [27] Zhang X, Wang H, He L, et al. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants[J]. *Environmental Science & Pollution Research*, 2013, 20(12):8472-8483.
- [28] Lahori A H, Guo Z Y, Zhang Z Q, et al. Use of biochar as an amendment for remediation of heavy metal-contaminated soils: Prospects and challenges[J]. *Pedosphere*, 2017, 27(6):991-1014.
- [29] 高译丹,梁成华,裴中健,等.施用生物炭和石灰对土壤镉形态转 化的影响[J].水土保持学报,2014,28(2):258-261. GAO Yi-dan, LIANG Cheng-hua, PEI Zhong-jian, et al. Effects of biochar and lime on the fraction transform of cadmium in contaminated soil[J]. Journal of Soil and Water Conservation, 2014, 28(2):258-261.
- [30] 刘晶晶,杨 兴,陆扣萍,等.生物质炭对土壤重金属形态转化及 其有效性的影响[J].环境科学学报,2015,35(11):3679-3687.
 LIU Jing-jing, YANG Xing, LU Kou-ping, et al. Effect of bamboo and rice straw biochars on the transformation and bioavailability of heavy metals in soil[J]. Acta Scientiae Circumstantiae, 2015, 35(11): 3679-3687.
- [31] 毛懿德,铁柏清,叶长城,等. 生物炭对重污染土壤镉形态及油菜吸收镉的影响[J]. 生态与农村环境学报, 2015, 31(4):579-582.
 MAO Yi-de, TIE Bo-qing, YE Chang-cheng, et al. Effects of biochar on forms and uptake of cadmium by rapeseed in cadmium-polluted soil[J]. *J Ecol Rural Environ*, 2015, 31(4):579-582.
- [32] 崔立强,杨亚鸽,严金龙,等.生物质炭修复后污染土壤铅赋存形态的转化及其季节特征[J].中国农学通报,2014,30(2):233-239. CUI Li-qiang, YANG Ya-ge, YAN Jin-long, et al. Speciation and season change characteristic of lead in contaminated soil with biochar amendment[J]. Chin Agric Sci Bull, 2014, 30(2):233-239.
- [33] 李 季,黄益宗,胡 莹,等.改良剂对土壤Sb 赋存形态和生物可 给性的影响[J]. 环境化学, 2015, 34(6):1043-1048.
 LI Ji, HUANG Yi-zong, HU Ying, et al. Effect of several amendments on fractionation and bio-accessibility of antimony in contaminated soil

[J]. Environ Chem, 2015, 34(6):1043 - 1048.

- [34]林 琦,陈怀满,郑春荣,等.根际和非根际土中铅、镉行为及交互 作用的研究[J].浙江大学学报(农业与生命科学版),2000,26(5): 527-532.
 - LIN Qi, CHEN Huai-man, ZHEN Chun-rong, et al. Chemical behavior of Cd, Pb and their interaction in rhizosphere and bulk[J]. *Journal* of Zhejiang University (Agriculture and Life Sciences), 2000, 26(5): 527-532.
- [35] Wei W, Wei Z, Wang Y, et al. Simultaneous determination of organic acids and nitrate in xylem saps of the hyperaccumulator *Alyssum murale* by RP-HPLC after solid-phase extraction with nanosized hydroxyapatite[J]. *Journal of Chromatographic Science*, 2010, 48 (10) : 840-847.
- [36] 毕丽君, 侯艳伟, 池海峰, 等. 生物炭输入对碳酸钙调控油菜生长及重金属富集的影响[J]. 环境化学, 2014, 33(8):1334-1341.
 BI Li-jun, HOU Yan-wei, CHI Hai-feng, et al. Effect of biochar input on the regulation of calcium carbonate application to rape growth and heavy metal accumulation in contaminated soil[J]. *Environmental Chemistry*, 2014, 33(8):1334-1341.
- [37] Xu P, Sun C X, Ye X Z, et al. The effect of biochar and crop straws on heavy metal bioavailability and plant accumulation in a Cd and Pb polluted soil[J]. *Ecotoxicology & Environmental Safety*, 2016, 132 (10):94-100.
- [38] 侯艳伟, 池海峰, 毕丽君. 生物炭施用对矿区污染农田土壤上油菜 生长和重金属富集的影响[J]. 生态环境学报, 2014, 23(6):1057-1063.

HOU Yan-wei, CHI Hai-feng, BI Li-jun. Effects of biochar application on growth and typical metal accumulation of rape in mining contaminated soil[J]. *Ecology and Environmental Sciences*, 2014, 23(6): 1057-1063.

[39] 李衍亮, 黄玉芬, 魏 岚, 等. 施用生物炭对重金属污染农田土壤 改良及玉米生长的影响[J]. 农业环境科学学报, 2017, 36(11): 2233-2239.

LI Yan-liang, HUANG Yu-fen, WEI Lan, et al. Impacts of biochar application on amelioration of heavy metal-polluted soil and maize growth[J]. *Journal of Agro-Environment Science*, 2017, 36(11):2233–2239.

[40] Chen D, Guo H, Li R Y, et al. Low uptake affinity cultivars with biochar to tackle Cd-tainted rice: A field study over four rice seasons in Hunan, China[J]. Science of the Total Environment, 2016, 541 (1): 1489-1498.