

请通过网上投稿系统投稿 网址:http://www.aes.org.cn

普者黑流域土地利用及"源-汇"景观的氮磷输出响应研究

刘鹏,张紫霞,王妍,刘云根

引用本文:

刘鹏,张紫霞,王妍,等. 普者黑流域土地利用及"源-汇"景观的氮磷输出响应研究[J]. 农业环境科学学报, 2020, 39(6): 1332-1341.

在线阅读 View online: https://doi.org/10.11654/jaes.2019-1334

您可能感兴趣的其他文章

Articles you may be interested in

香溪河流域土地利用变化过程对非点源氮磷输出的影响

崔超, 刘申, 翟丽梅, 张富林, 刘宏斌, 雷秋良, 武淑霞, 华玲玲, 周继文 农业环境科学学报. 2016, 35(1): 129-138 https://doi.org/10.11654/jaes.2016.01.018

甬江流域土地利用方式对面源磷污染的影响:基于SWAT模型研究

张招招,程军蕊,毕军鹏,徐宇婕,李昀,王侃 农业环境科学学报.2019,38(3):650-658 https://doi.org/10.11654/jaes.2018-0843

喀斯特地区坡面不同土地利用方式水土流失及磷素输出对次降雨特征的响应 彭宏佳,吴起鑫,任斐鹏,安艳玲,付宇文,刘瑞禄,吕婕梅 农业环境科学学报.2018,37(4):756-765 https://doi.org/10.11654/jaes.2017-1486

基于CLUE-S的香溪河土地利用变化预测与总磷污染负荷分析

王清睿,刘瑞民,门聪,郭力嘉 农业环境科学学报. 2018, 37(4): 747-755 https://doi.org/10.11654/jaes.2017-1500

土地利用驱动下洪泽湖支流流域非点源颗粒态磷流失时空变化特征 叶祖鑫,林晨,安艳玲,吴起鑫,刘斌,隋雪艳,马荣华 农业环境科学学报.2017,36(4):734-742 https://doi.org/10.11654/jaes.2016-1371

关注微信公众号,获得更多资讯信息

刘 鹏,张紫霞,王 妍,等.普者黑流域土地利用及"源-汇"景观的氮磷输出响应研究[J].农业环境科学学报,2020,39(6): 1332-1341.

LIU Peng, ZHANG Zi-xia, WANG Yan, et al. Effect of land use and the source-sink landscape on nitrogen and phosphorus export in the Puzhehei watershed[J]. *Journal of Agro-Environment Science*, 2020, 39(6): 1332–1341.

普者黑流域土地利用及"源-汇"景观的氮磷输出响应研究

刘 鹏1,张紫霞1,王 妍2*,刘云根3

(1.西南林业大学生态与环境学院,昆明 650224;2.西南林业大学石漠化研究院,昆明 650224;3.云南省山地农村生态环境演变 与污染控制重点实验室,昆明 650224)

摘 要:以滇东南典型岩溶流域普者黑为研究对象,在将流域划分为26个子流域的基础上,以2018年3个水期各子流域的水质数据为依据,结合子流域内土地利用结构和景观格局特征,采用相关性分析、冗余分析和回归分析,探讨流域氮、磷输出与景观特征指数的定量关系。结果表明:丰水期氮、磷输出要高于枯水期和平水期,全流域从外围到中部呈"汇"景观逐渐减小,"源"景观逐渐增大趋势,耕地是流域氮、磷输出的主要"源"景观,水域具有改善水质的"汇"景观功能;耕地、水域面积比例和斑块密度、香农多样性指数与水质之间相互关系显著,说明农业活动是影响普者黑流域氮、磷输出的主要原因,景观的破碎化促使了这一生态过程的发展;3个水期景观空间负荷对比指数(LWLI)与TP、PO⁺-P和NH⁺-N均呈正相关,枯水期和丰水期时LWLI与所有水质指标均集中于同一象限,LWLI与丰水期TP的回归系数最大,*R*²为0.856,表明LWLI对水质指标的解释能力远大于传统景观指数,对水质评价及预测有重要意义。

关键词:土地利用;景观格局;空间负荷对比指数(LWLI);氮输出;磷输出;普者黑

中图分类号:X52 文献标志码:A 文章编号:1672-2043(2020)06-1332-10 doi:10.11654/jaes.2019-1334

Effect of land use and the source-sink landscape on nitrogen and phosphorus export in the Puzhehei watershed

LIU Peng¹, ZHANG Zi-xia¹, WANG Yan^{2*}, LIU Yun-gen³

(1.College of Ecology and Environment, Southwest Forestry University, Kunming 650224, China; 2.Rocky Desertification Research Institute, Southwest Forestry University, Kunming 650224, China; 3.Yunnan Key Laboratory for Ecological Environment Evolution and Pollution Control in Mountainous Rural Areas, Southwest Forestry University, Kunming 650224, China)

Abstract: Based on the water quality data, land use structure, and landscape index of 26 sub-watersheds in Puzhehei examined from April to October 2018, the relationship between N and P export and the landscape index was analyzed by correlation analysis, redundancy analysis, and regression analysis. Our data showed that N and P export in the high-water period was higher, the amount of sink landscapes decreased, and the amount of source landscapes increased in the whole basin from the periphery areas to the middle areas. Farmland was the main source landscape and waters had the function of a sink landscape. The farmland, water, patch density (PD), and Shannon's diversity index (SHDI) were significantly related to water quality, which meant that agricultural activities were the main sources of N and P export and the landscape fragmentation degree promoted this ecological process. There was a positive correlation between the location-weighted

*通信作者:王 妍 E-mail:wycaf@126.com

收稿日期:2019-12-04 录用日期:2020-02-13

作者简介:刘 鹏(1995—),男,云南楚雄人,硕士研究生,从事脆弱生态系统修复研究。E-mail:1564385618@qq.com

基金项目:国家自然科学基金项目(31560237,31760245);云南省教育厅基金研究生项目(2019Y0138)

Project supported: The National Natural Science Foundation of China (31560237, 31760245); Office of Education Foundation of Yunnan (2019Y0138)

1333

landscape contrast index(LWLI) and total phosphorus(TP), $PO_4^{3-}-P$, and $NH_4^{+}-N$. The LWLI and all the water quality parameters were in the same quadrant. The regression coefficient(R^2) between the LWLI and TP was 0.856 during the high-water period, which meant that the LWLI was better than the traditional landscape index for explaining water quality parameters. This has great significance for water quality assessment and prediction.

Keywords: land use; landscape pattern; location-weighted landscape contrast index (LWLI); nitrogen export; phosphorus export; Puzhehei

江河湖泊富营养化的主要驱动因子是氮、磷等营 养物质的输出^{III}。相关研究表明,氮磷的产生、迁移、 转化与流域土地利用方式及景观格局密不可分[2-3]。 景观格局指数常被用来定量描述景观格局与生态过 程的关系^[4],但很难与生态过程有机融合,且生态意 义不明确、刻画生态过程能力不足的。陈利顶等的提 出的"源-汇"景观理论是用于探究不同景观类型在 空间动态平衡上对生态过程影响的方法。基于该理 论的景观空间负荷对比指数(LWLI),融合了景观空 间结构和景观性质,可以定量评价景观格局对污染过 程的影响四。根据"源-汇"景观理论,可将流域内功 能不同的景观类型划分为促进污染物产生过程的 "源"和阻止或延缓污染物产生过程的"汇"[8]。三峡 库区19、于桥水库109等流域已有案例,此外,该理论还 被运用于水资源涵养评价凹上。而针对云贵高原地 区典型岩溶湖泊的类似研究尚未开展,随着旅游开发 力度加大,普者黑流域污染形式多样,且随机性、复杂 性、不确定性更强,明晰普者黑流域不同类型景观对 氮、磷输出的贡献显得尤为重要。

普者黑是我国西南地区最大的岩溶湖泊,喀斯特 峰林、峰丛、湖群遍布,地貌景观罕见,具有极高的研 究及保护价值。但近年来,由于自然和人为因素的影 响,水质持续恶化,对各种干扰因素抗逆性及承受能 力差、水环境容量低等一系列生态脆弱性特征逐渐显 现。前人对普者黑流域的研究主要集中在景观格局 演变[12-13]、沉积物磷赋存形态[14]、水环境质量评价[15]等 方面。郭玉静等^[16]针对普者黑湖滨湿地0~500 m缓 冲区域内景观格局的演变对水质的影响进行了探讨, 但尚缺乏从流域整体景观角度开展对岩溶湖泊氮、磷 输出的影响研究。基于此,本研究通过对普者黑流域 地表水中总磷(TP)、正磷酸盐(PO₄³⁻-P)、总氮(TN)、 铵氮(NH₄-N)和总有机碳(TOC)的分时段测定,构建 景观特征指数与水质指标之间的关联性,筛选能较好 评价不同时期水质状况的景观格局指数,研究旨在为 普者黑流域面源污染治理、土地利用规划及小流域最 佳管理模式提供科学依据,对开展湖泊水环境综合治 理和退化湿地修复具有重要的理论和实践意义。

1 材料与方法

1.1 研究区概况

普者黑流域位于滇东南丘北县境内(103°55′~ 104°13′E,24°05′~24°12′N),地处滇东南亚热带石灰 岩山原地带,湿地与石山峰林融为一体,形成了独特 的自然景观和特殊的喀斯特湖泊湿地生态系统,在我 国西南部滇黔桂喀斯特地貌中极具代表性。普者黑 流域面积388 km²,地势平坦,海拔1446~1462 m。流 域内的水主要来源于摆龙湖(红旗水库)和落水洞的 岩溶地下水,其下游进入清水江后流入南盘江,最终 汇入珠江。该区属于低纬度季风气候区,多年平均气 温16.4 ℃,雨季多集中在6—10月,多年平均降雨量 1206 mm。

普者黑湖已列入全国优质水源地保护范围,为当 地重要饮用水源地。同时,普者黑湿地已作为重点保 护纳入云南省湿地保护规划。经过调查,流域内有耕 地9121 hm²,三七、辣椒和烤烟是主要的经济作物,农 业生产总值占全县总产值比重在60%以上。流域内 并无较大的工业布局,仅有少量的砖厂、水泥厂和有 机肥厂等,污染程度不高。旅游和餐饮区集中在流 域中部的普者黑、仙人洞村以及流域出水口附近的天 鹅湖、国家湿地公园附近,每年5—8月是旅游旺季。 仅 2018年共接待游客500万人次,旅游综合收入40 亿元。

1.2 研究方法

1.2.1 遥感数据及处理

利用1:5万 DEM 数据,在 ArcGIS 10.2 水文分析 模块的支持下,将普者黑流域划分成26个子流域 (Watershed)进行统计分析。采用30m分辨率的 Landsat 8 遥感影像数据(时相:2018年6月),在ER-DAS 9.2 的支持下进行人机交互解译,获得各子流域 土地利用矢量数据。对解译结果进行实地调查校正, 解译精度为0.88,符合本研究的精度要求。

1.2.2 样点设置与指标分析

在每个子流域的出水口设置1个样点,共计26个 (图1),于2018年4月(枯水期)、7月(丰水期)和10月

(平水期)进行采样。将500 mL聚乙烯瓶用5% 硝酸 浸泡并经蒸馏水洗净,每次采集水样3瓶,调节pH< 2,带回实验室保存于4℃冰箱,并在24h内完成测 定。水样的预处理及分析均参照《水和废水监测分析 方法》^{□□}中标准方法进行。为确保所测试数据的准确 性,所有样品均做3次平行,测试结果以3次结果的平 均值表示,实验误差控制在5%以内。

1.2.3 景观格局指数的获取

区域的景观格局特征需要从破碎化程度、异质 性程度、多样性等方面来综合反映,本文选取前人研 究中与生态过程关联性较高的6个景观格局指数 (表1)进行表征。通过ArcGIS 10.2将处理过的矢量 数据栅格化后,再采用Fragstats 3.3软件计算各种景 观格局指数。 景观格局与生态过程研究中,能促进生态过程 发展的景观类型称之为"源"景观;"汇"景观是指能 阻止或延缓生态过程发展的景观类型^[18]。普者黑流 域中,"源"景观包括住宅用地、耕地和园地,"汇"景 观包括林地、水域,荒草地和裸土地对氮、磷的输出 更多在于传输的作用。

利用洛仑兹曲线公式建立的"源-汇"景观指数, 在文献[18]中已有比较详细的理论假设和推导过程, 景观空间负荷对比指数模型如下:

$$LWLI' \stackrel{m}{\underset{i=1}{\longrightarrow}} A_{\text{source}i} \times W_i \times AP_i / \left(\sum_{i=1}^m A_{\text{source}i} \times W_i \times AP_i + \sum_{j=1}^n A_{\text{sink}j} \times W_j \times AP_j\right)$$
(1)

$$LWLI=LWLI'_{didistance} \times LWLI'_{elevation} / LWLI'_{slope}$$
(2)

图1 子流域划分及采样点分布

Figure 1 Sub-basin partitioning and sampling point distribution

表1 景观格局指数的类型、描述及意义[16]

Table 1 Landscape pattern index selected in this study^[16]

景观指数 Landscape index	指数描述 Index description	表征的景观意义 The meaning of landscape
斑块密度 Patch density(PD)	单位面积上各斑块类型的数量	景观破碎度
边界密度Edge density(ED)	单位面积上各斑块类型边界长度	景观破碎度
最大斑块指数Lagest path index(LPI)	某一斑块类型中最大斑块占据整个景观面积的比例	景观优势度
多样性指数Shannon's diversity index(SHDI)	反应景观类型的多少和各景观类型所占比例的变化	景观多样性
蔓延度指数Contagion index(CONTAG)	描述景观不同斑块类型的团聚程度或延展趋势	景观破碎度
散布与并列指数	描述某一景观类型的形状复杂程度	景观破碎度
Interspersion and Juxtaposition index(IJI)		

式中:LWLI为景观空间负荷对比指数;A_{source}:和A_{sinkj} 分别为第*i*种"源"景观和第*j*种"汇"景观面积累积曲 线组成的不规则三角形面积;W_i和W_j为"源"景观和 "汇"景观类型的权重;AP_i和AP_i为第*i*种源景观和第*j* 种汇景观类型的面积百分比;m和n分别为"源"景观 和"汇"景观类型的总数目。

不同的"源""汇"景观对非点源污染的贡献存在 差异,本研究中"源""汇"景观的权重赋值借鉴参考文 献[19-20],依次为住宅用地(1.0)、耕地(0.4)、园地 (0.4)、林地(0.8)、水域(0.8)、荒草地(0.6)和裸土地 (0.5)。模型中"源""汇"景观累积百分比曲线(洛伦 兹曲线)与横、纵坐标轴所组成的不规则三边形面积 的求解在实际操作过程中难以实现。本研究参考岳 隽等^[21]在深圳市西丽水库流域的方法,将高程、坡度 和距离进行分级处理,利用等间距范围内不同斑块类 型的面积占子流域总面积的累积百分比之和来代替 不规则三边形的面积,从而求解出LWLI。

1.3 统计分析

LWLI与水质指标间相互关系的建立采用Pearson相关系数法,秩相关性分析在SPSS 21.0 中完成; 逐步回归分析用来确定最能解释单个水质变量的环 境或景观变量因子,以0.05为检验是否显著的标准, 回归统计值*R*²和*P*用来判定回归效果;用Canoco 4.5 软件进行冗余分析(Redundancy analysia,RDA),直观 展现解释变量与响应变量之间的关系。基于以上统 计分析手段,建立并分析各子流域水质指标对土地利 用结构及景观格局的响应关系。

2 结果

2.1 子流域土地利用结构

根据《土地利用现状分类》(GB/T 21010-2017),

将流域土地利用类型划分为耕地、林地、水域、住宅用 地、裸土地、园地、荒草地7种类型。由图2可知,流域 内耕地和住宅用地面积占比分别为50.87%和5.0%, "汇"型景观类型中林地面积占流域总面积的 33.94%,水域面积占7.75%。受地形和人为因素影 响,耕地在整个流域内分布较为均匀,占子流域面积 的19.96%~66.18%,个别子流域超过80%,变异系数 为0.29,是7种土地利用类型中最低的。住宅用地在 各个子流域中均有分布,占子流域面积比例为1.0%~ 16.64%,其中26号子流域占比最大,其次是分布在普 者黑餐饮旅游区和流域出水口附近的18号和22号子 流域。

10号子流域包含红旗水库水源涵养林,其林地 面积比例最大,其次是12、14、20、1号子流域,占比均 超过40%,主要集中在流域西部老鹰山高海拔区域 (20号除外)。水域所占面积比例由北至南逐渐增 大,全流域从外围到中间呈"汇"景观逐渐减小,"源" 景观逐渐增大的趋势。各子流域园地、裸土地和荒草 地所占面积比例均低于2%,故不纳入后续分析。

2.2 水质指标统计

由普者黑流域3个水期地表水体氮、磷实测数据(表2)可知,水体污染风险相对较高,部分时期氮、磷超标现象严重。NH4-N、PO4-P浓度均值在3个水期均满足《地表水环境质量标准》(GB 3838—2002)中的 I、II类水标准。云南省地表水水环境功能区划中,普者黑全湖执行III类水标准,以此作为评价基准。TP浓度均值在丰水期超标率为42.30%、平水期为38.50%。TN含量则相对偏高,最大值达3.69mg·L⁻¹,丰水期和平水期超标率分别高达76.91%和61.50%。由此可见,在丰水期和平水期流域水体承载氮、磷输入相对较多,水环境容量达到临界值,形

Figure 2 Land-use composition for sub-watersheds

Table 2 Descriptive statistics of water quality parameter $(n=26)$						
阶段 Period	水质指标 Water quality parameter	最小值 Min/mg·L⁻¹	最大值 Max/mg·L⁻¹	均值 Average/mg•L ⁻¹	标准差 SD	变异系数 CV
枯水期	TP	0.01	0.27	0.04	0.05	1.36
Low-water period	TN	0.01	3.76	0.62	0.85	1.38
	$PO_4^{3-}-P$	0.01	0.12	0.02	0.02	1.18
	NH_4^+-N	0.15	1.31	0.44	0.31	0.70
	TOC	1.18	9.02	5.31	2.01	0.38
丰水期	TP	0.01	0.31	0.08	0.08	1.01
High-water period	TN	0.38	3.03	1.58	0.75	0.48
	$PO_4^{3-}-P$	0.01	0.13	0.03	0.04	1.28
	NH_4^+-N	0.08	1.86	0.66	0.54	0.82
	TOC	4.87	18.63	8.05	2.63	0.33
平水期 Normal-water period	TP	0.01	0.14	0.04	0.03	0.72
	TN	0.50	3.69	1.44	0.83	0.58
	$PO_4^{3-}-P$	0.01	0.12	0.03	0.02	0.82
	NH [‡] -N	0.04	0.94	0.29	0.25	0.86
	TOC	3.94	19.51	9.69	3.97	0.41

表2 水质指标描述性统计(n=26)

势不容乐观。

2.3 景观空间负荷对比指数与水质的相关性

由表3可知,LWLI与3个水期TP、POi⁺-P、NHi-N 均呈显著或极显著正相关。枯水期流域水质受人为 影响较大,LWLI与NHi-N的相关系数最高为0.549, 其次是POi⁺-P。丰水期时LWLI与TP的相关性最大, 相关系数为0.896,其次是NHi-N。平水期较为异常, LWLI与TN的相关系数最高为0.544。LWLI与3个水 期的TOC均无显著关系。TN与LWLI之间的相关性 受季节变化影响较大,仅在平水期存在极显著正相 关。枯水期到平水期,随降雨量增加,TP与LWLI的 相关系数先增后减,但与POi⁺-P、NHi-N的相关系数 却逐渐减小。表明综合考虑了高程、坡度、距离等地 形因素和景观类型指标的LWLI指数,能较好地反映 水体中氮、磷的输出状况。

2.4 土地利用景观格局与氮、磷输出的关系

2.4.1 土地利用景观格局与氮、磷输出的Pearson相关性 由表4可知,林地与枯水期TP和NH-N呈显著正 相关关系,耕地与枯水期TN呈显著正相关,与丰水期 PO³-P呈显著正相关,水域与枯水期TN和PO³-P呈 负相关,与丰水期所有水质指标均为负相关关系,在平 水期与TP和PO³-P呈极显著负相关(P<0.01,相关系 数分别为-0.639、-0.635)。住宅用地因其占地面积较 小,对水质的影响不明显。土地利用类型对枯水期和 丰水期水质的影响具有一定的差异性,但总体影响均 大于平水期。

本研究表明,枯水期和平水期TP均与斑块密度呈显著正相关,与蔓延度指数呈显著负相关。枯水期TN 与最大斑块指数呈极显著正相关(P<0.01),与边界密 度呈极显著负相关,其余两个水期TN与景观格局指数 均无相关性。枯水期PO^{*}-P与斑块密度和多样性指数 均呈显著正相关,与蔓延度指数呈极显著负相关(P< 0.01)。枯水期和平水期NH^{*}-N与斑块密度、蔓延度指 数均存在相关关系,枯水期与多样性指数呈正相关,丰 水期与最大斑块指数呈正相关。TOC 仅与斑块形状 指数表现出显著或极显著正相关,与其他土地利用及

	表3 LWLI与水质指标之间的Pearson相关性分析(n=26)	
Table 3	Pearson correlation analysis between LWLI and water parameters $(n=26)$)

	, ,		1		<i>`</i>	
阶段 Period	景观指数 Landscape index	ТР	TN	PO ₄ ³⁻ -P	NH_4^+-N	TOC
枯水期 Low-water period	LWLI	0.450*	0.162	0.532**	0.549**	0.132
丰水期 High-water period	LWLI	0.896**	0.035	0.479*	0.533**	-0.042
平水期Normal-water period	LWLI	0.421*	0.544**	0.415*	0.396*	0.346

注:*表示P<0.05,显著相关;**表示P<0.01,极显著相关。下同。

Note: * and ** represent significant correlations between water quality and LWLI at P<0.05 and P<0.01 levels, respectively. The same below.

2020年6月

表4 景观指数与水质指标的相关性(n=26)

Table 4 Correlation between landscape pattern index and water parameters (n=26)

水质指标Water quality parameter	枯水期 Low-water period	丰水期 High-water period	平水期Normal-water period
ТР	PD 0.427*, CONT -0.443* 林地 0.400*	水域-0.485*	PD 0.383*,CONT-0.373* 水域 -0.639**
TN	LPI 0.558**,ED -0.489** 耕地 0.464*,水域 -0.629**	水域-0.550**	
PO ₄ ³⁻ -P	PD 0.551**,SHDI 0.370* CONT -0.523**,水域 -0.396*	LPI 0.408*,耕地 0.411* 水域-0.399*	水域-0.635**
NH_4^+-N	PD 0.507**,SHDI 0.366* CONT -0.550**,林地 0.473*	LPI 0.369*,水域-0.447*	PD 0.342*, CONT-0.344*
TOC		IJI 0.469**	IJI 0.335*

景观格局指数均无明显相关关系。

2.4.2 水质变化主导景观因子辨析

由 RDA 排序(图 3)可看出,3个时期水质指标与 耕地比例(Far%)、林地比例(For%)、斑块密度、景观 形状指数、景观多样性指数、最大斑块指数呈正相关, 与水域比例(War%)、蔓延度指数、边界密度呈负相 关。土地利用类型中水域对水质指标的影响最大,与 耕地和林地的相关性并不显著。景观格局指数中斑 块密度和多样性指数对水质指标的影响最大,其余指 数无显著规律。

枯水期和丰水期时TP、PO--P和NH:-N与LWLI 均集中在排序轴的同一象限,表明该时期与其他景观 特征指数相比,LWLI对流域氮、磷输出的解释作用更 强。在枯水期和丰水期,LWLI与TN并无显著关系, 但在平水期LWLI与TN分布在同一象限且箭头夹角 接近于0°,表明平水期LWLI能最有效表征TN输出 的状况。与平水期相比,枯水期和丰水期LWLI对TP 影响更大。

由多元逐步分析(表5)可知,在枯水期LWLI与 TP呈显著正相关关系,最大斑块指数和耕地对TN产 生显著影响,斑块密度和多样性指数与PO⁴⁻-P正相关,蔓延度指数则与NH⁴-N负相关。丰水期时LWLI与TP正相关,斑块密度与TP、PO⁴⁻-P和NH⁴-N均为正相关关系。平水期蔓延度指数与TP和NH⁴-N均别呈正、负相关。整体上,景观指数与TN的相关关系不明显,这与Pearson相关性分析结果(表4)具有一致性。从回归效果来看,枯水期TN与最大斑块指数回归系数最高,*R*²为0.727。丰水期最高值出现在TP与LWLI之间,*R*²为0.856。从枯水期到平水期TP和NH⁴-N回归系数有先增后减的趋势,枯水期PO⁴⁻-P的回归系数较丰水期和平水期显著。

3 讨论

3.1 景观特征指数与水质之间的关系

住宅用地是水质退化的主要贡献源^[22-24],森林能够有效控制水体污染物的浓度。本研究中住宅用地并未表现出显著的相关性,可能是居民点分散且所占面积比例小的缘故。植被过滤带的净化作用对附着在土壤颗粒物中的氮、磷有很好地截留和降解作用^[25]。但本研究枯水期时林地与TP、NH4-N呈正相

Table 5 Regression analysis between indices of landscape pattern and quality index						
阶段 Period	水质指标Water quality parameter	回归分析方程Regression analysis equation	R^2	Р		
枯水期	TP	y=0.138LWLI-0.027	0.203	0.021		
Low-water period 丰水期 High-water period	TN	y=0.108LPI-10.12Far%+0.925	0.727	<i>P</i> <0.001		
	$PO_4^{3-}-P$	y=0.01PD+0.032SHDI-0.04	0.445	0.001		
	NH ₄ -N	<i>y</i> =6.815-0.102CONT	0.302	0.004		
	TP	y=0.322LWLI+0.001PD-0.125	0.856	<i>P</i> <0.001		
	PO ³⁻ ₄ -P	y=0.001PD+0.014	0.359	0.001		
	$NH_4^+ - N$	y=0.011PD+0.012	0.375	0.001		
平水期 Normal-water period	TP	y=3.008CONT-0.047	0.236	0.012		
	NH_4^+-N	<i>y</i> =11.640–0.18CONT	0.226	0.014		

表 5 景观指数与水质指标的逐步回归分析

Figure 3 Redundancy analysia(RDA) between landscape pattern index and N, P export

关。究其原因是与水体污染源和景观格局特征有关, 研究区高大乔木林地主要集中在西部高海拔山区,中 部洼地多为灌木林地或草地,林灌草复合型林地较 少,这种植被类型涵养水源能力差、水土流失严重^{116]。} 此外,普者黑村附近集中式餐饮住宿和八道哨乡规模 化畜禽养殖等污染源也存在一定程度的干扰,促使了 这一现象的发生。

耕地与水质的关系尚未有明确的定论^[26],本研究 中耕地与水质指标间的相关性显著,与周文^[27]研究结 果相同:太湖流域下游河流水质与耕地面积呈正相 关。而段少琼^[28]则认为三岔河流域耕地与水质呈负 相关关系。耕地与水质关系的不确定性与研究区域 的地形地貌、灌溉耕作方式、化肥施用等有关^[23]。普 者黑流域坡耕地面积比例大、分布集中,且属于典型 的岩溶地貌,土壤短距离丢失和地下漏失现象普遍存 在^[29],故而耕地对氮、磷输出的贡献较高。水域面积 比例与水质指标均为负相关,在所有土地利用类型中 相关性最高,此现象与于松延等^[30]在北洛河流域的研 究结果一致。普者黑河流、湖泊、库塘周边大量水生 植物遍布,可有效拦截氮、磷等污染物^[31],对消减污染 负荷也有很大作用。

由 RDA 排序结果可知,本研究两个水期斑块密 度与 TP 和 NH[‡]-N显著正相关,与已有研究结论相 似^[32],表明斑块密度对氮、磷输出有重要影响。多样 性指数反映景观多样性,与本研究枯水期 PO[‡]-P、 NH[‡]-N均有显著正相关。说明景观斑块类型增多使 得各种斑块类型的分布趋于均衡,住宅用地、耕地等 "源"景观类型在景观中的优势度及主导作用也随之 增强,导致水体污染物浓度增加,韩黎阳等¹¹¹在三峡 库区也得到了相同的结果。最大斑块指数越高意味 着更小的人类干扰,其流域水体污染的风险也相应较 低。本研究结果(表4、图3)却大相径庭,这与各子流 域中耕地面积占比大且分布集中有关,具体原因尚需 考证。散布与并列指数仅与TOC有显著相关关系, 表明其对水质的预测能力较弱,存在不确定性,不具 备作为该研究区域景观特征指数的条件。

蔓延度指数是表征不同斑块类型蔓延趋势的指数,本研究结果(表4、表5)表明该值越小,各个土地利用斑块类型越分散,意味着氮、磷输出越大,也有研究支持了本结论^[33]。事实上,仅有少数景观指数可较好地预测水体中氮、磷的输出,甚至无法被合理解释^[23],土地利用占比与水质的相关性要优于部分景观指数。但在"源-汇"理论基础上建立的LWLI涵盖了

地形要素和景观因子,可作为表征流域氮、磷输出的 重要特征指数^[10]。

3.2 景观空间负荷对比指数与水质之间的关系

枯水期和丰水期LWLI与水体TN的相关性不明 显(表3),是因为LWLI中考虑到了高程、坡度等地形 因素的影响,丰水期在降雨的外力作用下,发生坡面 侵蚀,大量的颗粒态氮、磷元素附着在土壤表面汇入 河流。同时,枯水期正值旅游旺季,餐饮区、住宿区产 生的生活污水增加了外源磷的输入,导致水体中磷浓 度增加。丰水期高温多雨,微生物活动频繁,促使居 民区、餐饮区堆放的生活垃圾的分解,再加上强降雨 对不透水面的冲刷,从而表现出较高的氮素输出。本 研究住宅用地仅占流域总面积的5.50%,对外源氮输 入的贡献并不大,这是LWLI与氮污染相关性不显著 的主要原因。由于LWLI同时考虑到景观和地形因 素的影响,因此,在平水期相较于传统景观格局指数, 对氮、磷输出的解释能力更强。本研究LWLI与TOC 并未表现出相关性,原因可能是每次采样都是在降雨 后的1d内进行,水动力条件复杂,加上采样时大幅降 温所致。不同的水体温度和溶解氧会影响水体中浮 游植物的垂直分布^[34],而水中浮游植物和微生物的利 用分解影响了水体中TOC的分布。

研究区属于喀斯特岩溶地貌,地表水系支离破 碎,地表水与地下水交互频繁,导致LWLI与水质的 相关性不及于桥水库流域高,张亚娟等100的研究发现 于桥水库在城镇化进程中LWLI与平水期和丰水期 TN、TP、NO3-N和NH4-N均为极显著正相关关系。王 瑛等^[35]对太湖宜兴段入湖港口的研究表明,LWLI的 变化趋势与各港口水质的时空变化趋势基本一致。 但该港口北部多为平原,湖岸缓冲带高度和坡度变化 较小,各采样点间的水质相差不大,相关性也较高。 岳隽等^[21]的研究也证实流域LWLI的大小特征与流域 出口水体质量的污染特征具有较好的一致性。但其 研究区子流域均为独立子流域互不干扰,而本研究镶 嵌子流域的比例达1/3,这也可能是本研究相关性未 达到极显著的主要原因。孙然好等[20]在海河流域中 也发现该流域3个不同地理单元的LWLI与TN的相 关性有所差异。这表明LWLI与水质指标的相关性 受区域的地理特征和土地利用格局影响。

本研究发现,在普者黑流域水污染治理过程中,除了对各土地利用类型进行合理的规划外,"控源增 汇"也是一个必不可少的科学手段。如通过对餐饮区 生活污水进行集中处理等方法降低"源"景观的相对 重要性指数,在河流入湖口营建人工湿地、种植护岸 林等都可以降低LWLI,从而达到改善普者黑流域水 质状况和延缓湿地退化的目的。

4 结论

(1)丰水期氮、磷输出要高于枯水期和平水期,整 个流域从外而内呈"汇"景观逐渐减小,"源"景观逐渐 增大趋势;耕地是普者黑流域氮、磷输出的主要"源" 景观,水域具有改善水质的"汇"景观功能。

(2)流域氮、磷输出与土地利用结构和景观格局 间均存在相互关系,普者黑流域耕地、水域面积比例 和斑块密度、多样性指数等景观指数与氮、磷输出存 在响应关系,表明农业活动是影响该流域氮、磷输出 的主要原因,景观的破碎化促使这一生态过程的发 展。

(3) 普者黑流域枯水期和丰水期 LWLI 与 TP、 PO¹-P、NH-N均呈正相关,且集中于同一象限,对水 质指标的解释能力远大于其他景观指数。其中与丰 水期 TP 的回归系数最大,*R*²为0.856。

参考文献:

- [1] 韩黎阳,黄志霖,肖文发,等. 三峡库区兰陵溪小流域土地利用及景观格局对氮磷输出的影响[J]. 环境科学, 2014, 35(3):1091-1097.
 HAN Li-yang, HUANG Zhi-lin, XIAO Wen-fa, et al. Effects of land use and landscape pattern on nitrogen and phosphorus exports in Lanlingxi watershed of the Three Gorges Reservoir area, China[J]. Environmental Science, 2014, 35(3):1091-1097.
- [2] 赵 军,杨 凯,邰 俊,等.区域景观格局与地表水环境质量关系研究进展[J]. 生态学报, 2011, 31(11):3180-3189.
 ZHAO Jun, YANG Kai, TAI Jun, et al. Review of the relationship between regional landscape pattern and surface water quality[J]. Acta Ecologica Sinica, 2011, 31(11):3180-3189.
- [3] Xiao H, Ji W. Relating landscape characteristics to non-point source pollution in mine waste-located watersheds using geospatial techniques
 [J]. Journal of Environmental Management, 2007, 82(1):111-119.
- [4] 邬建国.景观生态学:格局、过程、尺度和等级[M].北京:高等教育 出版社,2007:96-119.

WU Jian-guo. Landscape ecology pattern process scale and grade[M]. Beijing:China Higher Education Press, 2007:96-119.

- [5] 刘 字, 吕一河, 傅伯杰. 景观格局-土壤侵蚀研究中景观指数的意义解释及局限性[J]. 生态学报, 2011, 31(1):267-275. LIU Yu, LÜ Yi-he, FU Bo-jie. Implication and limitation of landscape metrics in delineating relationship between landscape pattern and soil erosion[J]. Acta Ecologica Sinica, 2011, 31(1):267-275.
- [6]陈利顶,傅伯杰,徐建英,等.基于"源-汇"生态过程的景观格局识 别方法:景观空间负荷对比指数[J].生态学报,2003,23(11):2406-2413.

CHEN Li-ding, FU Bo-jie, XU Jian-ying, et al. Location-weighted landscape contrast index: A scale independent approach for landscape pattern evaluation based on "Source-Sink" ecological processes[J]. *Acta Ecologica Sinica*, 2003, 23(11):2406–2413.

- [7]陈利顶,李秀珍,傅伯杰,等.中国景观生态学发展历程与未来研究 重点[J].生态学报,2014,34(12):3129-3141.
 CHEN Li-ding, LI Xiu-zhen, FU Bo-jie, et al. Development history and future research priorities of landscape ecology in China[J]. Acta Ecologica Sinica, 2014, 34(12):3129-3141.
- [8] Wang J, Shao J, Wang D, et al. Identification of the "source" and "sink" patterns influencing non-point source pollution in the Three Gorges Reservoir area[J]. *Journal of Geographical Sciences*, 2016, 26 (10):1431-1448.
- [9] Jiang M, Chen H, Chen Q. A method to analyze "source-sink" structure of non-point source pollution based on remote sensing technology [J]. *Environment Pollution*, 2013, 182:135-140.
- [10] 张亚娟,李崇巍,胡蓓蓓,等.城镇化流域"源-汇"景观格局对河流 氮磷空间分异的影响:以天津于桥水库流域为例[J].生态学报, 2017,37(7):2437-2446.

ZHANG Ya-juan, LI Chong-wei, HU Bei-bei, et al. Impact of a "source-sink" landscape pattern in an urbanized watershed on nitrogen and phosphorus spatial in rivers: A case study of Yuqiao Reservoir watershed, Tianjin, China[J]. *Acta Ecologica Sinica*, 2017, 37 (7):2437-2446.

- [11] 李海防, 卫 伟, 陈 瑾, 等. 基于"源""汇"景观指数的定西关川 河流域土壤水蚀研究[J]. 生态学报, 2013, 33(14):4460-4467.
 LI Hai-fang, WEI Wei, CHEN Jin, et al. Research on soil erosion based on Location-weighted landscape undex(LWLI) in Guanchuanhe River basin, Dingxi, Gansu Province[J]. Acta Ecologica Sinica, 2013, 33(14):4460-4467.
- [12] 王 妍, 刘云根, 梁启斌, 等. 1977—2014年枯水期普者黑湖面积 的变化[J]. 湿地科学, 2016, 14(4):471-476.
 WANG Yan, LIU Yun-gen, LIANG Qi-bin, et al. Variation of Puzhehei lake area in dry season from 1977 to 2014[J]. *Wetland Science*, 2016, 14(4):471-476.
- [13] 闻国静, 刘云根, 王 妍, 等. 普者黑湖流域景观格局及生态风险时空演变[J]. 浙江农林大学学报, 2017, 34(6):1095-1103.
 WEN Guo-jing, LIU Yun-gen, WANG Yan, et al. Temporal and spatial evolution of landscape patterns and ecological risk in the Puzhehei Lake basin[J]. Journal of Zhejiang A&F University, 2017, 34(6): 1095-1103.
- [14] 詹乃才, 刘云根, 王 妍, 等. 滇东南典型岩溶湿地沉积物不同形态磷分布特征[J]. 浙江农业学报, 2016, 28(10):1772-1780.
 ZHAN Nai-cai, LIU Yun-gen, WANG Yan, et al. Distribution characteristic of different phosphorus speciation in sediment of typical karst wetlandlocated in southeast of Yunnan[J]. Acta Agriculturae Zhejiangensis, 2016, 28(10):1772-1780.
- [15] 梅涵一, 刘云根, 郑 寒, 等. 云南分散畜禽养殖密集型农村污水 特征及污染风险评价[J]. 环境工程, 2016, 34(7):46-51.
 MEI Han-yi, LIU Yun-gen, ZHENG Han, et al. Characteristics of sewage pollution and environmental risk assessment of dispersion live-

stock intensive village in Yunnan[J]. Environmental Engineering, 2016, 34(7):46-51.

- [16] 郭玉静,王 妍,刘云根,等.普者黑岩溶湖泊湿地湖滨带景观格 局演变对水质的影响[J]. 生态学报, 2018, 38(5):1711-1721. GUO Yu-jing, WANG Yan, LIU Yun-gen, et al. The effects of landscape pattern evolution in Puzhehei karst lake wetland littoral zone on water quality[J]. Acta Ecologica Sinica, 2018, 38(5):1711-1721.
- [17] 国家环境保护总局.水和废水监测分析方法[M].四版.北京:中国 环境科学出版社,2002:701-705. State Environmental Protection Administration. Methods for monitoring and analysis of water and wastewater[M]. 4th Edition. Beijing: China Environmental Science Press, 2002:701-705.

[18] 陈利顶, 傅伯杰, 赵文武."源""汇"景观理论及其生态学意义[J]. 生态学报, 2006, 26(5):1444-1449. CHEN Li-ding, FU Bo-jie, ZHAO Wen-wu. Source-sink landscape theory and its ecological significance[J]. Acta Ecologica Sinica, 2006, 26(5):1444-1449.

[19] Chen L D, Tian H Y, Fu B J, et al. Development of a new index for integrating landscape patterns with ecological processes at watershed scale[J]. *Chinese Geographical Science*, 2009, 19(1):37–45.

[20] 孙然好, 陈利顶, 王 伟, 等. 基于"源""汇"景观格局指数的海河 流域总氮流失评价[J]. 环境科学, 2012, 1(6):1784-1788. SUN Ran-hao, CHEN Li-ding, WANG Wei, et al. Correlating landscape pattern with total nitrogen concentration using a locationweighted sink-source landscape index in the Haihe River basin, China[J]. Environmental Science, 2012, 1(6):1784-1788.

[21] 岳 隽, 王仰麟, 李贵才, 等. 不同尺度景观空间分异特征对水体 质量的影响:以深圳市西丽水库流域为例[J]. 生态学报, 2007, 27 (12):5271-5281.

YUE Juan, WANG Yang-lin, LI Gui-cai, et al. The influence of and scape spatial difference on water quality at differing scales: A case study of Xili Reservoir watershed in Shenzhen City[J]. *Acta Ecologica Sinica*, 2007, 27(12):5271-5281.

[22] 包姗姗,李崇巍,王祖伟,等.天津于桥水库流域水体氮磷空间分 异与景观格局的关系[J].农业环境科学学报,2014,33(8):1609-1616.

BAO Shan-shan, LI Chong-wei, WANG Zu-wei, et al. Relationship between spatial variation of nitrogen and phosphorus in water and landscape pattern in Yuqiao Reservoir basin, Tianjin[J]. *Journal of Agro-Environment Science*, 2014, 33(8):1609–1616.

[23]夏品华,孔祥量,喻理飞.草海湿地小流域土地利用与景观格局对 氮、磷输出的影响[J].环境科学学报,2016,36(8):2983-2989.
XIA Pin-hua, KONG Xiang-liang, YU Li-fei. Effects of land-use and landscape pattern on nitrogen and phosphorus exports in Caohai wetland watershed[J]. Acta Scientiae Circumstantiae, 2016, 36(8): 2983-2989.

- [24] Sliva L, Williams D D. Buffer zone versus whole catchment approaches to studying land use impact on river water quality[J]. Water Research, 2001, 35(14):3462-3472.
- [25] Allan J D. Landscape and riverscapes: The influence of land use on river ecosystems[J]. Annual Review of Ecology and Systematics, 2004,

刘 鹏,等:普者黑流域土地利用及"源-汇"景观的氮磷输出响应研究

1341

35:257-284.

2020年6月

- [26] Hey D L, Barrett K R, Biegen C. The hydrology of four experimental constructed marshes[J]. *Ecological Engineering*, 1994, 3 (4): 319– 343.
- [27] 周 文.太湖流域河流水质状况及其对景观背景的响应分析[D]. 南京:南京大学, 2012.

ZHOU Wen. River water quality quality and its responses to context characteritics of landscapes in Taihu Lake basin[D]. Nanjing: Nanjing University, 2012.

[28] 段少琼. 三岔河流域土地利用景观格局对水质的影响研究[D]. 贵阳:贵州大学, 2016.

DUAN Shao-qiong. The effect of land use and landscape pattern on water quality in Sancha River[D]. Guiyang:Guizhou University, 2016.

[29] 蒋忠诚, 罗为群, 邓 艳, 等. 岩溶峰丛洼地水土漏失及防治研究[J]. 地球学报, 2014, 35(5):535-542.

JIANG Zhong-cheng, LUO Wei-qun, DENG Yan, et al. The leakage of water and soil in the karst peak cluster depression and its prevention and treatment[J]. *Acta Geoscientica Sinica*, 2014, 35(5): 535–542.

[30] 于松延, 徐宗学, 武 玮, 等. 北洛河流域水质空间异质性及其对 土地利用结构的响应[J]. 环境科学学报, 2014, 34(5):1309-1315.
YU Song-yan, XU Zong-xue, WU Wei, et al. Spatial variation of water quality and its response to landuse in the Beiluo River basin[J]. Acta Scientiae Circumstantiae, 2014, 34(5):1309–1315.

- [31] Hey D L, Barrett K B, Biegen C. The hydrology of four experimental constructed marshes[J]. *Ecology Engineering*, 1994, 3(4):319–343.
- [32] Lee S W, Hwang S J, Lee S B, et al. Landscape ecological approach to the relationships of land use patterns in watersheds to water quality characteristics[J]. Landscape and Urban Planning, 2009, 92(2):80– 89.
- [33] Xiao H G, Wei J. Relating landscape characteristics to non-point source pollution in mine waste-located watersheds using geospatial techniques[J]. Journal of Environmental Management, 2007, 82(1): 111-119.
- [34] 王从锋, 胡子龙, 杨正健, 等. 基于碳氮同位素的澜沧江水库 TOC 来源差异性分析[J]. 环境科学, 2019, 40(7):3039-3048.
 WANG Cong-feng, HU Zi-long, YANG Zheng-jian, et al. Analysis of total organic carbon source differences between new and old Cascade Reservoirs using carbon and nitrogen isotopes[J]. *Environmental Science*, 2019, 40(7):3039-3048.
- [35] 王 瑛, 张建锋, 陈光才, 等. 基于"源-汇"景观的太湖宜兴段入湖 港口水质时空变化[J]. 生态学杂志, 2012, 31(2):399-405.
 WANG Ying, ZHANG Jian-feng, CHEN Guang-cai, et al. Spatiotemporal characteristics of water quality in Taihu Lake watershed based on 'source-sink' landscape change[J]. *Chinese Journal of Ecology*, 2012, 31(2):399-405.