汤嘉雯, 陈金焕, 王凯男, 等. 加拿大一枝黄花生物炭对 Cd²⁺的吸附特性及机理[J]. 农业环境科学学报, 2019, 38(6): 1339-1348. TANG Jia-wen, CHEN Jin-huan, WANG Kai-nan, et al. Characteristics and mechanism of cadmium adsorption by *Solidago canadensis*-derived biochar[J]. *Journal of Agro-Environment Science*, 2019, 38(6): 1339-1348.

加拿大一枝黄花生物炭对Cd²⁺的吸附特性及机理

汤嘉雯1,陈金焕1,王凯男1,张秋卓1,2*

(1.华东师范大学生态与环境科学学院,上海市城市化生态过程与生态恢复重点实验室,上海 200241;2.崇明生态研究院,上海 200062)

摘 要:以外来入侵种加拿大一枝黄花为原料,探究不同成分在不同热解温度下制得的生物炭的基本性质及其对水中Cd²⁺的吸附能力、最优吸附工艺条件和吸附机制,以提高其资源化利用效率。结果表明:以茎叶混合作为原料在450℃下热解制得的加拿大一枝黄花生物炭(SCBC450)对Cd²⁺吸附能力最优。正交结果显示,3种所选因素对生物炭吸附Cd²⁺的影响程度依次为吸附质起始浓度>pH>温度;当pH=6、温度35℃、吸附质起始浓度50 mg·L⁻¹时,Cd²⁺的吸附效率最高,可达(95.6±0.38)%。SCBC450对Cd²⁺的吸附过程符合二级动力学模型,以化学吸附为主,且符合Langmuir等温吸附模型,最大理论吸附量达107.03 mg·g⁻¹。通过对生物炭吸附前后的XPS、FTIR和SEM-EDS分析可知,其对Cd²⁺的吸附机制包括离子交换、络合反应、沉淀作用和物理吸附。因此,加拿大一枝黄花生物炭对Cd²⁺的吸附具有极大的应用潜力。

关键词:加拿大一枝黄花;生物炭;镉;吸附

中图分类号:X705 文献标志码:A 文章编号:1672-2043(2019)06-1339-10 doi:10.11654/jaes.2018-1290

Characteristics and mechanism of cadmium adsorption by Solidago canadensis-derived biochar

TANG Jia-wen¹, CHEN Jin-huan¹, WANG Kai-nan¹, ZHANG Qiu-zhuo^{1,2*}

(1.Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; 2.Institute of Eco-Chongming(IEC), Shanghai 200062, China)

Abstract: *Solidago canadensis* (Canadian goldenrod) is a herbaceous worldwide invasive plant, which spreads rapidly and poses a serious threat to ecological environments in China. In order to improve the management of this highly problematic alien invasive species and enhance resource utilization efficiency, *Solidago canadensis*-derived biochar was prepared in the present study. The basic properties of biochar produced at various pyrolysis temperatures were investigated. The optimum conditions for cadmium adsorption by biochar in aqueous solution were studied systematically through batch adsorption experiments. In addition, the adsorption mechanism was explored. The results showed that the SCBC450, which was the *Solidago canadensis*-derived biochar pyrolyzed at 450 °C by stem-leaf mixture as the raw material, out-performed the other prepared biochar. Three factors were selected for orthogonal experiments, and their influence on the adsorption of Cd²⁺ by biochar were as follows: initial concentration of adsorbate > pH > temperature. The highest adsorption efficiency Cd²⁺ could achieve was(95.6±0.38)% when the initial concentration of adsorbate was 50 mg·L⁻¹ at 35 °C with pH 6. Under these optimal conditions, the adsorption process was better fitted using Langmuir isotherm and pseudo second-order model, which demonstrated that chemical adsorption dominated. The maximum theoretical adsorption capacity could reach 107.03 mg·g⁻¹. The analysis of biochar by XPS, FTIR, and SEM-EDS analyses showed that ion exchange, complexation, precipitation, and physical adsorption were the main mechanisms of Cd²⁺ adsorption by SCBC450. Therefore, the study showed that *Solidago canadensis*-derived biochar has a great potential for cadmium adsorption in water treatment.

Keywords: Solidago canadensis; biochar; cadmium; adsorption

收稿日期:2018-10-15 录用日期:2019-01-23

作者简介:汤嘉雯(1995一),女,浙江绍兴人,硕士研究生,主要研究方向为生物质能源开发利用技术。E-mail: tangjiawen23@163.com

^{*}通信作者:张秋卓 E-mail:qzhzhang@des.ecnu.edu.cn

基金项目:国家重点研发计划项目(2018YFC1901005);崇明生态研究院自由项目(ECNU-IEC-201901);上海市科学技术委员会科研计划项目 (17295810603,17DZ1202804,18295810400)

Project supported: The National Key Research and Development Program of China (2018YFC1901005); Institute of Eco-Chongming (ECNU-IEC-201901); Shanghai Committee of Science and Technology(17295810603, 17DZ1202804, 18295810400)

农业环境科学学报 第38卷第6期

加拿大一枝黄花(Solidago canadensis L.)曾作为 观赏性植物引入我国上海、南京等地区,80年代扩散 蔓延为杂草,至今该物种仍存在进一步蔓延的趋 势^[1]。该外来入侵种使我国原生植物群落丰富性和 多样性大幅降低^[2],并对农田造成了严重的威胁。目 前,人们广泛使用原地焚烧处理、本地物种播种以及 在冬季进行土地治疗等措施控制其生长与蔓延^[3],然 而效果并不显著。并且,以简单焚烧为主的控制措施 还会造成严重的空气污染。

作为一类低成本、高效率的新型吸附材料,生物 炭已成为近年来全世界关注的焦点。目前,已有大量 农业废弃物生产生物炭的研究和应用报道[4-7]。在有 机污染物方面,玉米秸秆生物炭可吸附去除十二烷基 苯磺酸、PAHs、双酚A等化工污染产物^[8-9]。何琦等^[10] 通过比较6种不同挺水植物制得的生物炭对硫丹的 吸附和催化水解效果发现,美人蕉、菖蒲、再力花衍生 制得的生物炭对硫丹具有较优去除效果。在无机污 染物方面,生物炭去除重金属污染的应用较为广泛。 Shen等凹通过静态吸附实验的方法发现,不同温度制 备的水稻秸秆对 Pb²⁺的吸附能力不同,在700 ℃热解 温度下制得的生物炭有利于对Pb污染的修复,最大 吸附效率可达171.34 mg·g⁻¹。Chen等^[12]对浒苔磁性 生物炭进行了溶液中Cr(VI)吸附行为的研究,结果 发现 Cr(Ⅲ) 的去除效率高达 97.71%。Liu 等^[13]利用 废弃椰壳生物炭对多金属污染的土壤进行修复,结果 发现生物炭的添加显著降低了土壤中酸溶性 Cd、Ni 和Zn。Zhang等[14]研究发现由入侵种水葫芦制得的 生物炭对Cd²⁺具有显著的吸附作用,最大吸附容量可 达70.3 mg·g-1。然而同样作为入侵种,加拿大一枝黄 花制备生物炭的报道较少。加拿大一枝黄花富含木 质纤维素,且其分子链上含有大量的羟基、羰基等基 团,对污染物具有一定的吸附去除作用。Zhang等[15] 将加拿大一枝黄花研磨制成干粉,并用其对Cd进行 吸附实验,结果发现加拿大一枝黄花本身对Cd具有 一定的吸附能力。罗来盛等160研究发现,加拿大一枝 黄花可作为优良的活性炭制备前驱体,活性炭的制备 显著提升了其吸附容量,但是成本较高;利用其制备 生物炭,可在保证高吸附率的同时,大幅降低制备成 本。在直接利用加拿大一枝黄花生物炭吸附污染物 方面,Zhang等凹研究表明,加拿大一枝黄花生物炭对 其原料产生的化感物质邻苯二甲酸二甲酯具有良好 的吸附作用,然而在吸附重金属领域较少涉及。

重金属 Cd 因其毒性风险大、污染分布广和不可

降解的特性,已被列为一级致癌物^[18]。利用外来入侵 种加拿大一枝黄花制备生物炭,并用于Cd²⁺的吸附, 不仅可以作为管理入侵植物的一种经济高效的方法, 而且可有效控制水环境中的重金属Cd污染。由于不 同生长时期加拿大一枝黄花的茎叶比例不同,为提高 其资源化利用效率,本研究分别以其茎、茎叶混合物 为原料,以吸附水溶液中的Cd²⁺为目标,优化制备生 物炭的最佳条件,并探索吸附特性和吸附机理,可为 加拿大一枝黄花的高效利用提供一定的科学指导。

1 材料与方法

1.1 生物炭制备与基本理化性质

本实验原料为加拿大一枝黄花(Solidago canadensis L.),采自上海市浦东新区临港新城环滴水湖 河流滨岸带。将加拿大一枝黄花齐根剪下,剔除表面 残留的石子、泥土等杂物,用去离子水清洗干净后,将 其分为两组,一组剔除叶子,以茎秆作为生物炭原料, 后续制得的生物炭标记为SBC;另一组不剔除叶子,以 茎秆和叶子混合作为生物炭原料,后续制得的生物炭 标记为SCBC。风干1周后,经研磨式粉碎机磨粉,过 100目孔径筛后密封备用。采用TGA 热重分析仪 (Pyris 1TGA,美国)对两种原料进行热重曲线的测定。

将两种原料分别称取一定质量样品于瓷坩埚中, 放置于真空管式高温烧结炉(GSL-1600X,中国),持 续通入氮气以充分营造缺氧条件,以10℃・min⁻¹的速 率分别升温至450、500、550℃炭化2h,自然冷却至 室温后取出。分别对不同制备条件下生物炭的基本 性质进行表征:产率和灰分含量参考《木炭和木炭试 验方法》(GB/T 17664—1999);利用元素分析仪 (VARIO MICRO CUBE,德国)测定C、H、N等元素的 含量;pH值测定方法参考文献[19],将0.5g生物炭放 入10 mL去离子水中,振荡30 min,静置10 min,使用 pH计(ALALIS PH400,中国)测定溶液pH;通过傅里 叶红外光谱仪(TENSOR 27,德国)对生物炭表面官能 团进行定性分析;利用X射线衍射仪(Agilent 7890B, 德国)测定生物炭的物相结构和结晶程度。

1.2 加拿大一枝黄花生物炭对Cd²⁺的吸附效果

1.2.1 生物炭的最优制备条件筛选

分别称取 0.5 g不同制备条件下制得的生物炭样 品于 1000 mL烧杯中,添加 500 mL浓度为 50.0 mg·L⁻¹ 的 Cd²⁺溶液,背景电解质为 0.01 mol·L⁻¹的 NaNO₃溶 液。吸附反应于 25 ℃恒温磁力搅拌器上以 150 r・ min⁻¹的转速搅拌完成。自加入时刻起,分别于 0、5、 10、30 min 及1、2、3、4、6、8、10、12、24 h时用一次性无 菌注射器取样,然后过0.45 μm 微孔滤膜,通过原子 吸收光谱仪(ContrAA 700,德国)测定滤液中 Cd²⁺浓 度^[20]。生物炭对 Cd²⁺的吸附量(q)及吸附效率(R)计 算公式如下:

$$q = \frac{\left(C_0 - C_t\right)V}{m} \tag{1}$$

$$R = \frac{(C_0 - C_t)}{C_0} \times 100\%$$
 (2)

式中:V为Cd²⁺溶液体积,L;m为添加生物炭的质量, g; C_0 和 C_i 分别为溶液中Cd²⁺的起始浓度和t时刻浓度,mg·L⁻¹。

1.2.2 生物炭的最优吸附工艺条件筛选

为探究溶液 pH、温度和吸附质浓度对吸附作用 的影响,设置3因素3水平L。(3³)正交试验,分析各因 素的影响效应并筛选最优吸附工艺组合。溶液 pH通 过0.1 mol·L⁻¹NaOH和0.1 mol·L⁻¹HNO₃进行调节。称 取0.1 g最优制备条件下制得的样品于250 mL具塞锥 形瓶中,分别添加100 mL的Cd²⁺溶液,背景电解质为 0.01 mol·L⁻¹的NaNO₃溶液,恒温振荡24 h,测定初始 浓度和吸附后滤液中的Cd²⁺浓度,计算生物炭在不同 工艺组合中对Cd²⁺的吸附效率,筛选吸附效果最优的 工艺组合。正交设计如表1所示。

表1 正交实验设计表

Table 1 Orthogonal experimental design

序号	因素		水平Level	
Number	Factors	1	2	3
А	pH	4	5	6
В	温度/℃	15	25	35
С	Cd ²⁺ 浓度/mg·L ⁻¹	50	100	150

1.2.3 最优条件下生物炭对Cd²⁺的吸附动力学和等温 吸附拟合

称取 0.5 g最优制备条件下制得的生物炭于 1000 mL烧杯中,添加 500 mL浓度为 50.0 mg·L⁻¹的 Cd²⁺溶液,在最优吸附工艺条件下进行吸附反应,分别于 0、 5、10、30 min 及 1、2、3、4、6、8、10、12、24 h时取样,测定 滤液中 Cd²⁺浓度,并分别利用一级动力学方程和二级 动力学方程对 Cd²⁺动力学吸附实验结果进行拟合,以 描述加拿大一枝黄花生物炭吸附 Cd²⁺的动力学过程。

一级动力学模型:
$$q_i = q_e(1 - e^{-K_1 t})$$
 (3)

二级动力学模型:
$$\frac{t}{q_t} = \frac{1}{K_2}q_e^2 + \frac{t}{q_e}$$
 (4)

式中:t为时间,min; q_t 为t时刻吸附量,mg·g⁻¹; q_e 为吸 附剂平衡吸附量,mg·g⁻¹; K_1 为一级动力学吸附速率 常数,min⁻¹; K_2 为二级动力学吸附速率常数,g·mg⁻¹· min⁻¹。

称取 0.5 g最优制备条件下制得的生物炭样品于 1000 mL烧杯中,分别添加 500 mL浓度为 5.0、10.0、 50.0、80.0、100.0、150.0、200.0 mg·L⁻¹的 Cd²⁺溶液,于 最优吸附工艺条件下吸附 24 h 后取样,测定滤液中 Cd²⁺浓度。根据测定 Cd²⁺初始浓度和平衡浓度计算生 物炭对 Cd²⁺的吸附量,并代入等温吸附模型方程进行 拟合。

Langmuir吸附模型:

$$q_e = q_{\max} \frac{K_{\rm L} \rho_e}{1 + K_{\rm L} \rho_e} \tag{5}$$

$$R_{\rm L} = \frac{1}{1 + K_{\rm L}C_0} \tag{6}$$

式中: q_e 为吸附剂平衡吸附量,mg·g⁻¹; ρ_e 为吸附质平 衡质量浓度,即溶液中残余吸附质的质量浓度,mg· L⁻¹; q_{max} 为最大理论吸附容量,mg·g⁻¹; K_L 为吸附平衡 常数, K_L 值越大,表明吸附剂的吸附性能越强。该模 型的基本假设是:吸附剂表面只发生单分子层吸附, 表面是均匀的,且被吸附的分子之间相互独立。 R_L 为 分离因子,可以对吸附剂有效吸附污染物的能力进行 判断^[21],0< R_L <1,吸附过程为有利吸附; R_L =1,吸附过 程为不利吸附; R_L =1,吸附过程为线性吸附; R_L =0,吸 附过程为不可逆吸附。

Freundlich吸附模型:

 $q_{\rm e} = K_{\rm F} \rho_{\rm e}^{1/n} \tag{7}$

式中:K_F为吸附平衡常数,mg^{1-1/n}·L^{1/n}·g⁻¹;1/n为浓度对 吸附量的影响程度。Freundlich吸附模型适于描述非 均匀表面发生的多层吸附过程,其特点是没有饱和吸 附值。

1.3 加拿大一枝黄花生物炭对Cd²⁺的吸附机制

为探究加拿大一枝黄花生物炭对 Cd²⁺的吸附机 制,对样品吸附前后的形貌和结构特性进行表征:利 用X射线光电子能谱仪(Thermo ESCALAB 250 XI,英 国)对生物炭表面化学特性进行全谱扫描以及 C、O、 Cd元素的精细谱扫描,测定数据采用 XPS PEAK4.1 进行谱图分析;利用傅里叶红外光谱仪(TENSOR 27, 德国),采用 KBr 压片法,测定生物炭的 FTIR 图谱,表 征其吸附前后表面官能团的变化情况;利用扫描电子 显微镜(SU8100,日本)对 Cd 吸附前后的生物炭进行 形貌表征,并对吸附颗粒进行 EDS 能谱测定。

1.4 数据统计分析

所有实验均进行3次重复,取平均值作为最终结果。使用 Microsoft Excel 2016 软件进行数据的计算和处理;利用 Origin 9.1 软件进行作图分析;利用 SPSS 23.0 对数据进行方差分析, P<0.05 表示有显著 差异。

2 结果与讨论

2.1 加拿大一枝黄花生物炭的基本性质

两种不同原料加拿大一枝黄花在450、500、 550℃下热解制得的生物炭的基本理化性质如表2所 示。随着热解温度的升高,生物炭产率逐渐减少, SCBC的产率均高于SBC,与原料热重分析结果一致。 加拿大一枝黄花热解过程可以分为失水、热解及炭化 3个阶段,两种原料均在400℃后进入炭化阶段,该阶 段制得的生物炭基本稳定。两种原料相比较,茎叶混 合组在热解阶段质量损失率较低,这与原料中木质纤 维的含量以及叶中Ca、Mg等矿质元素对热解过程具 有的催化作用有关[22]。此外,热解时发生了脱水、脱 羧等反应,析出了大量的H2O、CO2、CO和CH4等,从而 导致在热解过程中,SBC和SCBC的C含量逐渐增加, H、O含量逐渐减少。SBC和SCBC均在500℃时具有 最小的O/C值,表明该温度下制得的生物炭具有较低 的极性和亲水性^[23],不利于污染物的吸附。H/C可表 征生物炭的芳香性,随着热解温度的升高,H/C值降 低,生物炭芳香性增强,结构更加稳定。

两种不同原料生物炭相比较,SBC的C含量相对 较高,稳定性较好,适用于土壤固碳;而SCBC的O含 量相对较高,含氧官能团丰富,利于与重金属离子反 应,发生吸附。此外,SCBC的N含量高于SBC,且热 解后制得的生物炭中的N含量均高于原料中的N含 量,说明在生物炭制备的热解过程中存在一定的固氮 作用,且N元素的存在又可作为氨基等相关配位原 子[24],增强了对金属离子的配位吸附作用。

6种生物炭的FTIR图如图1a所示。可以看出, 生物炭表面均含有一定数量的表面官能团,且种类大 致相同。3400 cm⁻¹处较宽的羟基吸收峰、1590 cm⁻¹ 和1394 cm⁻¹处的羧基伸缩振动峰以及在875 cm⁻¹和 694 cm⁻¹处 CO²₃ 的伸缩振动峰均明显存在于6种生 物炭中,且随着热解温度的升高,峰强逐渐减弱。相 较于SBC而言,SCBC在1049 cm⁻¹处存在明显的P-O 键伸缩振动,这与加拿大一枝黄花叶片中含有较高含 量的磷有关。

农业环境科学学报 第38卷第6期

图 1b 为生物炭的 XRD 谱图。由图可以看出,6种 生物炭中均富含 KCl 组分,并且检测到少量的 CaCO₃, 与植物基生物炭的物相组成一致^[25]。随着热解温度 的升高,加拿大一枝黄花生物炭在 2*θ*=25°处逐渐凸显 出较宽的石墨结构(002)面的衍射峰,说明生物炭中 存在不规则石墨结构的微晶,但石墨化程度较低,呈 无定型碳结构。

2.2 加拿大一枝黄花生物炭对Cd²⁺的吸附

2.2.1 生物炭的最优制备条件

图 2 为不同制备条件下制得的生物炭对 Cd²⁺的 吸附效果。不同生物炭对 Cd²⁺的吸附过程相似,在最 初的 60 min 内,生物炭对 Cd²⁺的吸附量快速增加,300 min 后基本达到吸附平衡。24 h后,6种生物炭吸附量 大小顺序为:SCBC450>SCBC550>SCBC500>SBC550> SBC450>SBC500,SCBC450 的吸附效果最佳,吸附量 可达 42.39 mg·g⁻¹,SCBC550 次之,为 41.32 mg·g⁻¹。 SCBC和 SBC 两种加拿大一枝黄花生物炭对 Cd²⁺的吸 附效果存在较大的差异,3 个温度下煅烧制得的 SCBC 对 Cd²⁺的吸附量均明显大于 SBC,这可能依赖 于 SCBC 中 N、O 含量较高,官能团含量丰富,表面残 余矿质元素多,有利于与 Cd²⁺发生吸附反应,降低溶 液中游离态 Cd²⁺。因此,建议选择在每年 10 月花期 前对加拿大一枝黄花进行全面清除,一方面此时的加

表2 加拿大一枝黄花生物炭的基本性质

Table 2	Basic	properties	of	prepared	biochar
---------	-------	------------	----	----------	---------

吸附剂 炭化温度		产率	元素组成Elemental composition/%				0/0	灰分				
Adsorbent	Temperature/ $^{\circ}$ C	Productivity/%	С	Н	0	Ν	S	IN/C	п/С	0/6	Ash content/%	рп
SBC450	450	31.68	63.54	3.76	31.65	0.95	0.10	0.015	0.059	0.498	31.85	11.74
SBC500	500	29.81	70.87	3.22	24.93	0.86	0.12	0.012	0.045	0.352	17.39	11.40
SBC550	550	29.01	65.99	2.89	30.19	0.83	0.11	0.013	0.044	0.457	30.85	12.08
SCBC450	450	34.81	56.14	3.89	37.72	1.90	0.35	0.034	0.069	0.672	33.80	11.91
SCBC500	500	32.37	58.59	3.69	35.68	1.89	0.15	0.032	0.063	0.609	32.64	11.94
SCBC550	550	30.92	55.45	3.26	39.08	1.92	0.29	0.035	0.059	0.705	39.06	12.47

derived biochar

拿大一枝黄花生物量大、茎叶比高,有利于高效率生物炭吸附剂的制备,另一方面有助于防止加拿大一枝 黄花开花后种子的传播。

2.2.2 生物炭的最优吸附工艺条件

已有大量研究表明,溶液pH、温度和吸附质起始浓度均对生物炭吸附金属效果存在一定的影响,因此选择这3种因素对Cd²⁺吸附效果进行正交实验,结果如表3所示。由表可知,随着pH的升高,SCBC450对

Cd²⁺的吸附效率逐渐增加。pH通常可通过改变生物 炭表面的电荷密度和金属离子的存在形式,进而影响 吸附作用^[26]。溶液温度对 SCBC450 吸附 Cd²⁺的吸附 效率影响不显著(P=0.885>0.05)。对于吸附质起始 浓度而言,随着其增加,SCBC450 对 Cd²⁺的吸附量增 加,且影响效果显著(P=0.011<0.05)。研究发现,起 始浓度的增大直接增加了单位体积内生物炭和金属 离子的接触吸附量,进而提高了对重金属的吸附量; 然而随着起始浓度的增大,吸附效率却逐渐降低,这 与 Pellera 等^[27]的研究结果相似。

根据吸附效率进行最优工艺组合筛选可知,所选 3种因素对SCBC450吸附Cd²⁺的影响程度由大到小分 别为吸附质起始浓度>pH>温度,Cd²⁺吸附最优工艺组 合为pH6、温度35℃、吸附质起始浓度50 mg·L⁻¹,此 时Cd²⁺的平均吸附效率可达(95.6±0.38)%。 2.2.3 吸附动力学和等温吸附拟合

为了更好地评估吸附时的控速步骤及吸附机理, 分别利用一级动力学和二级动力学对SCBC450在最 优吸附工艺条件下吸附Cd²⁺的结果进行拟合,拟合参 数如表4所示。由表可知,SCBC450能较好地符合一 级动力学模型和二级动力学模型,其中二级动力学方 程拟合系数更优(*R*²=0.999 9),且得到的*q*。更接近实 验真实值。结果表明,加拿大一枝黄花生物炭对Cd²⁺

表3 Cd²⁺吸附的最优工艺条件 Table 3 Optimal process for Cd²⁺ adsorption

序号 Number	рН	温度 Temperature/ ℃	起始浓度 Initial concentration/ mg·L ⁻¹	吸附效率 <i>R</i> Adsorption efficiency/%			
1	4	15	50	91.18±1.43			
2	4	25	100	77.77±0.36			
3	4	35	150	73.11±0.01			
4	5	15	100	79.34±1.60			
5	5	25	150	81.46±0.57			
6	5	35	50	94.66±0.11			
7	6	15	150	85.33±0.56			
8	6	25	50	95.18±0.48			
9	6	35	100	90.03±0.05			
K_1	80.69	85.28	93.67				
K_2	85.15	84.80	82.38				
K_3	90.18	85.93	79.97				
极差	9.49	1.13	13.71				
主次顺序		起始浓度>pH>温度					
最优组合		pH为6,温度	为35℃,起始浓度为5	$50 \text{ mg} \cdot \text{L}^{-1}$			

注:K表示各因素同一水平下的平均值。

Note: K represented the mean value of each factor at the same level.

的吸附作用以化学吸附为主,与Kim等^[28]利用芒草制得的生物炭吸附Cd的结果一致。

为进一步探究加拿大一枝黄花生物炭对 Cd²⁺的 吸附作用,用等温吸附曲线对吸附效果最佳的 SCBC450进行拟合,拟合曲线如图 3 所示,拟合参数 如表 5 所示。由表可知,Langmuir 模型(R^2 =0.996 8) 对 SCBC450 吸附 Cd²⁺的吸附等温线拟合优于 Freundlich 模型(R^2 =0.882 5),表明 SCBC450 对 Cd²⁺的吸附 过程为单层均相吸附。且 0< R_L <1,表明 SCBC450 对 Cd²⁺ 具有有效的吸附能力。由拟合参数得到, SCBC450最大理论吸附容量为 107.03 mg·g⁻¹。

2.3 加拿大一枝黄花生物炭对Cd²⁺的吸附机制探究

分析加拿大一枝黄花生物炭 SCBC450 吸附 Cd2+ 前后的XPS图谱(图4a)可知,SCBC450吸附前后具有 相似的峰形结构,其元素组成主要有C、O、K、Ca,该 结果与XRD基本物相分析结果一致。吸附后 SCBC450的全谱扫描谱图在405.0 eV附近出现了明 显清晰的 Cd 3d 的特征 双峰,表明 Cd²⁺被吸附到 SCBC450上;同时可以发现,吸附后 Ca 2p 和 K 2p3/2的 峰强有所减弱,甚至消失,推测SCBC450可通过与 K⁺、Ca²⁺发生离子交换吸附Cd²⁺。Chen等^[29]通过对莲 蓬生物炭吸附Cd²⁺前后进行表征发现,生物炭中K元 素的分布和Cd元素的分布存在特殊的相关关系,研 究表明Cd²⁺/K⁺离子交换在热力学上是有利的,且KCl 矿物质有助于Cd的吸附和CdCO3的形成^[30]。如图4b 所示,通过对Cd的精细谱分析发现,Cd 3d存在两种 不同的化学位移,404.4 eV和405 eV处为Cd 3ds12的 特征峰,411.7 eV处对应为Cd 3d32的特征峰。Cd 3d52 可通过沉淀和络合作用与表面官能团形成Cd-R键, 主要以Cd(OH)2和CdO的形式存在[31]。结合对C、O 元素谱图综合分析,推测生物炭表面大部分通过羟 基、羰基与Cd²⁺发生化学反应而完成吸附。

为验证生物炭表面官能团的吸附机制,通过傅里 叶红外光谱仪对 SCBC450 表面官能团变化进行分 析,结果表明,吸附前后官能团峰的特征均发生了一 定变化,主要表现在波数、振幅、峰强以及波峰宽度方 面(图4c)。在3400 cm⁻¹处附近为羟基(-OH)伸缩振 动峰与氨基(N-H)伸缩振动峰的叠加,在750 cm⁻¹处 为N-H面外弯曲振动峰,吸附Cd²⁺后波峰向左迁移, 这可能和Cd²⁺与羟基、氨基在表面发生络合吸附作用 有关,与XPS分析结果一致。在1590 cm⁻¹处为羧酸 盐(-COO⁻)反对称伸缩峰,吸附后波数增大、峰强增 大, 羧基易于与金属离子形成络合物而参与吸附反 应^[32]。1049 cm⁻¹附近为磷酸根(PO³⁻)的不对称伸缩 振动峰,吸附后红外光谱图P-O的峰减弱,推断重金 属离子与生物炭表面的PO³⁻发生了共沉淀。夏广洁 等^[3]通过 FTIR 和 XRD 分析研究证明了生物炭在对 Cd^{2+} 的吸附过程中会生成少量的 $Cd_3(PO_4)_2$,与本研究 相一致。此外,结合-COO⁻、C-O以及875 cm⁻¹处出现 的CO3-面外变形振动峰分析可知,吸附后吸收峰减 弱,推测可能与Cd²⁺和碳酸盐类反应生成CdCO₃沉淀 有关[34]。经SCBC450吸附后的SEM-EDS图分析发现

表4 SCBC450对Cd ²⁺ 的吸附动力学方程参数	
--	--

```
Table 4 Kinetic parameters for the adsorption of Cd<sup>2+</sup> on SCBC450
```

一级动力学Pseudo first-order adsorption kinetics			二级动力学	Pseudo second–order adsorption kir	netics
$q_e/{ m mg} \cdot { m g}^{-1}$	K_1/\min^{-1}	R^2	$q_{ m e}/{ m mg} \cdot { m g}^{-1}$	$K_2/g \cdot mg^{-1} \cdot min^{-1}$	R^2
48.431 4	0.325 2	0.995 8	47.436 2	0.000 6	0.999 9

表5 SCBC450对Cd²⁺的吸附等温线参数

Table 5 Parameters for the adsorption isotherms of Cd2+ on SCBC450

Langmuir					Freundlich	
$q_{ m max}/ m mg{f \cdot}g^{-1}$	$K_{\rm L}/{ m L} \cdot { m mg}^{-1}$	R^2	$R_{ m L}$	$K_{\mathrm{F}}/\mathrm{mg}^{1/n} \cdot \mathrm{L}^{n} \cdot \mathrm{g}^{-1}$	1/n	R^2
107.03	0.095 1	0.996 8	0.259 5~0.954 6	10.351 4	0.535 0	0.882 5

波数 Wavenumber/cm⁻¹

e. 生物炭吸附后的 SEM 图(×10 000)

f. 生物炭吸附后的EDS分析

元素 Elements	质量百分比Wt/%	原子百分比Atomic/%
СК	78.98	85.42
O K	16.47	13.37
Mg K	0.27	0.14
Al K	0.39	0.19
Si K	0.26	0.12
РК	0.39	0.16
Cd L	2.22	0.26
Ca K	1.02	0.33

注:K、L表示元素的X射线特征线条。

Note: K and L represented the characteristic X-ray spectrum of the analyzed elements.

图4 加拿大一枝黄花生物炭吸附Cd²⁺前后的表征

Figure 4 Characterization of Solidago canadensis-derived biochar before and after Cd2+ adsorption

(图4e),生物炭表面有明显的晶体颗粒存在,经EDS 点谱分析可知该颗粒中含有Cd、P、C、O等元素,表明 Cd²⁺可通过形成Cd₃(PO₄)₂或CdCO₃沉淀而被吸附于 表面。此外,对比分析吸附前后的SEM图发现,吸附 前SCBC450表面光滑(图4d),带有孔隙结构,该结构 有利于金属离子进入生物炭的孔隙中,起到表面物理 吸附的辅助作用。

不同原料和不同制备方式生产的炭材料对 Cd²⁺ 的吸附能力通常不同。对比表6中不同农业废弃物 来源的生物炭吸附剂对 Cd²⁺的吸附性能可见,加拿大 一枝黄花生物炭对 Cd²⁺的理论吸附量最大,主要归因 于其表面丰富的含氧官能团和矿物成分。对比核桃 壳生物炭^[39],加拿大一枝黄花生物炭作为植物基生物 炭含有大量的灰分含量,包括KCl、CaCO₃等矿物成 分,有利于促进Cd²⁺的吸附,这与汪玉瑛等^[40]对不同 来源生物炭吸附水溶液中Cd²⁺的结果分析一致。并 且,加拿大一枝黄花的茎叶成分复杂,富含酚类、萜 类以及黄铜类化合物^[41-42],低温炭化后生物炭表面 仍存在大量的羟基、内酯和羰基,有助于与金属发生 络合作用,从而起到对溶液中金属的去除作用。对 比KOH微波活化制得的加拿大一枝黄花活性炭^[16], 本实验制得的加拿大一枝黄花生物炭对Cd²⁺的吸附

Table 6 Adsorption capacities of Cd ²⁺ by different agricultural wastes derived-adsorbents							
吸附剂 Adsorbents	吸附质初始浓度 C₀/mg·L ⁻¹	最大理论吸附量 q _{max} /mg·g ⁻¹	吸附机制 Adsorption mechanism	数据来源 Data sources			
加拿大一枝黄花生物炭	0~200	107.03	离子交换、络合反应、沉淀、表面吸附	本实验			
加拿大一枝黄花活性炭	0~50	27.91	表面吸附	[16]			
水稻秸秆生物炭	10~550	70.62	化学吸附	[35]			
小麦秸秆生物炭	10~500	17.38	静电作用、络合反应	[36]			
蘑菇基生物质	20~300	71.49	静电作用、络合反应、沉淀	[37]			
桉树叶生物炭	10~250	94.32	静电作用、络合反应	[38]			
莲蓬壳生物炭	0~100	51.18	离子交换、静电作用、络合反应、沉淀	[29]			
核桃壳生物炭	100~500	28.41	离子交换、络合反应、静电作用、表面吸附	[39]			

表6 不同农业废弃物吸附剂对Cd²⁺的吸附性能对比

能力明显更优。利用 KOH 微波活化有利于获得更高的比表面积,但是 KOH 作为强碱,易溶去吸附剂中的酸、碱等可溶性物质,破坏生物炭表面起主要化学吸附作用的含氧官能团,削减了吸附效率。此外, KOH 腐蚀性极大,存在二次污染现象,且生产成本较高,不利于可持续发展。因此,作为一种具有较大应用潜能的 Cd²⁺吸附剂,加拿大一枝黄花生物炭有望替代活性炭。

综上所述,加拿大一枝黄花生物炭对金属的吸附 不仅与表面结构相关,而且与其表面官能团、矿物成 分也相关。加拿大一枝黄花生物炭对 Cd²⁺的吸附机 制如图 5 所示:(a) Cd²⁺与生物炭表面的可溶性 K⁺、 Ca²⁺等发生离子交换反应,从而使得 Cd²⁺吸附于表面; (b) Cd²⁺与羟基、羧基、氨基通过配位络合作用发生表 面吸附;(c) Cd²⁺与生物炭表面的可溶性 OH⁻、PO₄²⁻及 CO²⁺结合形成重金属类盐沉淀物,并固定于表面; (d)Cd²⁺与生物炭表面孔隙结构发生物理吸附,起到 辅助作用。

3 结论

(1)原料和热解温度是影响生物炭基本性质的关键因素。随着炭化温度的升高,加拿大一枝黄花生物炭产率逐渐降低,灰分含量升高,pH碱性增强,芳香性增强;以茎叶混合作为原料制得的生物炭的产率和N、O含量均明显高于以纯茎秆作为原料制得的生物炭,且表面富含含氧官能团以及KCl、CaCO3等组分,石墨化程度较低。

(2)比较不同加拿大一枝黄花生物炭对 Cd²⁺吸附 的实验发现,在450 ℃下以茎叶混合作为原料热解制 得的加拿大一枝黄花生物炭对 Cd²⁺吸附能力最佳。

图 5 SCBC450对Cd²⁺吸附机理图 Figure 5 SCBC450 adsorption mechanism for Cd²⁺

通过最优解下加拿大一枝黄花生物炭对Cd²⁺的吸附 工艺筛选可知,单因素对SCBC450吸附Cd²⁺的影响程 度由大到小为吸附质起始浓度>pH>温度,最优工艺 组合为pH=6、温度35℃、吸附质起始浓度50 mg·L⁻¹, 此时对Cd²⁺的吸附效率可达(95.6±0.38)%。在最优 吸附工艺条件下,SCBC450对Cd²⁺的吸附过程符合二 级动力学方程,以化学吸附为主;且符合Langmuir等 温吸附模型,最大理论吸附量可达107.03 mg·g⁻¹,具 有极大的应用潜能。

(3)通过对加拿大一枝黄花生物炭吸附 Cd²⁺前后 的 XPS、FTIR 和 SEM-EDS 分析可知,其吸附机制为表 层吸附,主要通过 Cd²⁺与生物炭表面可溶性金属离子 K⁺、Ca²⁺等发生交换反应,与可溶性 OH⁻、PO₄⁻及 CO₂²⁻ 发生沉淀反应,与表面羟基、羧基、氨基等发生络合反 应以及物理吸附作用达到金属离子的去除效果。

参考文献:

- Wang C Y, Jiang K, Liu J, et al. Moderate and heavy Solidago canadensis L. invasion are associated with decreased taxonomic diversity but increased functional diversity of plant communities in East China[J]. Ecological Engineering, 2018, 112:55–64.
- [2] Dong L J, Yu H W, He W M. What determines positive, neutral, and negative impacts of *Solidago canadensis* invasion on native plant species richness?[J]. *Scientific Reports*, 2015, 17:16804.
- [3] Dodson E K, Fiedler C E. Impacts of restoration treatments on alien plant invasion in *Pinus ponderosa* forests, Montana, USA[J]. *Journal of Applied Ecology*, 2010, 43(5):887–897.
- [4] Qambrani N A, Rahman M M, Won S, et al. Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review[J]. *Renewable & Sustainable Energy Reviews*, 2017, 79:255–273.
- [5] Wei D N, Li B Y, Huang H L, et al. Biochar-based functional materials in the purification of agricultural wastewater: Fabrication, application and future research needs[J]. *Chemosphere*, 2018, 197:165–180.
- [6] Xu R K, Xiao S C, Yuan J H, et al. Adsorption of methyl violet from aqueous solutions by the biochars derived from crop residues[J]. *Biore*source Technology, 2011, 102(22):10293-10298.
- [7] Oliveira F R, Patel A K, Jaisi D P, et al. Environmental application of biochar: Current status and perspectives[J]. *Bioresource Technology*, 2017, 246:110-122.
- [8] Zhao N, Yang X X, Zhang J, et al. Adsorption mechanisms of dodecylbenzene sulfonic acid by corn straw and poplar leaf biochars[J]. *Materials*, 2017, 10(10):1119.
- [9] 黄 华, 王雅雄, 唐景春, 等. 不同烧制温度下玉米秸秆生物炭的性质及对萘的吸附性能[J]. 环境科学, 2014, 35(5):1884-1890.
 HUANG Hua, WANG Ya-xiong, TANG Jing-chun, et al. Properties of maize stalk biochar produced under different pyrolysis temperatures and its sorption capability to naphthalene[J]. *Environmental Science*,

2014, 35(5):1884-1890.

- [10]何 琦,曹凤梅,卢少勇,等.挺水植物生物炭对硫丹的吸附及催 化水解作用[J].中国环境科学,2018,38(3):1126-1132.
 HE Qi, CAO Feng-mei, LU Shao-yong, et al. Adsorption and catalytic hydrolysis of endosulfan on biochars derived from emergent plants
 [J]. China Environmental Science, 2018, 38(3):1126-1132.
- [11] Shen Z T, Hou D Y, Jin F, et al. Effect of production temperature on lead removal mechanisms by rice straw biochars[J]. Science of the Total Environment, 2019, 655(10):751-758.
- [12] Chen Y Y, Wang B Y, Xin J, et al. Adsorption behavior and mechanism of Cr(VI) by modified biochar derived from *Enteromorpha prolifera*[J]. *Ecotoxicology and Environmental Safety*, 2018, 164 (30) : 440-447.
- [13] Liu H K, Xu F, Xie Y L, et al. Effect of modified coconut shell biochar on availability of heavy metals and biochemical characteristics of soil in multiple heavy metals contaminated soil[J]. Science of the Total Environment, 2018, 654(15):702–709.
- [14] Zhang F, Wang X, Yin D X, et al. Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (*Eichornia crassipes*) [J]. Journal of Environmental Management, 2015, 153(15):68–73.
- [15] Zhang J W, Bi F Z, Wang Q J, et al. Characteristics and influencing factors of cadmium biosorption by the stem powder of the invasive plant species *Solidago Canadensis*[J]. *Ecological Engineering*, 2018, 121(1):12-18.
- [16] 罗来盛, 周美华. 微波活化制备加拿大一枝黄花活性炭及对 Cd(Ⅱ) 的吸附[J]. 环境工程学报, 2012, 6(5):1543-1547. LUO Lai-sheng, ZHOU Mei-hua. Adsorption of Cd(Ⅱ) ions onto activated carbon prepared from *Solidago canadensis* by means of microwave activated[J]. *Chinese Journal of Environmental Engineering*, 2012, 6(5):1543-1547.
- [17] Zhang Z C, Chen L X, Wang J, et al. Biochar preparation from Solidago canadensis and its alleviation of the inhibition of tomato seed germination by allelochemicals[J]. Rsc Advances, 2018, 8 (40) : 22370– 22375.
- [18] Goswami R, Shim J, Deka S, et al. Characterization of cadmium removal from aqueous solution by biochar produced from *Ipomoea fistulosa*, at different pyrolytic temperatures[J]. *Ecological Engineering*, 2016, 97:444-451.
- [19] 仇 祯, 周欣彤, 韩 卉, 等. 互花米草生物炭的理化特性及其对 镉的吸附效应[J]. 农业环境科学学报, 2018, 37(1):172-178. QIU Zhen, ZHOU Xin-tong, HAN Hui, et al. Properties of Spartina alterniflora Loisel. derived-biochar and its effect on cadmium adsorption[J]. Journal of Agro-Environment Science, 2018, 37(1):172-178.
- [20] Zhou Q W, Liao B H, Lin L, et al. Adsorption of Cu (II) and Cd (II) from aqueous solutions by ferromanganese binary oxide-biochar composites[J]. Science of the Total Environment, 2017, 615(15):115-122.
- [21] Zhao Y F, Zhang B, Zhang X, et al. Preparation of highly ordered cubic NaA zeolite from halloysite mineral for adsorption of ammonium ions[J]. *Journal of Hazardous Materials*, 2010, 178(1):658–664.
- [22] 顾博文, 曹心德, 赵 玲, 等. 生物质内源矿物对热解过程及生物

炭稳定性的影响[J]. 农业环境科学学报, 2017, 36(3):591-597. GU Bo-wen, CAO Xin-de, ZHAO Ling, et al. Influence of inherent minerals on biomass pyrolysis and carbon stability in biochar[J]. *Journal of Agro-Environment Science*, 2017, 36(3):591-597.

- [23] Jung K W, Kim K, Jeong T U, et al. Influence of pyrolysis temperature on characteristics and phosphate adsorption capability of biochar derived from waste-marine macroalgae (*Undaria pinnatifida*, roots) [J]. *Bioresource Technology*, 2016, 200:1024-1028.
- [24] Inyang M, Gao B, Yao Y, et al. Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass[J]. *Bioresource Technology*, 2012, 110(2):50-56.
- [25] Deng Y Y, Huang S, David A L, et al. Quantitative mechanisms of cadmium adsorption on rice straw and swine manure-derived biochars
 [J]. Environmental Science and Pollution Research, 2018, 25 (1): 32418-32432.
- [26] Chen T, Zhou Z Y, Han R, et al. Adsorption of cadmium by biochar derived from municipal sewage sludge: Impact factors and adsorption mechanism[J]. *Chemosphere*, 2015, 134:286–293.
- [27] Pellera F M, Giannis A, Kalderis D, et al. Adsorption of Cu (II) ions from aqueous solutions on biochars prepared from agricultural by – products[J]. *Journal of Environmental Management*, 2012, 96(1):35– 42.
- [28] Kim W K, Shim T, Kim Y S, et al. Characterization of cadmium removal from aqueous solution by biochar produced from a giant *Miscanthus* at different pyrolytic temperatures[J]. *Bioresource Technology*, 2013, 138(2):266-270.
- [29] Chen Z, Liu T, Tang J J, et al. Characteristics and mechanisms of cadmium adsorption from aqueous solution using lotus seedpod-derived biochar at two pyrolytic temperatures[J]. *Environmental Science and Pollution Research*, 2018, 25(12):11854–11866.
- [30] Tan G C, Xu N, Xu Y, et al. Sorption of mercury (II) and atrazine by biochar, modified biochars and biochar based activated carbon in aqueous solution[J]. *Bioresource Technology*, 2016, 211:727-735.
- [31] Liang J, Li X M, Yu Z G, et al. Amorphous MnO₂ modified biochar derived from aerobically composted swine manure for adsorption of Pb(II) and Cd (II) [J]. ACS Sustainable Chemistry & Engineering, 2017, 5 (6):5049–5058.
- [32] Zhou L, Liu Y G, Liu S B, et al. Investigation of the adsorption-reduction mechanisms of hexavalent chromium by ramie biochars of different pyrolytic temperatures[J]. *Bioresource Technology*, 2016, 218: 351-359.
- [33] 夏广洁,宋 萍,邱宇平.牛粪源和木源生物炭对 Pb(Ⅱ)和 Cd(Ⅱ)
 的吸附机理研究[J]. 农业环境科学学报, 2014, 33(3):569-575.
 XIA Guang-jie, SONG Ping, QIU Yu-ping. Sorption of Pb(Ⅱ) and

Cd(II) by manure-and wood-derived biochars[J]. Journal of Agro-Environment Science, 2014, 33(3):569-575.

- [34] Xu X Y, Cao X D, Zhao L, et al. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar[J]. *Environmental Science & Pollution Research*, 2013, 20(1):358-368.
- [35] Zhang H Y, Yue X P, Li F, et al. Preparation of rice straw-derived biochar for efficient cadmium removal by modification of oxygen-containing functional groups[J]. Science of the Total Environment, 2018, 631/632(1):795-802.
- [36] 马锋锋, 赵保卫, 刁静茹.小麦秸秆生物炭对水中Cd²⁺的吸附特性研究[J]. 中国环境科学, 2017, 37(2):551–559.
 MA Feng-feng, ZHAO Bao-wei, DIAO Jing-ru. Adsorptive characteristics of cadmium onto biochar produced from pyrolysis of wheat straw in aqueous solution[J]. *China Environmental Science*, 2017, 37(2): 551–559.
- [37] Xian Y, Wu J, Yang G, et al. Adsorption characteristics of Cd (II) in aqueous solutions using spent mushroom substrate biochars produced at different pyrolysis temperatures[J]. *Rsc Advances*, 2018, 8:28002– 28012.
- [38] 郜礼阳, 邓金环, 唐国强, 等. 不同温度桉树叶生物炭对 Cd²⁺的吸 附特性及机制[J]. 中国环境科学, 2018, 38(3):1001-1009. GAO Li-yang, DENG Jin-huan, TANG Guo-qiang, et al. Adsorption characteristics and mechanism of Cd²⁺on biochar with different pyrolysis temperatures produced from eucalyptus leaves[J]. *China Environmental Science*, 2018, 38(3):1001-1009.
- [39] 王立果, 钟金魁, 赵保卫, 等.水中镉和花在核桃壳生物炭上的吸附行为及其交互作用[J].农业环境科学学报, 2017, 36(9):1868-1876.

WANG Li-guo, ZHONG Jin-kui, ZHAO Bao-wei, et al. Adsorption and interaction of Cd(II) and pyrene in water on walnut shell biochar [J]. Journal of Agro-Environment Science, 2017, 36(9):1868-1876.

- [40] 汪玉瑛, 计海洋, 吕豪豪, 等. 羊栖菜生物炭对镉污染土壤性质及 镉形态的影响[J]. 农业环境科学学报, 2018, 37(6):1132-1140. WANG Yu-ying, JI Hai-yang, LÜ Hao-hao, et al. Effects of biochar derived from Sargassum fusiforme on the properties and cadmium forms of cadmium-contaminated soil[J]. Journal of Agro-Environment Science, 2018, 37(6):1132-1140.
- [41] Radusiene J, Marska M, Ivanauskas L, et al. Assessment of phenolic compound accumulation in two widespread goldenrods[J]. *Industrial Crops and Products*, 2015, 63:158–166.
- [42] Deng Y, Zhao Y Y, Olga P Z, et al. Polyphenols, antioxidant and antimicrobial activities of leaf and bark extracts of *Solidago canadensis* L.
 [J]. *Industrial Crops and Products*, 2015, 74(15):803–809.