

中文核公期刊/CSCD

请通过网上投稿系统投稿 网址:http://www.aes.org.cn

不同土壤镉提取方法预测稻米富集镉性能评估

鄂倩,赵玉杰,刘潇威,李志涛,张闯闯,孙杨,周其文,梁学峰,王海华

引用本文:

鄂倩, 赵玉杰, 刘潇威, 等. 不同土壤镉提取方法预测稻米富集镉性能评估[J]. 农业环境科学学报, 2020, 39(5): 1000-1009.

在线阅读 View online: https://doi.org/10.11654/jaes.2020-0256

您可能感兴趣的其他文章

Articles you may be interested in

基于梯度扩散薄膜技术评估稻田土壤中镉的生物有效性

刘小莲, 杜平, 陈娟, 任杰, 刘继东, 韩雷, 吴明红 农业环境科学学报. 2017, 36(12): 2429-2437 https://doi.org/10.11654/jaes.2017-0829

土壤和茎基部镉含量对稻米镉污染风险的影响

黄永春,张长波,任兴华,王培培,王常荣,刘仲齐 农业环境科学学报. 2020, 39(5): 989-999 https://doi.org/10.11654/jaes.2020-0294

DGT和化学提取法评价贵州赫章土法炼锌区污染土壤中镉的植物吸收有效性

高慧, 宋静, 吕明超, 张厦, 张强, 刘灵飞, 龙健 农业环境科学学报. 2017, 36(10): 1992-1999 https://doi.org/10.11654/jaes.2017-0473

基于Cubist多元混合回归的稻米富集Cd模型构建研究

刘佳凤,田娜娜,赵玉杰,周其文,刘潇威,袁旭,郭新蕾 农业环境科学学报. 2018, 37(6): 1059-1065 https://doi.org/10.11654/jaes.2017-1740

南方典型稻区稻米镉累积量的预测模型研究

熊婕,朱奇宏,黄道友,朱捍华,许超,王帅,王辉 农业环境科学学报. 2019, 38(1): 22-28 https://doi.org/10.11654/jaes.2018-0201

关注微信公众号,获得更多资讯信息

鄂 倩,赵玉杰,刘潇威,等.不同土壤镉提取方法预测稻米富集镉性能评估[J].农业环境科学学报,2020,39(5):1000-1009. E Qian, ZHAO Yu-jie, LIU Xiao-wei, et al. Screening and evaluation of soil cadmium extraction methods for predicting cadmium accumulation in rice[J]. *Journal of Agro-Environment Science*, 2020, 39(5): 1000-1009.

开放科学 OSID

不同土壤镉提取方法预测稻米富集镉性能评估

鄂 倩¹,赵玉杰^{1*},刘潇威¹,李志涛²,张闯闯¹,孙 杨¹,周其文^{1*},梁学峰¹,王海华³ (1.农业农村部农产品质量安全环境因子控制重点实验室,农业农村部环境保护科研监测所,天津 300191; 2.生态环境部土壤与 农业农村生态环境监管技术中心,北京 100012; 3.临沂市自然资源和规划局,山东 临沂 276000)

摘 要:为筛选土壤镉(Cd)有效态提取方法并建立其与稻米Cd污染之间的累积模型,采用大田协同采样方式收集了土壤-水稻 140对样品,分别研究了土壤Cd总量及土壤溶液Cd含量和化学浸提(醋酸HAc、复合有机酸、乙二胺四乙酸EDTA、CaCl₂)、梯度扩 散薄膜(DGT)技术提取的Cd含量与水稻糙米Cd含量的相关性,以评估不同提取方法预测稻米Cd累积模型的可行性。结果表明, 研究区所在的长株潭地区存在较为明显的土壤及稻米Cd污染风险,EDTA提取Cd含量与土壤Cd总量显著正相关,模型拟合决定 系数*R*²达到0.9084,以总量预测稻米Cd污染存在37.2%~39.8%的误判率,0.01 mol·L⁻¹CaCl₂提取的土壤Cd有效态含量存在明显 的适用范围限制,在0.04~0.13 mg·kg⁻¹范围内,效果明显差于其他数据区域,模型决定系数*R*²仅为0.006。DGT技术能较好地预测 稻米对Cd的吸收富集性能,且能区分土壤库供给能力差异对稻米富集Cd的影响,与传统化学浸提方法比较,DGT技术提取的土 壤Cd有效态含量与稻米Cd含量具有更好的相关性(*R*²=0.5854,0.9009),是预测稻米富集Cd较为理想的土壤有效态提取方法。 **关键词**:稻米;镉(Cd);有效态;梯度扩散薄膜(DGT)

中图分类号:S153.6;X53 文献标志码:A 文章编号:1672-2043(2020)05-1000-10 doi:10.11654/jaes.2020-0256

Screening and evaluation of soil cadmium extraction methods for predicting cadmium accumulation in rice

E Qian¹, ZHAO Yu-jie^{1*}, LIU Xiao-wei¹, LI Zhi-tao², ZHANG Chuang-chuang¹, SUN Yang¹, ZHOU Qi-wen^{1*}, LIANG Xue-feng¹, WANG Hai-hua³

(1.Key Laboratory for Environmental Factor Control of Agro-product Quality Safety, Agro-environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; 2.Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China; 3.Linyi Natural Resources and Planing Bureau, Linyi 276000, China)

Abstract: Screening of extraction methods for available Cd in soils and establishing prediction models for Cd accumulation in rice are essential for assessing and classifying soil environmental quality. In this study, a total of 140 pairs of brown rice and soil samples were collected from Cd-contaminated paddy fields in the Changsha-Zhuzhou-Xiangtan area in Hunan Province. Total Cd concentrations in the soils and soil solutions, concentrations determined via chemical extraction methods using acetic acid(HAc), composite organic acid, ethylene diamine tetraacetic acid(EDTA), and CaCl₂, respectively, and available fraction analyzed via diffusion gradient in thin-film(DGT) technolo-

收稿日期:2020-03-10 录用日期:2020-03-26

作者简介:鄂 倩(1993—),女,河北唐山人,硕士研究生,主要研究方向为环境危害因子风险评估。E-mail:eqian1993@126.com

^{*}通信作者:赵玉杰 E-mail:yujiezhao@126.com;周其文 E-mail:caezhouqiwen@126.com

基金项目:中央级公益性科研院所基本科研业务费专项(农业农村部环境保护科研监测所);国家重点研发计划-农产品重金属污染防控机制与示范应用(2016YFD0800307-4);农产品质量安全环境因子风险评估重点专项(GJFP2019036)

Project supported : The Special Fund for Basic Scientific Research Business Expenses of Central-level Public Welfare Scientific Research Institutes (Agroenvironmental Protection Institute, Ministry of Agriculture and Rural Affairs); The National Key Research and Development Plan-Heavy Metal Pollution Prevention and Control Mechanism of Agricultural Products and Demonstration Application(2016YFD0800307-4); The Key Items for Risk Assessment of Product Quality, Safety and Environmental Factors(GJFP2019036)

1001

gy were obtained and used to establish soil-rice Cd accumulation models. The results indicated the Cd pollution risk for soil and rice in the study region. The Cd concentration extracted using EDTA was significantly correlated with total soil Cd content (R^2 =0.908 4). False rates of predicting rice Cd concentration using total soil Cd content were 37.2%~39.8%. The performance of the prediction model was significantly concentration-dependent for the CaCl₂ extraction method, with a low determination coefficient (R^2 =0.006) for concentrations of 0.04~0.13 mg·kg⁻¹ compared to that for the other concentrations. However, DGT technology proved to be a better tool for extracting available Cd to establish the prediction models (R^2 =0.585 4, 0.900 9) for rice Cd accumulation than chemical extraction methods were as well as for distinguishing the effect of the soil bank supply capacity on Cd enrichment by rice.

Keywords:rice; cadmium(Cd); bioavailability; diffusion gradient in thin-film(DGT)

重金属污染尤其是南方稻田镉(Cd)污染是我国 农业绿色发展和农产品产地类别划分最为关注的问 题。原因一是我国稻田Cd污染面积大^山;二是土壤 Cd与稻米Cd之间的吸收累积关系复杂,空间耦合性 不强^[2],直接采用土壤重金属含量监测结果和土壤pH 两项指标评估土壤环境质量状况很难准确预警稻米 的实际污染情况^[3-4]。为了建立土壤Cd污染与稻米 Cd 蓄积量之间的量化经验模型,科研人员做了大量 研究工作,如创新了模型的构建方法,引入混合线性 模型以及随机森林回归等现代化数据挖掘技术[5-6]; 增加土壤因子检测指标或进一步细化水稻基因 型[7-8],或分区域构建模型[9],以提高模型的准确度与 代表性;再者则是进一步改进土壤重金属检测方法, 以Cd有效态含量监测结果来耦合土壤环境因子如 pH、阳离子交换量(CEC)、土壤有机质(SOM)等对Cd 活性的影响,以减少模型参数,提高模型实用性^{10]}。 土壤重金属Cd有效态的提取方法较多,主要分为酸 性、中性盐、螯合提取剂以及复合提取剂等[11-13],而梯 度扩散薄膜(DGT)技术则是一种以Fick第一定律为 基础,通过测定特定时期内穿过特定厚度扩散膜的某 一离子浓度而计算获得该元素在特定介质中有效态 含量的方法[14-15],自发明以来在多地成功应用[16-17]。

湖南省长株潭地区不仅是我国稻米的主产区,同 时也是稻米Cd污染的典型区域,且以往研究表明,采 用土壤Cd总量来预判稻米Cd污染情况会产生30%~ 80%的误判率¹³,因此采用pH、土壤Cd含量无法科学 评估本区域产地环境质量状况,也无法正确划定农产 品产地环境质量类型。作者团队曾采用新模型加多 参数的方法以提高稻米Cd含量的预测性能¹⁶,但模型 检测参数多,推广应用困难。本研究试图探索一种适 用于本区域土壤Cd有效态的检测方法,以便以更少 的参数构建土-作Cd传输模型,在减少土壤环境检测 工作量的同时,更加科学地评估本区域的土壤环境质 量,为保障稻米质量安全提供一定的技术支撑。

材料与方法 1

1.1 样品采集与制备

本研究的样品采集自我国湖南省长株潭地区存 在稻米Cd污染风险的4个产区。采集根际土壤和对 应的水稻籽粒样品共140对,采样区包括稻米Cd污 染高、中、低风险种植区,采样地选择依据以下代表性 原则:一是区域内水稻种植面积不低于3.3 hm²;二是 水分管理为常规方式;三是采样点远离道路100m以 上;四是水稻长势与区域内水稻生长状况无差别。采 用土壤和植株同采样的方式进行采样,水稻植株采集 时划定1m²样方,在样方内随机直接将4株水稻连根 拔出,采集相对应的水稻根际土2kg左右,采集深度 为0~20 cm,用干净的木铲去除土壤表层的浮萍及落 叶,剪去水稻秸秆,将土壤放进采样袋并进行标号,记 录采样点经纬度及周边环境状况,带回实验室自然风 干后去除土样中的植物残体、石块,四分法取500g研 磨过2mm尼龙筛;取过筛后混匀土壤300g,用于土 壤Cd有效态含量测定,其余200g研磨过20目尼龙 筛,取其中50g用于检测土壤pH、质地,其余150g缩 分至50g,过100目尼龙筛,用于检测土壤重金属总 量。稻米样品采集后用自来水洗去表面附着的泥土, 用蒸馏水冲洗两遍,晒干后用粉碎机粉碎,制成糙米 样品,过40目尼龙筛备用。

1.2 化学分析及重金属提取

土壤 pH 的测定采用电位法,去 CO2 超纯水和土 壤的质量比为2.5:1。SOM的测定采用重铬酸钾滴定 法(外加热法),具体操作步骤参见《土壤农化分析》 (第三版)^[18]。土壤中重金属Cd总量提取采用三酸消 解法(浓HNO₃、HF和HClO₄体积比为10:4:1),稻米 样品Cd为双酸(浓HNO3和HClO4体积比为10:1)消解, 用ICP-MS测定[13,19-21]。土壤和稻米样品抽取10%进 行双样检测,分析准确度均使用国家有证标准质控 样品进行质量控制(GBW 07408、GBW 07423、GBW

07447),检测结果均在标准物质定值不确定度区间内。

除总量提取外,本研究选择了6种方式提取土壤 Cd有效态,分别为CaCl₂、复合有机酸、醋酸(HAc)、乙 二胺四乙酸(EDTA)、DGT以及土壤溶液,将不同方法 浸提换算的有效态Cd分别标记:总Cd含量为T_Cd, CaCl₂浸提有效态Cd含量为CaCl₂Cd,复合有机酸浸 提有效态Cd含量为Org._Ac_Cd,HAc浸提有效态Cd 含量为HAc_Cd,EDTA浸提有效态Cd含量为DGT_Cd,土壤 溶液中有效态Cd含量为Soil_Sol._Cd。具体操作过 程如表1所示。DGT扩散膜的制备参见Zhang等^[22]的 文献,结合膜的制备参见文献[23]。

2 结果与讨论

2.1 土壤及稻米Cd污染评价

如表2所示,区域土壤pH介于4.86~6.54之间,平均值为5.42,变异系数为6%(变异系数=标准差/平均值),为中性偏酸且变异性弱。此pH适宜稻米对Cd的吸收富集^[27]。土壤有机质平均含量为4.30%,中值与平均值基本一致,且平均值为弱变异。pH、SOM小的变异性说明区域土壤背景较为均一。土壤Cd(T_Cd)平均含量为0.40 mg·kg⁻¹,依据《土壤环境质

量 农用地土壤污染风险管控标准(试行)》(GB 15618 -2018),有55%的土壤样品中Cd含量超过筛选值, 存在一定的污染风险,稻米Cd(R_Cd)平均含量为 0.28 mg·kg⁻¹,有44.4%的样品超过《食品安全国家标 准 食品中污染物限量》(GB 2762—2017),20.4%超 过国际食品法典委员会(CAC)规定的限值(0.4 mg· kg⁻¹)。土壤Cd及稻米Cd正的偏度值表明,区域内存 在一定的土壤Cd及稻米Cd高值点,而尖峰分布说明 土壤Cd及稻米Cd含量在某一分布区间较为集中。 2.2 土壤Cd不同提取方式与稻米Cd含量的关联性 2.2.1 土壤Cd提取方式的差别分析

农业环境科学学报 第39卷第5期

采用7种方式提取土壤重金属Cd,结果如表3所示,提取的效率高低为总量>HAc>EDTA>复合有机酸 >CaCl₂>土壤溶液>DGT。7种土壤Cd提取方式聚类 分析(聚类距离为相关系数法)结果如图1所示, EDTA螯合剂提取的Cd含量与土壤Cd总量相关性最 强,而HAc与复合有机酸有更加突出的相似性,两者 的聚类距离最短,其次是无机盐,最后是土壤溶液与 DGT法提取的Cd活性态含量,但它们的聚类距离最 长,表明两者之间还有较大的差别。

2.2.2 土壤 Cd 总量与稻米 Cd 含量的相关性分析 研究区土壤 Cd 含量与稻米 Cd 含量散点图如图 2

表1 土壤Cd有效态提取操作过程

Table 1 Operation	procedure of	extractable	Cd in the soil	
-------------------	--------------	-------------	----------------	--

提取剂Extractant	提取过程 Extraction process
$CaCl_2$	称取 3.0 g过 2 mm 筛的土壤于 100 mL 离心管中, 加入 30 mL 0.01 mol·L ⁻¹ CaCl ₂ 室温下振荡 2 h。4000 r·min ⁻¹ 离心 20 min, 上 清液过 0.45 μm 的滤膜, ICP-MS 法测定 ^[24]
复合有机酸	称取3.0g过10目筛的土壤至100mL离心管中,加入30mLLMWOAs提取剂,LMWOAs为醋酸:乳酸:柠檬酸:苹果酸:甲酸(摩尔比)=4:2:1:1:1的混合液。室温下振荡16h ^[13] ,4000 r·min ⁻¹ 离心20min,上清液过0.45μm的滤膜,ICP-MS法测定
HAc	称取 0.5 g过 2 mm 筛的土样于 50 mL 离心管中, 加浓度为 0.11 mol·L ⁻¹ 的醋酸溶液 20 mL, 22±1 ℃下振荡 16 h ¹²⁵ , 4000 r·min ⁻¹ 离心 20 min, 上清液过 0.45 μm 滤膜, ICP-MS 法测定
EDTA	称取2g土壤样品于50mL离心管中,加入用氨水调节至pH=7的0.05mol·L ⁻¹ 的EDTA溶液20mL,25℃下充分振荡2h ²⁶¹ , 4000r·min ⁻¹ 离心10min,上清液过0.45μm滤膜,ICP-MS法测定
DGT 及土壤溶液	称取过 2 mm 筛土壤样品 100.0 g放入带盖聚丙烯树脂(PP)塑料容器,加去离子水 40.0 mL,25 ℃培养24 h,取出后在表面放置 DGT,盖盖后放入25 ℃培养箱恒温提取 24 h后将 DGT提出,提取结合膜材料放置于 1 mol·L ⁻¹ 的 9 mL硝酸溶液中解离 10 min,斡旋混勾后用 ICP-MS测定提取量 M,然后采用文献[15]中的方法计算土壤 Cd 有效态含量 DGT_Cd。将去除 DGT 后的 土壤 4000 r·min ⁻¹ 离心 20 min,取上清液过 0.45 μm 的滤膜,ICP-MS 法测定土壤溶液 Cd 含量

Table 2 Descriptive statistics of soil and agricultural products in the study area							
理化参数 Physical and chemical parameters	平均值 Mean	中位数 Median	标准差 Standard deviation	最小值 Minimum	最大值 Maximum	峰度 Kurtosis	偏度 Skewness
рН	5.42	5.36	0.32	4.86	6.54	1.00	1.03
SOM/%	4.30	4.34	0.90	1.67	6.57	-0.36	-0.18
$T_Cd/mg \cdot kg^{-1}$	0.40	0.35	0.19	0.16	1.17	4.55	2.04
$R_Cd/mg \cdot kg^{-1}$	0.28	0.23	0.23	0.04	1.45	6.42	2.10

表2 研究区土壤及农产品描述性统计结果

所示。总体而言,随着土壤Cd含量增加,稻米Cd含 量呈增加态势,但当土壤Cd含量低于0.5 mg·kg⁻¹时, 稻米Cd含量基本在0.05~0.80 mg·kg⁻¹范围内随机分 布,变异系数达58.3%。线性方程拟合决定系数*R*²为 0.293,说明此方程可以解释稻米Cd变异性的29%。 可见,土壤Cd总量在本区域内并不能很好地预测稻

米 Cd污染风险。表4是不同研究者在我国不同区域 采用土壤 Cd总量来评估稻米 Cd含量的基本统计表, 总体而言,采用土壤 Cd总量预测稻米 Cd含量模型代 表性都不高。而彭华等^[28]在长株潭地区的研究结果 与本研究结果基本一致。

分别对照《土壤环境质量农用地土壤污染风险 管控标准(试行)》(GB 15618—2018)中土壤Cd含量

图2 土壤Cd总量与稻米Cd含量的相关关系

表3 不同方法提取土壤Cd含量差异性统计(mg·kg⁻¹)

Table 3 Statistical table of differences in Cd concentrations in the soil extracted by different methods (mg·kg⁻¹)

指标 Index	平均值 Mean	中位数 Median	标准差 Standard deviation	最小值 Minimum	最大值 Maximum
T_Cd	0.40	0.35	0.19	0.16	1.17
$CaCl_2Cd$	0.09	0.07	0.06	0.01	0.45
HAc_Cd	0.26	0.22	0.13	0.12	0.97
EDTA_Cd	0.22	0.19	0.09	0.11	0.79
OrgAc_Cd	0.16	0.14	0.09	0.09	0.61
Soil_SolCd	8.73×10 ⁻³	8.18×10 ⁻⁴	0.011	6.85×10 ⁻⁵	0.082
DGT_Cd	3.02×10 ⁻³	2.43×10 ⁻³	0.003	7.72×10 ⁻⁴	0.033

表4 不同研究区域土壤Cd总量与稻米Cd含量的关系模型

Table 4 Models of relationship between total Cd content in soil and Cd content in rice in different study areas

序号	实验地点	回归方程	相关系数r	决定系数R ²	参考文献
No.	Sample plot	Regression equation	Correlation coefficient r	Determination coefficient \mathbb{R}^2	References
1	湖南长株潭	$R_Cd=0.264T_Cd+0.128$		0.298	[28]
2	苏南某废弃冶炼厂	R_Cd=0.062T_Cd-0.058		0.441	[29]
3	浙江省水稻产区(南泽、嗓州和温岭)	—	0.21		[2]
4	成都平原某区	—	0.223		[30]
5	四川某地	—	-0.263		[31]
6	湘中某工矿区	—	0.304		[32]
7	成都平原13个市(县)稻麦轮作区	—	0.532		[33]
8	南京、扬州、苏州	log(R_Cd)=-0.269-0.068pH+ 0.153log(T_Cd)	0.565		[34]
9	中南地区	$R_Cd=0.284T_Cd+0.391$	0.392		[35]
10	湖北某污染区	R_Cd=0.02+0.11T_Cd	0.460		[16]

的风险筛选值和《食品安全国家标准食品中污染物限量》(GB 2762—2017)中稻米Cd含量最大限量值,分析土壤Cd不超限稻米Cd超标比率(①),土壤Cd超限稻米Cd超标比率(②),土壤Cd超限稻米Cd不超标比率(③),以及土壤Cd不超限稻米Cd不超标比率(④)共4种情况,结果如图3所示。可见,以现行标准预警稻米Cd的安全水平,在低pH条件下(pH<5.5) 会有39.8%的误判率(误判率=①+③),在中性偏酸pH条件下(5.5</p>

2.2.3 3种有机酸提取的土壤Cd含量与稻米Cd含量 关系分析

3种不同有机酸提取的土壤Cd含量与稻米Cd含 量关系如图4所示。与土壤Cd总量相似,随着有机酸 提取土壤Cd含量的增加,稻米Cd含量也有增加趋势, 3种方法建立的土壤-稻米Cd含量预测模型的决定系 数比总量预测模型略大,EDTA的提取效果较复合有 机酸和HAc略好。但当HAc和EDTA提取土壤Cd含 量小于0.3 mg·kg⁻¹,复合有机酸小于0.2 mg·kg⁻¹时,以 上3种方法效果均不佳,此时稻米Cd含量基本在 0.05~0.53 mg·kg⁻¹(5%~95%分位数)范围内分布。

进一步分析土壤Cd总量与3种有机酸提取量之间的关系,如图5所示。可见,3种有机酸提取土壤Cd含量与土壤Cd总量有极显著相关性,模型决定系数*R*²均在0.8以上。复合有机酸与HAc之间的相关系数达到0.94,与聚类分析结果一致,说明这两种方法对本研究区土壤Cd有效态提取有相似的性质。EDTA既是一种酸又是一种强螯合剂,它可以萃取有机键合和Fe/Mn氧化物键合的Cd以及吸附在次生黏土矿物上的一部分Cd^[36]。EDTA提取土壤Cd含量与

20.4%	41.8%	18.6%	23.3%	
1)	2	1)	2	
4	3	4	3	
18.4%	19.4%	39.5%	18.6%	
A.土壤	pH≤5.5	B.土壤5	.5 <ph≼6.5< td=""></ph≼6.5<>	

①为土壤Cd不超限稻米Cd超标比率,②为土壤Cd超限 稻米Cd超标比率,③为土壤Cd超限稻米Cd不超标比率, ④为土壤Cd不超限稻米Cd不超标比率

is the ratio of soil Cd below the limit but rice Cd exceeding the limit,
 is the ratio of soil Cd and rice Cd exceeding the limit,

③ is the ratio of soil Cd exceeding the limit but rice Cd below the limit,
 ④ is the ratio of soil Cd and rice Cd below the limit

图 3 土壤安全限值与稻米安全限值对应关系

Figure 3 The corresponding relationship between soil safety limits and rice safety limits

土壤中Cd总量模型决定系数R²最高,达到0.9084, 与聚类分析结果一致。

Fang等¹³⁷¹采用复合有机酸方法提取未污染土壤 Cd有效态,并与小麦Cd根、茎吸收量进行对比,结果 表明,两者决定系数分别为0.56和0.57,达极显著水 平,但研究未涉及小麦籽粒Cd含量的相关性分析,而 本研究结果表明,在长株潭水稻产区,复合有机酸的 适用性不如其在小麦产区。说明复合有机酸提取Cd 的有效态有使用局限。

Ma等^[38]研究了EDTA提取浙江省温岭和海盐地

图4 HAc、复合有机酸及EDTA提取土壤Cd与稻米Cd相关关系

Figure 4 Correlation between HAc extractable Cd, compositeorganic-acid-extracted Cd, EDTA extractable Cd and rice Cd concentrations

2020年5月

图 5 土壤 Cd 总量与有机酸提取 Cd 相关关系 Figure 5 Correlation between total soil Cd and organic-acid extractable Cd

区水稻土壤中Cd有效态与稻米中Cd含量的关系,二 者线性模型决定系数*R*²为0.305(*P*<0.01),达显著水 平,而Xiao等^[39]用EDTA提取浙江省其他地区土壤有 效态Cd,其与稻米Cd含量模型的决定系数*R*²为 0.423,与本研究结果*R*²(0.384)略有差异,总体而言, EDTA对稻米Cd含量变异性的解释都没有超过50%。 YAO等^[40]用EDTA提取小麦和玉米土壤中的Cd,并与 根、茎Cd含量做相关性分析,结果表明,小麦根、芽 Cd含量与EDTA提取土壤中Cd含量的模型决定系数 *R*²分别为0.841和0.830(*P*<0.01),玉米根、芽Cd含量 与EDTA提取土壤中Cd含量的决定系数*R*²分别为 0.840和0.861(P<0.01),均比本研究决定系数 R²大,可见,EDTA 提取的有效态能更好地预测植物根、芽等部位吸收的 Cd,而在考虑 Cd 在植物中的传输时, 其预测效果有所降低。

2.2.4 CaCl2提取土壤Cd含量与稻米Cd含量相关性分析

CaCl₂是中性盐提取剂,Rao等[41]总结了1980年至 今研究人员采用的近26种提取剂提取的土壤重金 属含量与植物重金属含量的关系,认为0.01 mol·L⁻¹ CaCl。较酸性及有机络合提取剂更能代表重金属植物 有效态含量。本研究 CaCl>提取的土壤 Cd含量与稻 米Cd含量散点图如图6所示,线性关系模型的决定 系数R²为0.4796,效果要优于总量及有机酸提取的 结果。这是因为CaCl2提取的重金属有效态属于现实 有效态,而有机酸及螯合剂提取的有效态更多的为潜 在有效态^[42]。可见,现实有效态更能体现土壤Cd污 染对稻米的危害性。就局部数据而言,CaCl2提取的 重金属有效态对稻米Cd含量的预测能力存在明显的 差异性,其中在 0.04~0.13 mg·kg⁻¹(平均值为 0.075 mg·kg⁻¹)范围内效果明显差于其他数据区域,模型决 定系数R²仅为0.006。当大于0.12 mg·kg⁻¹时,稻米Cd 含量随CaCl2提取土壤Cd含量的增加而增加,且趋势 明显,这与Chen等[43]在湖南湘潭的研究结果有相似 性,也与刘小莲等^[16]的研究结果相符。Zhang等^[44]在 浙江上虞采集了53个土壤-稻米对应样品,分析了 CaCl₂、NH₄OAc等方法提取的Cd与稻米Cd的相关性, 0.01 mol·L⁻¹ CaCl₂提取的土壤 Cd 含量平均值为 0.018 mg·kg⁻¹,范围为0.011~0.083 mg·kg⁻¹,在此区间CaCl₂ 提取土壤Cd与稻米Cd的线性关系模型相关系数为 0.85。本研究亦选取 CaCl2提取土壤 Cd 含量为 0.016~ 0.040 mg·kg⁻¹的数据共23 对做相关性分析,数据平均 值为0.035 mg·kg⁻¹,模型形式为y=6.78x-0.074,决定 系数 R²=0.56(P<0.01),与 Zhang 等[44]的研究结果基本 一致。Lai等^[45]将0.01 mol·L⁻¹CaCl₂作为重金属Cd有 效态的提取方法,分析了台湾地区不同季节、不同种 类水稻(粳稻和籼稻)对CaCl2提取的土壤Cd的响应 性,结果表明,高富集Cd的旱籼稻品种与CaCl,提取 Cd有更好的剂量-效应关系,且高浓度优于低浓度。 可见,采用CaCl2提取的土壤Cd有效态,存在较为明 显的浓度适用范围。除采用 0.01 mol·L⁻¹ CaCl₂ 作为 土壤Cd有效态含量提取剂外,也有研究者认为0.1 $mol \cdot L^{-1}$ CaCl₂提取土壤鲜样获得的Cd含量更能代表 Cd 对稻米的有效性,土壤风干后理化性质较鲜样有 较大变化,会引起Cd有效态含量的改变,这可能是

农业环境科学学报 第39卷第5期

0.01 mol·L⁻¹ CaCl₂提取风干土 Cd 含量代表土壤 Cd 有效态含量不佳的原因^[43]。

2.2.5 土壤溶液及DGT提取土壤Cd与稻米Cd的关系

土壤溶液及DGT提取的土壤Cd有效态含量与稻 米Cd含量散点图如图7所示。可见,以本文方法提 取的土壤溶液Cd有效态含量预测稻米Cd含量并不 理想,两者无显著相关关系,相关系数r=0.12。DGT 监测结果表明,随着DGT_Cd的增加,稻米对Cd的吸 收存在明显的二向性,部分水稻Cd含量增加缓慢,而 部分水稻Cd含量增加明显。且两种情景均表现为与 稻米Cd含量显著相关,这与其他土壤有效态提取结 果有较大的差别。出现这种情况可能与Cd的实际供 给库有关^[46]。实际采样时我们也发现,农民对水稻的 管理差异很大,有的地里基本没有水,而有的地里还 有一层水。这也可能是造成DGT测定结果两向性的 原因。水稻在生长过程中,由于存在不同水分管理模 式,导致同一土壤Cd有效性存在明显差别,间歇式灌 排的稻田,由于土壤处于好氧状况,Cd活性高,稻米

1.6

富集 Cd量增加,而淹水稻田,土壤处于厌氧状况,Cd 活性明显下降,导致 Cd实际供给能力明显下降,表现 为稻米 Cd 吸收量的减少。本研究测定土壤为风干 土,因此对于淹水生长的稻田,土壤 DGT_Cd 含量较 实际偏大,导致相同 DGT_Cd浓度稻米富集 Cd存在 差异性。再者,水稻品种的差异也可能是另外的原 因^[47-49],毕竟模型构建时为了通用性没有考虑不同品 种水稻对 Cd 富集能力的差别。

与其他重金属有效态提取技术不同,DGT提取重 金属有效态过程是一个动态模拟植物吸收的过程,其 提取的重金属有效态包括土壤溶液中离子态、有机易 解离态及土壤颗粒易解离态,实际研究表明,土壤中 此部分重金属更具有植物可利用性^[17,50-51]。而土壤溶 液中的重金属主要以离子态、有机络合态、黏粒结合 态、铁锰氧化物结合态等形态存在^[52],这部分重金属 不一定都是植物可利用的。

本研究最终筛选出DGT技术为本区域预测稻米 富集Cd较为理想的工具,DGT技术具有很强的土壤环

Figure 6 Correlation between CaCl2 extractable Cd and rice Cd concentrations

图7 土壤溶液和DGT提取土壤Cd与稻米Cd相关关系

2020年5月 鄂 倩,等:不同土壤镉提取方法预测稻米富集镉性能评估

境适用性,土壤理化性质变化对有效态含量的影响具 有良好的聚合表征性能,是分析长株潭地区土壤与稻 米污染风险最有效的工具之一。但就本研究而言,取 样区域以及取样量有限,并不能完全代表本区域特点, 因此要想在区域内建立一个可推广的基于DGT技术 的土-作Cd传输模型,还需进一步加大研究力度。

3 结论

(1)研究区存在较为明显的土壤及稻米Cd污染风险,土壤Cd平均含量为0.40 mg·kg⁻¹,有55%的样品超过筛选值,稻米Cd平均含量为0.28 mg·kg⁻¹,有44.4%样品超标。

(2) 土壤 Cd 总量与 HAc、EDTA 和复合有机酸提 取 Cd 含量达极显著相关性,模型决定系数 R²均在 0.8 以上,其中,土壤 Cd 总量与 EDTA 提取 Cd 含量模型决 定系数 R²达 0.908 4。

(3)以总量预测稻米 Cd 污染情况会产生 37.2%~ 39.8%的误判率,0.01 mol·L⁻¹ CaCl₂提取的土壤 Cd 有 效态含量存在明显的适用范围限制,在 0.04~0.13 mg·kg⁻¹范围内,效果明显差于其他数据区域。

(4)DGT技术能较好地预测稻米对Cd的吸收富集 性能,且能区分土壤库供给能力差异对稻米富集Cd的 影响,是本区域预测稻米富集Cd较为理想的工具。

参考文献:

[1] 詹 杰,魏树和,牛荣成.我国稻田土壤镉污染现状及安全生产新 措施[J].农业环境科学学报,2012,31(7):1257-1263.

ZHAN Jie, WEI Shu-he, Niu Rong-cheng. Advances of cadmium contaminated paddy soil research and new measure of its safe production in China: A review[J]. *Journal of Agro-Environment Science*, 2012, 31 (7):1257-1263.

[2] 赵科理. 土壤-水稻系统重金属空间对应关系和定量模型研究[D]. 杭州:浙江大学, 2010.

ZHAO Ke-li. Spatial relationships of heavy metals in soil-rice system and the quantitative model[D]. Hangzhou: Zhejiang University, 2010.

[3] 王祖光,周其文,赵玉杰,等.土壤筛选值在镉污染稻米产地环境评价与分类适用性探讨[J].农业环境科学学报,2019,38(10):2328-2337.

WANG Zu-guang, ZHOU Qi-wen, ZHAO Yu-jie, et al. Applicability of risk screening values for soil contamination of agricultural land in evaluation and classification of cadmium-contaminated rice producing areas[J]. *Journal of Agro-Environment Science*, 2019, 38(10):2328– 2337.

[4] 熊 婕,朱奇宏,黄道友,等.南方典型稻区稻米镉累积量的预测模型研究[J]. 农业环境科学学报, 2019, 38(1):22-28.
 XIONG Jie, ZHU Qi-hong, HUANG Dao-you, et al. Prediction model

for the accumulation of cadmium in rice in typical paddy fields of south China[J]. *Journal of Agro-Environment Science*, 2019, 38(1):22-28.

[5]郭新蕾,赵玉杰,刘潇威,等.基于空间聚类与随机森林的稻米富集 镉影响因素筛选研究[J].农业环境科学学报,2019,38(8):1794-1801.

GUO Xin-lei, ZHAO Yu-jie, LIU Xiao-wei, et al. Screening for factors affecting rice uptake of cadmium based on spatial clustering and random forests[J]. *Journal of Agro-Environment Science*, 2019, 38 (8) : 1794–1801.

- [6] 刘佳凤,田娜娜,赵玉杰,等.基于 Cubist 多元混合回归的稻米富集 Cd模型构建研究[J].农业环境科学学报,2018,37(6):1059-1065. LIU Jia-feng, TIAN Na-na, ZHAO Yu-jie, et al. Evaluation of cadmium accumulation in rice using a Cubist multivariate mixed regression model[J]. Journal of Agro-Environment Science, 2018, 37(6):1059-1065.
- [7] Mu T T, Zhou T, Li Z, et al. Prediction models for rice cadmium accumulation in Chinese paddy fields and the implications in deducing soil thresholds based on food safety standards[J]. *Environmental Pollution*, 2020, 258:113879.
- [8] Li K, Cao C L, Ma Y B, et al. Identification of cadmium bioaccumulation in rice (*Oryza sativa* L.) by the soil-plant transfer model and species sensitivity distribution[J]. *Science of the Total Environment*, 2019, 692:1022-1028.
- [9] Römkens P F A M, Guo H Y, Chu C L, et al. Prediction of cadmium uptake by brown rice and derivation of soil-plant transfer models to improve soil protection guidelines[J]. *Environmental Pollution*, 2009, 157 (8):2435-2444.
- [10] 宋宁宁,王芳丽,唐世荣,等.基于梯度薄膜扩散技术的广西环江 流域桑田土壤中铅的生物有效性研究[J].农业环境科学学报, 2012,31(7):1317-1323.

SONG Ning-ning, WANG Fang-li, TANG Shi-rong, et al. Assessment of lead bioavailability by diffusive gradients in thin films (DGT) in mulberry fields of Guangxi Huanjiang River Basin, China[J]. Journal of Agro-Environment Science, 2012, 31(7):1317-1323.

- [11] Römkens P F A M, Brus D J, Guo H Y, et al. Impact of model uncertainty on soil quality standards for cadmium in rice paddy fields[J]. *Science of the Total Environment*, 2011, 409(17): 3098-3105.
- [12] Rafiq M T, Aziz R, Yang X, et al. Cadmium phytoavailability to rice (Oryza sativa L.) grown in representative Chinese soils. A model to improve soil environmental quality guidelines for food safety[J]. Ecotoxicology and Environmental Safety, 2014, 103:101-107.
- [13]高 慧,宋 静,吕明超.DGT和化学提取法评价贵州赫章土法炼 锌区污染土壤中镉的植物吸收有效性[J].农业环境科学学报, 2017,36(10):1992-1999.

GAO Hui, SONG Jing, LÜ Ming-chao. Evaluation of cadmium phytoavailability in soils from a zinc smelting area in Hezhang County, Guizhou Province, using diffusive gradients in thin films and conventional chemical extractions[J]. *Journal of Agro-Environment Science*, 2017, 36(10):1992-1999.

[14] 罗 军, 王晓蓉, 张 昊, 等. 梯度扩散薄膜技术(DGT)的理论及 其在环境中的应用 I:工作原理、特性与在土壤中的应用[J]. 农业 环境科学学报, 2011, 30(2): 205-213.

LUO Jun, WANG Xiao-rong, ZHANG Hao, et al. Theory and application of diffusive gradients in thin films in soils[J]. *Journal of Agro-En*vironment Science, 2011, 30(2):205-213.

- [15] 贵州省市场监督管理局.农产品产地土壤重金属镉有效态提取 梯度扩散薄膜(DGT)法 DB52/T 1465—2019[S].贵州, 2019. Guizhou Provincial Market Supervision and Administration. Extraction of available heavy metal cadmium in cropland soils- the diffusion gradient in thin-films(DGT) method DB52/T 1465—2019[S]. Guizhou:2019.
- [16] 刘小莲, 杜平, 陈娟, 等. 基于梯度扩散薄膜技术评估稻田土 壤中镉的生物有效性[J]. 农业环境科学学报, 2017, 36(12):2429-2437.

LIU Xiao-lian, DU Ping, CHEN Juan, et al. Evaluation of cadmium bioavailability via diffusive gradients in thin film technology for agricultural soils[J]. *Journal of Agro-Environment Science*, 2017, 36(12): 2429–2437.

- [17] Tian Y, Wang X, Luo J, et al. Evaluation of holistic approaches to predicting the concentrations of metals in field-cultivated rice[J]. *Environmental Science & Technology*, 2008, 42(20):7649–7654.
- [18] 鲍士旦. 土壤农化分析[M]. 三版. 北京:中国农业出版社, 2000.
 BAO Shi-dan. Soil agrochemical analysis[M]. Third edition. Beijing: China Agriculture Press, 2000.
- [19] 中华人民共和国农业部. 土壤质量 重金属测定 王水回流消解原 子吸收法 NY/T 1613—2008[S]. 北京:中国农业出版社, 2008.
 Ministry of Agriculture of the People's Republic of China. Soil quality-Analysis of soil heavy metals-atomic absorption spectrometry with aqua regia digestion NY/T 1613—2008[S]. Beijing: China Agriculture Press, 2008.
- [20] 环境保护部.土壤和沉积物 12种金属元素的测定 王水提取-电 感耦合等离子体质谱法 HJ 803—2016[S].北京:中国环境科学出 版社, 2016.

Ministry of Environmental Protection. Soil and sediment-Determination of aqua regia extracts of 12 metal elements-Inductively coupled plasma mass spectrometry HJ 803—2016[S]. Beijing: China Environmental Science Press, 2016.

[21] 中华人民共和国国家卫生和计划生育委员会. 食品安全国家标准 食品中镉的测定 GB/T 5009.15—2014[S]. 北京:中国标准出版社, 2014.

National Health and Family Planning Commission, PRC. National food Safety Standard-Determination of cadmium in food GB/T 5009.15—2014[S]. Beijing:China Standard Press, 2014.

- [22] Zhang H, Zhao F, Sun B, et al. A new method to measure effective soil solution concentration predicts copper availability to plants[J]. *Environmental Science & Technology*, 2001, 35(12):2602–2607.
- [23] 赵玉杰, 宋志廷, 梁学峰, 等. 一种 DTPA 改性材料及其制备的快速全解离型 DGT 结合相的制备方法: CN201510426767. 5[P]. 2015-12-16.

ZHAO Yu-jie, SONG Zhi-ting, LIANG Xue-feng, et al. Preparation method of a DTPA modified material and its prepared fast fully dissociated DGT binding phase: CN201510426767. 5[P]. 2015–12–16.

- [24] 环境保护部.水质 65 种元素的测定 电感耦合等离子体质谱法 HJ 700—2014[S].北京:中国环境科学出版社, 2014.
 Ministry of Environmental Protection. Water quality-Determination of 65 elements-Inductively coupled plasma-mass spectrometry HJ 700—2014[S]. Beijing: China Environmental Science Press, 2014.
- [25] Ure A M, Quevauviller P, Muntau H, et al. Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the commission of the European Communities[J]. *International Journal of Environmental Analytical Chemistry*, 1993, 51(1/2/3/4): 135–151.
- [26] Wear J I, Evans C E. Relationship of zinc uptake by corn and sorghum to soil zinc measured by three extractants[J]. Soil Science Society of America Journal, 1968, 32, 543–546.

[27] 李志涛, 王夏晖, 赵玉杰, 等.南方典型区域水稻镉富集系数差异 影响因素探析[J].环境科学与技术, 2017, 40(10):1-7. LI Zhi-tao, WANG Xia-hui, ZHAO Yu-jie, et al. Analysis of the difference and causes in rice cadmium uptake factor in typical south region[J]. Environmental Science and Technology, 2017, 40(10):1-7.

- [28] 彭 华, 戴金鹏, 纪雄辉, 等. 稻田土壤与稻米中的镉含量关系初探[J]. 湖南农业科学, 2013(7):68-72.
 PENG Hua, DAI Jin-peng, JI Xiong-hui, et al. Correlation between cadmium content in paddy soil and in rice[J]. Hunan Agricultural Science, 2013(7):68-72.
- [29] 李 锐. 典型区域土壤-水稻系统重金属污染空间变异规律及迁移转化特征研究[D]. 南京:南京农业大学, 2008.
 LI Rui. Spatial variation and the characteristics of transfer of heavy metal pollution about soil-crop systems in typical area[D]. Nanjing: Nanjing Agricultural University, 2008.
- [30] 周 娅,杨定清,张 东,等.成都平原部分地区农田土壤和稻米 中镉含量及形态分布[J].环境与健康杂志,2015,32(7):614-616. ZHOU Ya, YANG Ding-qing, ZHANG Dong, et al. Concentration and chemical speciation of cadmium in soil and rice of Chengdu Plain, Sichuan[J]. Journal of Environment and Health, 2015, 32(7):614-616.
- [31] Cui D X, Liu Y P. Enrichment and distribution of Cd elements in soilrice plant system[J]. Hans Journal of Agricultural Sciences, 2017, 7 (4):288-294.

[32] 甘国娟. 土壤-水稻系统重金属迁移特征与区域污染风险评阶 [D]. 长沙:中南林业科技大学, 2013. GAN Guo-juan. Transfer characteristic of heavy metals in soil-rice system and regional pollution risk assessment[D]. Changsha: Central South Forestry University, 2013.

[33] 王昌全,代天飞,李 冰,等. 稻麦轮作下水稻土重金属形态特征及其生物有效性[J]. 生态学报, 2007, 27(3):889-897.
WANG Chang-quan, DAI Tian-fei, LI Bing, et al. The speciation and bioavailability of heavy metals in paddy soils under the rice wheat cultivation rotation[J]. *Chinese Journal of Ecology*, 2007, 27(3):889-897.

[34] 汤丽玲. 作物吸收 Cd 的影响因素分析及籽实 Cd 含量的预测[J]. 农业环境科学学报, 2007, 26(2):699-703.

TANG Li-ling. Effects of soil properties on crop Cd uptake and pre-

diction of Cd concentration in grains[J]. Journal of Agro-Environment Science, 2007, 26(2):699-703.

- [35] 王梦梦,何梦媛,苏德纯.稻田土壤性质与稻米镉含量的定量关系
 [J].环境科学,2018,39(4):1918-1925.
 WANG Meng-meng, HE Meng-yuan, SU De-chun. Quantitative relationship between paddy soil properties and cadmium content in rice grains[J]. Environmental Science, 2018, 39(4):1918-1925.
- [36] Yao Y, Sun Q, Wang C, et al. The combination of DGT technique and traditional chemical methods for evaluation of cadmium bioavailability in contaminated soils with organic amendment[J]. International Journal of Environmental Research and Public Health, 2016, 13(6): 595.
- [37] Fang J, Wen B, Shan X, et al. Is an adjusted rhizosphere-based method valid for field assessment of metal phytoavailability? Application to non-contaminated soils[J]. *Environmental Pollution*, 2007, 150 (2) : 209–217.
- [38] Ma Q, Zhao W, Guan D, et al. Comparing CaCl₂, EDTA and DGT methods to predict Cd and Ni accumulation in rice grains from contaminated soils[J]. *Environmental Pollution*, 2020, 260:114042.
- [39] Xiao W, Ye X, Zhu Z, et al. Evaluation of cadmium(Cd) transfer from paddy soil to rice(*Oryza sativa* L.) using DGT in comparison with conventional chemical methods: Derivation of models to predict Cd accumulation in rice grains[J]. *Environmental Science and Pollution Research*, 2020. doi:org/10.1007/s11356-020-07976-1.
- [40] Yao Y, Sun Q, Wang C, et al. Evaluation of organic amendment on the effect of cadmium bioavailability in contaminated soils using the DGT technique and traditional methods[J]. *Environmental Science and Pollution Research*, 2015, 24(9), 7959–7968.
- [41] Rao C, Sahuquillo A, Lopez Sanchez J. A review of the different methods applied in environmental geochemistry for single and sequential extraction of trace elements in soils and related materials[J]. Water, Air & Soil Pollution, 2008, 189(1):291-333.
- [42] Kim R Y, Yoon J K, Kim T S, et al. Bioavailability of heavy metals in soils: Definitions and practical implementation: A critical review[J]. *Environmental Geochemistry and Health*, 2015, 37(6):1041–1061.
- [43] Chen H, Zhang W, Yang X, et al. Effective methods to reduce cadmium accumulation in rice grain[J]. Chemosphere, 2018, 207:699-707.

- [44] Zhang M K, Liu Z Y, Huo W. Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice[J]. *Communications in Soil Science & Plant Analysis*, 2010, 41(7):820–831.
- [45] Lai H Y, Su S W, Guo H Y, et al. Phytoremediation and the uptake characteristics of different rice varieties growing in Cd- or As-contaminated soils in Taiwan[J]. *Technical Bulletin - Food and Fertilizer Technology Center*, 2014, 3:1-10.
- [46] Luo J, Zhang H, Zhao F, et al. Distinguishing diffusional and plant control of Cd and Ni uptake by hyperaccumulator and nonhyperaccumulator plants[J]. *Environmental Science & Technology*, 2010, 44 (17):6636-6641.
- [47] Ibaraki T, Kuroyanagi N, Murakami M. Practical phytoextraction in cadmium-polluted paddy fields using a high cadmium accumulating rice plant cultured by early drainage of irrigation water[J]. *Soil Science* & *Plant Nutrition*, 2009, 55(3):421-427.
- [48] Ju X H, Zhang C B, Song Z G, et al. Changes in cadmium accumulation in rice organs during grain development and their relationship with genotype and cadmium levels in soil[J]. *Plant Physiology Journal*, 2014, 50(5):634-640.
- [49] 郭静怡,张 曼,张锡洲,等.水稻镉安全材料的镉吸收动力学特征[J].应用生态学报,2018,29(1):278-284.
 GUO Jing-yi, ZHANG Man, ZHANG Xi-zhou, et al. Characterization of cadmium uptake kinetics in cadmium pollution-safe rice material [J]. Acta Applied Ecology, 2018, 29(1):278-284.
- [50] 宋宁宁, 王芳丽, 赵玉杰, 等. 基于梯度薄膜扩散技术评估黑麦草吸收 Cd 的研究[J]. 中国环境科学, 2012, 32(10):1826-1831. SONG Ning-ning, WANG Fang-li, ZHAO Yu-jie, et al. Assessment of cadmium bioavailability to ryegrass in soils by diffusive gradients in thin films[J]. China Environmental Science, 2012, 32(10):1826-1831.
- [51] Li D Q, Li W Y, Lu Q, et al. Cadmium bioavailability well assessed by DGT and factors influencing cadmium accumulation in rice grains from paddy soils of three parent materials[J]. *Journal of Soils and Sediment*, 2018, 18(7):2552–2561.
- [52] Hydrology NERC Centre For Ecology. User\'s Guide to WHAM7[Z]. 2012.