

中文核公期刊/CSCD

请通过网上投稿系统投稿 网址:http://www.aes.org.cn

镉、铅、锌复合胁迫对滇杨幼苗富集及转运镉的影响

王艳霞,郑武扬,侯磊,何承忠,郎爽,岩肖明,李思泽

引用本文:

王艳霞, 郑武扬, 侯磊, 何承忠, 郎爽, 岩肖明, 李思泽. 镉、铅、锌复合胁迫对滇杨幼苗富集及转运镉的影响[J]. 农业环境科 学学报, 2023, 42(2): 310-318.

在线阅读 View online: https://doi.org/10.11654/jaes.2022-0695

您可能感兴趣的其他文章

Articles you may be interested in

雪里蕻对于Cd、Zn的耐性及富集特性研究

郭堤, 管伟豆, 张洋, 刘翔宇, 李一曼, 张增强 农业环境科学学报. 2020, 39(10): 2151-2161 https://doi.org/10.11654/jaes.2020-1028

小叶榕对土壤铅镉污染的抗性和修复潜力研究

彭维新, 庄玉婷, 梁智淇, 俞政男, 吴道铭, 张学平, 曾曙才 农业环境科学学报. 2021, 40(8): 1707-1717 https://doi.org/10.11654/jaes.2021-0241

硫铁矿区污染土壤镉铅高富集蓖麻品种筛选

鲍广灵,陶荣浩,张慧敏,叶文玲,胡兆云,周彩玲,马友华 农业环境科学学报.2021,40(12):2693-2703 https://doi.org/10.11654/jaes.2021-0449

不同玉米(Zeamays)品种对镉锌积累与转运的差异研究

杜彩艳,张乃明, 雷宝坤, 胡万里, 付斌, 陈安强, 毛妍婷, 木霖, 王红华, 严婷婷, 段宗颜, 雷梅 农业环境科学学报. 2017, 36(1): 16-23 https://doi.org/10.11654/jaes.2016-0872

聚乙烯微塑料对花生幼苗镉吸收及生理特征的影响

宗海英, 刘君, 郭晓红, 李萌, 黄小丽, 王芳丽, 宋宁宁 农业环境科学学报. 2022, 41(7): 1400-1407 https://doi.org/10.11654/jaes.2021-1446

关注微信公众号,获得更多资讯信息

农业环境科学学报 Journal of Agro-Environment Science

王艳霞,郑武扬,侯磊,等.镉、铅、锌复合胁迫对滇杨幼苗富集及转运镉的影响[J].农业环境科学学报,2023,42(2):310-318. WANG Y X, ZHENG W Y, HOU L, et al. Effects of Cd, Pb, and Zn combined stress on Cd accumulation and translocation in *Populus yunnanensis* seedlings[J]. *Journal of Agro-Environment Science*, 2023, 42(2): 310-318.

镉、铅、锌复合胁迫对滇杨幼苗富集及转运镉的影响

王艳霞1,2,郑武扬1,侯磊1,何承忠3*,郎爽1,岩肖明1,李思泽1

(1.西南林业大学生态与环境学院,昆明 650224;2.云南省山地农村生态环境演变与污染治理重点实验室,昆明 650224;3.西南林业大学生命科学学院,昆明 650224)

摘 要:为探究 Cd-Pb、Cd-Zn和 Cd-Pb-Zn复合污染的交互效应,以滇杨幼苗为研究对象,通过土培盆栽试验对 Cd(50 mg·kg⁻¹)、Pb(500 mg·kg⁻¹)、Zn(500 mg·kg⁻¹)单一及复合胁迫下滇杨富集、转运 Cd 的特征进行深入分析,旨在为滇杨的矿区修复利用提供依据。结果表明:单一及复合胁迫可降低滇杨幼苗株高增长率,提高其地径增长率,其中 Cd-Pb-Zn 复合胁迫时显著下降,降幅为30.28%。(24.45%),Cd-Zn 复合胁迫地径增长率增幅最高(317.04%),而滇杨生物量仅在 Cd-Pb-Zn 复合胁迫时显著下降,降幅为30.28%。与单一 Cd 胁迫相比,Cd-Pb复合胁迫显著增加滇杨茎中 Cd 含量,Cd-Zn和 Cd-Pb-Zn 复合胁迫显著降低滇杨各器官 Cd 含量;单一 Cd 胁迫下滇杨 Cd 积累量为0.32 mg·pot⁻¹,Cd-Pb 胁迫未显著改变 Cd 积累量(0.34 mg·pot⁻¹),而 Cd-Zn(0.14 mg·pot⁻¹)和 Cd-Pb-Zn 胁迫(0.13 mg·pot⁻¹)显著降低 Cd 积累量。不同胁迫条件下滇杨 Cd 富集与转运系数变化规律结果显示,复合胁迫中 Pb和 Cd 的交互作用(Pb×Cd)促进 Cd 由土壤向滇杨富集,并增强 Cd 向地上部转运,Pb×Cd表现出协同效应;Zn×Cd 抑制滇杨 Cd 富集,但能提高 Cd转运,对 Cd 富集和转运分别表现出拮抗和协同效应;Pb×Zn×Cd 抑制滇杨对 Cd 的富集和转运,三者复合时表现出拮抗效应。研究表明,滇杨幼苗对 Cd-Pb、Cd-Zn复合胁迫具有耐受性,复合胁迫下交互作用类型及作用的植物器官决定了对 Cd 富集与转运的影响程度。

关键词:滇杨;重金属复合污染;重金属交互效应;镉;富集;转运 中图分类号:X173 文献标志码:A 文章编号:1672-2043(2023)02-0310-09 doi:10.11654/jaes.2022-0695

Effects of Cd, Pb, and Zn combined stress on Cd accumulation and translocation in

Populus yunnanensis seedlings

WANG Yanxia^{1,2}, ZHENG Wuyang¹, HOU Lei¹, HE Chengzhong^{3*}, LANG Shuang¹, YAN Xiaoming¹, LI Size¹

(1. College of Ecology and Environment, Southwest Forestry University, Kunming 650224, China; 2. Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous and Rural Areas of Yunnan Province, Kunming 650224, China; 3. College of Life Science, Southwest Forestry University, Kunming 650224, China)

Abstract: In order to explore the interactions of metals in the combined pollutants Cd-Pb, Cd-Zn, and Cd-Pb-Zn, seedlings of *Populus yunnanensis* were selected, and the characteristics of Cd enrichment and transport under the single and combined stress of Cd (50 mg \cdot kg⁻¹), Pb (500 mg \cdot kg⁻¹) and Zn (500 mg \cdot kg⁻¹) were analyzed by soil pot experiments, to provide a reference for the restoration and utilization of mining areas where *P. yunnanensis* occurs. The results showed that both single and combined stresses significantly reduced

收稿日期:2022-07-07 录用日期:2022-10-12

作者简介:王艳霞(1979—),女,河南商丘人,硕士,副教授,主要从事土壤生态相关研究。E-mail:wang197912@163.com

^{*}通信作者:何承忠 E-mail:hcz70@163.com

基金项目:国家自然科学基金项目(31860219);云南省山地农村生态环境演变与污染治理重点实验室开放课题(2020YB002)

Project supported: The National Natural Science Foundation of China (31860219); The Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous and Rural Areas of Yunnan Province, China (2020YB002)

311

the height growth rate of *P. yunnanensis* seedlings and increased the growth rate of the ground diameter. The height growth rate decreased the most under the Cd–Pb–Zn combined stress (24.45%), and the increase rate of the ground diameter was the highest under the Cd–Zn stress (317.04%). The biomass decreased significantly only under the Cd–Pb–Zn combined stress, with a decrease of 30.28%. Compared with the single Cd stress, the Cd–Pb stress significantly increased the content of Cd in the stem of *P. yunnanensis*, whereas the Cd–Zn and Cd–Pb–Zn combined stresses significantly reduced the content of Cd in the roots, stems, and leaves. The accumulation of Cd was 0.32 mg· pot⁻¹ under the single Cd stress. The Cd–Pb stress did not significantly change the accumulation of Cd (0.34 mg·pot⁻¹), while the Cd–Zn (0.14 mg·pot⁻¹) and Cd–Pb–Zn(0.13 mg·pot⁻¹) combined stresses significantly reduced the accumulation. The results of bioaccumulation and translocation factors of Cd in *P. yunnanensis* under different stress conditions showed that the interaction between Zn and Cd inhibited the accumulation of Cd, but increased the translocation of the absorbed Cd to the shoot, showing an antagonistic and synergistic effect on Cd accumulation and translocation, respectively. The interactions among Pb, Zn, and Cd inhibited both the accumulation and translocation of Cd, showing an antagonistic effect. This study shows that *P. yunnanensis* seedlings exhibite tolerance to the combined stress of Cd–Pb and Cd–Zn, and that the effects of heavy metal combined stress on Cd accumulation and translocation depend on the type of metal interaction and the specific plant organ.

Keywords: Populus yunnanensis; heavy metal combined stress; heavy metal interaction; Cd; accumulation; translocation

土壤重金属污染常以多种重金属共存的复合污 染形式存在^[1]。研究显示,铅锌矿等矿产资源的开 采、冶炼以及尾矿的堆积常导致周边土壤重金属元素 Cd、Pb、Zn含量较高,而西南地区作为我国有色金属 主要产区,其周边土壤的Cd-Pb-Zn复合污染问题尤 为突出^[2-4]。利用生长速度快、生物量大、根系发达、 进入食物链风险小的短轮伐树种进行矿区土壤污染 修复,不仅能缓解土壤污染,而且可兼顾用材和生物 质能源需求,以及净化空气、美化环境、保持水土等生 态功能。目前,在西南矿山复垦及植被恢复过程中, 重金属复合污染是其最重要的限制因素^[5]。为此,筛 选适于西南矿区的、耐受性强的、能富集多种重金属 的乔木树种,明确其重金属胁迫下的生理生态效应十 分必要。

重金属复合污染的植物生理生态效应不是单个 元素的简单相加,其联合作用方式包括拮抗效应、协 同效应以及加和效应^[6],而重金属复合类型及同种复 合类型不同浓度组合所产生的交互效应因树木种类 和作用器官的不同而存在差异^[7-8]。研究发现,低浓 度的Pb(200 mg·kg⁻¹)抑制樟树(*Cinnamonum camphora*)根对Cd的吸收而促进茎叶Cd吸收,Pb和Cd的 交互作用(Pb×Cd)在根部表现为拮抗效应,在茎叶部 表现为协同效应,而高浓度的Pb(>600 mg·kg⁻¹)能促 进樟树根、茎、叶对Cd的吸收,Pb×Cd表现为协同效 应^[9]。Zn能抑制Cd在白花泡桐(*Paulownia fortunei*) 体内的富集,并增强Cd从根部向地上部迁移的能力, Zn和Cd的交互作用(Zn×Cd)在Cd富集时表现为拮 抗效应,在Cd转运时表现为协同效应^[10]。彭玲^[11]有关 Cd-Pb-Zn复合污染的研究表明,Pb×Cd、Zn×Cd均会对日本楤木(Aralia elata var. inermis)根中Cd富集产 生拮抗效应,而三种重金属复合胁迫时,Pb×Zn×Cd对 Cd富集产生了协同促进效应。由此可知,Cd与Pb、 Zn共存时,重金属间的交互作用对植物Cd富集的影 响十分复杂,而目前针对不同植物类型和作用器官的 交互效应规律与机制仍不清楚。

滇杨(Populus yunnanensis)作为西南乡土杨树, 具有速生、成材早、抗逆性强、易于无性繁殖及对Cd、 Pb等重金属有一定富集能力等优点,是重金属复合 污染土壤修复的重要候选树种^[12-15],但已有研究多集 中于单一或两种重金属胁迫环境,针对Cd-Pb-Zn复 合胁迫下的滇杨Cd富集特征鲜见报道。因此,本研 究以滇杨幼苗为研究对象,通过盆栽试验研究其在 Cd、Cd-Pb、Cd-Zn以及Cd-Pb-Zn复合胁迫下的Cd 富集与转运特征,旨在明确不同复合污染下重金属交 互效应对滇杨吸收、富集和转运Cd的具体影响,研究 结果可为滇杨的矿区土壤修复利用提供科学依据。

1 材料与方法

1.1 供试材料

供试植物:选择粗细均匀的一年生滇杨枝条制成 长 20 cm 的插穗,在黑色塑料桶中水培 60 d后,选择 根、叶发育良好且生长基本一致的滇杨幼苗用于胁迫 试验。供试基质:按红壤和有机基质体积比4:1 配 制,所配供试基质基本性质为pH值5.21,有机质含量 24.16 g·kg⁻¹,有效氮含量174.48 mg·kg⁻¹,有效磷含量 4.00 mg·kg⁻¹,速效钾含量317.85 mg·kg⁻¹,全 Cd 含量

www.aer.org.cn

农业环境科学学报 第42卷第2期

0.15 mg·kg⁻¹, Pb未检测出,全Zn含量63.14 mg·kg⁻¹。 供试药剂:Cd(NO₃)₂·4H₂O、Pb(NO₃)₂、ZnSO₄·7H₂O、 CO(NH₂)₂和KH₂PO₄均为分析纯。

1.2 试验方案

本试验采用盆栽的方式进行,共设5个处理,即 Cd、Cd-Pb、Cd-Zn、Cd-Pb-Zn以及未加重金属的对照 (CK),每个处理均设3个重复。Cd、Pb、Zn添加浓度 依据西南典型有色金属矿区周边土壤重金属含量[16], 并结合文献和预试验中滇杨对重金属的耐受浓 度^[17-18],依次设置为Cd 50 mg·kg⁻¹、Pb 500 mg·kg⁻¹、Zn 500 mg·kg⁻¹。每盆装入过3 mm 筛的供试基质 3.5 kg, 并按0.15 g·kg⁻¹ N和0.15 g·kg⁻¹ P₂O₅ 拌入CO(NH₂)₂和 KH₂PO₄作为基肥,充分混匀并浇水稳定3d后,选择 长势相近的滇杨幼苗进行移栽,每盆移栽1棵。待滇 杨幼苗恢复正常生长后(恢复期3周),使用文献报道 的浇灌法加入重金属[17.19],具体方法:将各处理重金 属分别溶于500 mL蒸馏水中,一次性浇灌至土壤中, 并在盆底部垫上托盘,若盘内渗出水分需倒回盆中, 以免重金属流失。胁迫试验在西南林业大学温室内 进行,室内温度为15~28℃,空气相对湿度为23%~ 67%,大气 CO2质量浓度为400~410 mg·L⁻¹,光照充 足。胁迫试验共持续75d,期间保持田间持水量的 60%~80%

1.3 样品测定与分析

重金属胁迫期间,利用游标卡尺与卷尺每15 d测 定株高和地径一次;胁迫结束后,采用烘干法测定植 物干质量(文中生物量及植物含量均以干质量计),并 根据公式(1)计算耐性指数^[20];采用HNO₃-HClO₄消解 植物,HNO₃-HCl-HClO₄消解土壤,0.01 mol·L⁻¹CaCl₂ 提取土壤交换态重金属,并利用ICP-OES(Agilent 720,美国)测定植物与土壤中的重金属含量,同时根据公式(2)和(3)分别计算富集系数与转运系数^[21];采用电位法测定土壤pH值;采用K₂Cr₂O₇外加热法测定 土壤有机质;采用碱解扩散法测定土壤有效磷;采用 NaHCO₃浸提,钼锑抗比色法测定土壤有效磷;采用 CH₃COONH₄浸提,火焰光度法测定土壤速效钾^[22]。

耐性指数(Ti)=处理组植物的总生物量(g)/对照 组植物的总生物量(g) (1)

富集系数(BCF) = 植株镉含量(mg·kg⁻¹)/土壤镉 含量(mg·kg⁻¹) (2)

转运系数(TF)=植株地上部镉含量(mg·kg⁻¹)/植 株地下部镉含量(mg·kg⁻¹) (3)

1.4 数据处理及统计分析

采用SPSS 21.0进行数据统计分析,采用单因素方 差分析和Duncan法进行差异显著性检验和多重比较, 采用Canoco 5进行冗余分析,采用Origin 9.1制图。

2 结果与分析

2.1 重金属胁迫对滇杨幼苗生长的影响

重金属单一和复合胁迫对滇杨幼苗株高和地径的影响如图1所示。与CK相比,重金属胁迫抑制滇杨幼苗株高的增长,两种重金属复合胁迫的抑制作用小于单一Cd胁迫,三种重金属复合胁迫的抑制作用最强,株高增长率降幅最大,与CK相比降低24.45%。 重金属胁迫促进幼苗地径增粗,复合胁迫促进作用强 于单一胁迫,其中Cd-Zn促进作用最强,其地径增长 率较CK增加317.04%。重金属胁迫可抑制滇杨幼苗 向上生长,但能促进茎的横向加粗。

单一和复合胁迫对滇杨幼苗生物量和耐性指数的影响如表1所示。与CK相比,Cd-Pb-Zn复合胁迫

可显著降低滇杨幼苗总生物量(P<0.05),降幅为 30.28%,其余处理影响不显著(P>0.05);根和叶的生 物量不受重金属胁迫的影响,各处理间差异不显著 (P>0.05),茎生物量在Cd-Pb-Zn复合胁迫时较Cd处 理显著降低(P<0.05),降幅为40.73%。重金属复合 胁迫可降低植物的耐性指数,三种重金属复合胁迫时 滇杨耐性指数降低最多,降幅为30%,且Cd-Pb-Zn处 理的耐性指数显著低于其他各处理(P<0.05),而Cd、 Cd-Pb、Cd-Zn处理的耐性指标与CK无显著差异(P> 0.05),说明滇杨幼苗对Cd-Pb-Zn复合胁迫的耐受性 最差,对单一Cd胁迫及Cd-Pb、Cd-Zn胁迫具有一定 适应性和耐受性。

2.2 重金属胁迫对滇杨幼苗Cd含量和Cd积累量的影响

滇杨幼苗各器官 Cd 含量和积累量如图 2 所示。 在重金属胁迫下,滇杨根中 Cd 含量最高,平均为 36.12 mg·kg⁻¹,叶和茎中 Cd 含量次之,平均值分别为 18.01 mg·kg⁻¹和12.99 mg·kg⁻¹,各器官 Cd 含量大体表 现为根>叶>茎。各器官 Cd 积累量以茎积累为最多, 平均值为0.15 mg·pot⁻¹,根和叶中Cd积累量相近,平 均值分别为0.04 mg·pot⁻¹和0.05 mg·pot⁻¹,各器官Cd 积累量大体表现为茎>叶>根。综合滇杨各器官生物 量数据可知(表1),生物量大小是决定滇杨幼苗Cd积 累量的关键。

与单一Cd胁迫相比,Cd-Pb复合胁迫显著增加 茎中Cd含量(P<0.05),增幅为38.06%,对其他器官 Cd含量影响不显著(P>0.05);Cd-Zn复合胁迫显著降 低根、茎、叶中Cd含量(P<0.05),降幅分别为78.19%、 34.64%和75.68%;Cd-Pb-Zn复合胁迫亦能显著降低 各器官Cd含量,但降幅小于Cd-Zn胁迫。与单一Cd 胁迫相比,Cd-Pb复合胁迫时滇杨各器官Cd积累量 以及植株总积累量无显著变化,但Cd-Zn、Cd-Pb-Zn 复合胁迫时滇杨茎、叶Cd积累量以及总积累量均显 著降低(P<0.05),Cd、Cd-Pb、Cd-Zn、Cd-Pb-Zn处理 的Cd总积累量分别为0.32、0.34、0.14、0.13 mg·pot⁻¹。 2.3 **重金属胁迫对滇杨幼苗**Cd**富集与转运的影响**

滇杨幼苗Cd富集与转运系数如表2所示。与

	表 I
Table 1	Biomass and tolerance index of Populus yunnanensis

处理 Treatment	根生物量 Root biomass/g	茎生物量 Stem biomass/g	叶生物量 Leaf biomass/g	总生物量 Total biomass/g	耐性指数 Tolerance index
СК	1.30±0.28a	11.30±1.33ab	2.99±0.85a	15.59±2.03a	1.00±0.13a
Cd	0.98±0.34a	13.21±1.43a	3.01±0.36a	17.19±0.77a	1.10±0.05a
Cd-Pb	1.06±0.04a	10.69±1.55ab	2.83±0.32a	14.57±1.30a	0.93±0.08a
Cd–Zn	0.73±0.50a	12.26±4.20ab	2.39±0.72a	15.39±3.04a	0.99±0.19a
Cd-Pb-Zn	0.97±0.31a	$7.83 \pm 1.24 \mathrm{b}$	2.07±0.95a	$10.87 \pm 2.14 \mathrm{b}$	$0.70\pm0.14\mathrm{b}$

注:同列不同字母表示各处理间差异显著(P<0.05)。下同。

Note: Different letters in the same column indicate significant difference among treatments (P<0.05). The same below.

不同字母表示同一器官或总量在不同处理间差异显著(P<0.05)

Different letters indicate significant difference among treatments of the same organ and total (P<0.05)

图2 滇杨各器官Cd含量(a)与Cd积累量(b)

Figure 2 Cd content(a) and accumulation amount(b) in each organ of Populus yunnanensis

www.ger.org.cn

单一 Cd 胁迫相比, Cd-Pb 复合胁迫显著提高 Cd 总 富集系数和地上部富集系数(P<0.05), Cd-Zn、Cd-Pb-Zn 复合胁迫则显著降低 Cd 富集系数(P<0.05), 且 Cd-Zn 复合胁迫时降幅最大,说明复合胁迫时 Pb 的存在促进 Cd 由土壤向植物富集, 而 Zn 的存在抑 制 Cd 富集。

与单一Cd胁迫相比,Cd-Zn复合胁迫显著提高Cd转运系数(叶除外,P<0.05),Cd-Pb复合胁迫亦使Cd转运系数有所提高,但作用不显著(P>0.05),而Cd-Pb-Zn复合胁迫降低了Cd转运系数,作用亦不显著(P>0.05)。综上可知,Cd-Pb和Cd-Zn复合胁迫时Pb、Zn的存在均可促使Cd从根部向地上部转运,但Cd-Pb-Zn复合胁迫时,Pb、Zn的共存抑制了Cd转运。

2.4 滇杨幼苗Cd富集转运特征与土壤理化性质的关系

不同重金属胁迫处理的土壤理化指标如表3所示。在滇杨-土壤互作下,土壤交换态Cd含量以Cd-Zn胁迫时最高,其次为Cd-Pb-Zn复合胁迫,Cd-Pb胁迫与单一Cd胁迫无显著差异(P>0.05),但均显著低于Cd-Zn和Cd-Pb-Zn胁迫(P<0.05);交换态Pb和交换态Zn均是在Cd-Pb-Zn三者复合胁迫时显著高于二者复合胁迫(Cd-Pb、Cd-Zn)。与CK相比,土壤pH值在Cd-Pb、Cd-Pb-Zn胁迫下显著下降,在Cd-Zn胁迫下显著升高;有机质含量在Cd胁迫下较CK显著下降;有效氮在Cd-Pb、Cd-Pb-Zn胁迫下较CK显著

0.18±0.036c

0.20±0.019b

升高,在Cd胁迫下较CK显著下降;有效磷在Cd-Pb-Zn胁迫下较CK显著升高;速效钾在Cd-Zn胁迫下较 CK显著下降。

将滇杨 Cd 富集转运相关的 5 个指标作为植物响 应变量,8 个土壤理化指标作为环境变量进行冗余分 析可知,土壤 pH 值、交换态重金属含量等理化因子可 以解释植物响应变量总特征值的 96.9%,能够反映滇 杨 Cd 富集转运特征与土壤理化性质关系的绝大部分 信息。结果(图3)显示,滇杨 Cd 含量、Cd 积累量、Cd 富 集系数与土壤交换态 Cd、交换态 Zn 呈负相关关系(夹 角 > 90°),与土壤交换态 Pb 呈正相关关系(夹角 < 90°), 说明滇杨吸收、富集 Cd 的过程,能降低土壤中交换态 Cd、Zn 的含量,而易被植物吸收利用的交换态 Pb 含 量则因 Cd 吸收而有所增加。

滇杨 Cd 富集与转运过程除影响土壤交换态重金 属含量外,还会对土壤酸碱性、有机质含量、速效养分 等指标产生影响,其中,对土壤 pH、有机质(OM)、有 效磷(AP)的影响达显著水平(P<0.05),其解释贡献 率分别为13.9%、29.3%和12.8%。由图3可知,土壤 pH 值、有机质含量与滇杨 Cd 富集指标呈负相关关 系,与 Cd 转运系数呈正相关关系,而有效磷含量与 Cd 富集、转运指标均呈负相关关系。此外,土壤 pH 值、土壤有机质还与土壤交换态重金属含量(ECd、 EPb、EZn)呈负相关关系。

Table 2 Bioaccumulation factor and translocation factor of each Populus yunnanensis organ towards Cd										
处理	处理 富集系数 BCF				总富集系数	转运系	数TF	总转运系数		
Treatment	根 Root	茎Stem	叶 Leaf	地上部 Aerial part	Total BCF	茎Stem	叶 Leaf	Total TF		
Cd	0.99±0.022a	$0.28{\pm}0.004{\rm b}$	0.53±0.044a	$0.33 \pm 0.012 \mathrm{b}$	$0.37{\pm}0.025{\rm b}$	$0.29{\pm}0.008{\rm bc}$	0.54±0.034a	0.33±0.005bc		
Cd-Pb	0.95±0.040a	0.39±0.006a	0.57±0.026a	0.43±0.008a	0.47±0.009a	$0.41\pm0.016\mathrm{b}$	0.61±0.030a	$0.45 \pm 0.019 \mathrm{b}$		
Cd–Zn	$0.22 \pm 0.022 c$	$0.19{\pm}0.02{\rm c}$	$0.13{\pm}0.018{\rm c}$	$0.17{\pm}0.023{\rm c}$	$0.18{\pm}0.021\rm{d}$	0.87±0.139a	0.60±0.035a	0.82±0.127a		

0.19±0.032c

0.24±0.027c

0.25±0.061c

0.28±0.038b

0.26±0.054c

表2 滇杨各器官Cd富集系数与转运系数

表 う 谷处埋土壌	援理化指标
-----------	-------

Table 3	Phy	sical	and	chemical	indexes	of soi	l in	each	treatment
---------	-----	-------	-----	----------	---------	--------	------	------	-----------

处理 Treatment	рН	有机质 Organic matter/ (g•kg ⁻¹)	有效氮 Available nitrogen/ (mg•kg ⁻¹)	有效磷 Available phosphorus/ (mg•kg ⁻¹)	速效钾 Available potassium/ (mg•kg ⁻¹)	交换态 Cd Exchangeable Cd (mg•kg ⁻¹)	交换态 Pb /Exchangeable Pb/ (mg•kg ⁻¹)	交换态Zn Exchangeable Zn/ (mg•kg ⁻¹)
СК	$4.68{\pm}0.04{\rm b}$	$26.7{\pm}0.79{\rm ab}$	$89.18 \pm 5.55 c$	$2.66 \pm 0.41 \mathrm{b}$	250.20±12.26a	$0.46{\pm}0.01{\rm d}$	$0.74 \pm 0.05 \mathrm{c}$	5.88±0.86c
Cd	$4.73 \pm 0.04 \mathrm{ab}$	19.55±2.15c	$78.48{\pm}4.29{\rm d}$	$2.75 \pm 1.17 \mathrm{b}$	$237.28{\pm}5.86{\rm ab}$	8.71±1.43c	$0.78 \pm 0.02 c$	$3.90 \pm 0.36c$
Cd-Pb	$4.42 \pm 0.03 c$	$26.00{\pm}2.34{\rm ab}$	121.48±5.48a	$2.57 \pm 0.41 \mathrm{b}$	253.31±11.02a	$10.78 \pm 0.19 \mathrm{c}$	$111.55{\pm}0.65\mathrm{b}$	$3.43 \pm 0.07 \mathrm{c}$
Cd–Zn	4.75±0.01a	28.47±2.10a	90.05±6.45c	2.21±0.71b	218.24±12.21b	46.42±2.97a	0.70±0.13c	$111.26{\pm}3.87\mathrm{b}$
Cd-Pb-Zn	$4.40\pm0.02c$	23.38±1.03b	100.31±4.10b	6.62±1.25a	253.85±22.08a	30.31±5.86b	138.58±7.28a	292.73±5.48a

Cd-Pb-Zn 0.74±0.113b

2023年2月

C-Cd:Cd含量,A-Cd:Cd积累量,BCF:富集系数,TF:转运系数,Ti:耐受系数,ECd:交换态镉,EPb:交换态铅,EZn:交换态锌,pH:酸碱度,OM:有机质,AN:有效氮,AP:有效磷,AK:速效钾
C-Cd:Cd content,A-Cd:Cd accumulation,BCF:Bioaccumulation factor,TF:Translocation factor,Ti:Tolerance index,ECd:Exchangeable cadmium,EPb:Exchangeable lead,EZn:Exchangeable zinc,pH:pH,OM:Organic matter,AN:Available nitrogen,AP:Available phosphorus,AK:Available potassium

图 3 滇杨 Cd 富集转运指标与土壤理化性质的冗余分析

Figure 3 Redundancy analysis between Cd accumulation and translocation indicators of *Populus yunnanensis* and soil physicochemical properties

3 讨论

3.1 Cd-Pb-Zn复合胁迫对滇杨生长特性的影响

生长状况和生物量大小是植物响应重金属胁迫的最直观反映,杨树对重金属具有一定耐受性和富集性,但耐受程度和富集特征受浓度效应的影响^[23-24]。不同重金属对植物生长影响的阈值不同,当环境中重金属含量超过阈值时,可能导致植物的生长发育受到抑制^[25]。例如银杏(*Gingko bioba*)幼苗在Cd小于50mg·kg⁻¹和Pb小于300mg·kg⁻¹的单一或复合胁迫时,幼苗生长受到促进,但当胁迫浓度超过此阈值时则表现为抑制作用^[26];秋枫(*Bischofia javanica*)的生长则在超过Cd 50mg·kg⁻¹和Pb 1 500mg·kg⁻¹时明显受到抑制^[27];假苹婆(*Sterculia lanceolata*)的生物量、株高和地径则在Zn 300mg·kg⁻¹和Pb 500mg·kg⁻¹时受到抑制^[28]。

在本研究中,Cd胁迫浓度为50 mg·kg⁻¹时,滇杨 幼苗的株高增长率有所降低,地径增长率有所提高, 但总生物量无显著变化,且Cd 50 mg·kg⁻¹与Pb 500 mg·kg⁻¹、Zn 500 mg·kg⁻¹二者之一共同胁迫时,生物量 亦无显著变化,说明此胁迫浓度仍在滇杨耐受阈值以 下,但当滇杨幼苗受三者共同胁迫时生物量显著下 降,说明滇杨虽然对Cd、Pb、Zn胁迫具有一定耐受性, 但Cd-Pb-Zn共同胁迫已超过其耐受阈值,故表现出 生长抑制和生物量下降。为适应重金属胁迫环境,滇 杨还可通过调整自身生长与形态特征来增强耐受性, 在本研究中表现为抑制茎的向上生长促进其横向加 粗,变矮增粗可能是滇杨响应重金属胁迫的生长策略 之一,其原因可能是重金属胁迫诱导了植物体内酚类 次生代谢合成途径的加强,而木质素生物合成的加强 可导致植物细胞壁加厚以抵御和固定重金属,同时细 胞木质化速度加快,细胞伸长受抑制,从而造成了植 物的变矮增粗^[29]。

此外,滇杨在单一Cd胁迫下的株高增长率低于 Cd-Pb、Cd-Zn复合胁迫,而复合胁迫的地径增长率 高于单一Cd胁迫,原因可能是复合胁迫下,重金属间 产生了拮抗作用,从而在一定程度上抵消了对滇杨幼 苗生长发育的影响。在拮抗作用中,竞争位点在某种 程度上可视为复合污染拮抗作用的直接形成原因,此 竞争既包括土壤胶体上吸附位点的竞争,又包括植物 特定组织器官上结合位点的竞争^[6]。

3.2 Cd-Pb-Zn 复合胁迫对滇杨 Cd 富集转运的交互 作用

重金属复合胁迫对滇杨Cd富集与转运的影响效 应因重金属复合类型的不同而存在差异。本研究观 察到Cd-Pb复合胁迫时Pb可显著增加滇杨茎中Cd 含量以及Cd富集系数,而Cd-Zn复合胁迫时Zn则可 显著降低滇杨根、茎、叶中Cd含量和Cd富集系数,说 明在滇杨Cd富集时,Pb×Cd呈现协同效应,Zn×Cd呈 现拮抗效应,当Cd-Pb-Zn 三者共同胁迫时,Pb×Zn× Cd仍呈现拮抗效应,原因可能是Zn对Cd的拮抗效应 大于 Pb×Cd 的协同效应。在土壤生态系统中, Cd、 Pb、Zn会同时竞争土壤无机胶体与有机胶体上的阳 离子交换吸附位点,当三者共存时,Pb2+与吸附位结 合的牢固程度较单一污染时增强,而Cd²⁺和Zn²⁺较单 一污染时减弱,解吸率大小为Zn>Cd>Pb^[30],表明Pb 会优先占据土壤吸附位点并促使Cd解吸到土壤溶液 中从而更易于植物吸收,故Pb×Cd在Cd富集时表现 出协同促进,与之相反,Zn的存在则降低了Cd的生 物有效性,进而抑制植物对Cd的吸收,Zn×Cd在Cd 富集时表现为拮抗抑制。另外,Zn是植物生长所必 需的营养元素,而Cd、Pb作为植物非必需的有毒元

www.aer.org.cn

素,主要通过必需或有益元素的转运体被吸收,Cd的 吸收往往需要借助Zn、Mn、Fe(II)等二价阳离子的转 运体完成^[31],如OsZIP5、OsZIP9 锌转运蛋白^[32]。当土 壤中Zn浓度增加时,其竞争根细胞上转运子结合位 点的能力相应增加,Cd与转运子结合能力则相应降 低,Cd吸收量亦相应减少,故Zn×Cd在滇杨Cd富集 时呈现拮抗效应。

彭玲^[11]有关日本楤木的研究表明,Pb不利于Cd 在日本楤木根中的富集,但能促进茎、叶中Cd的吸 收,Pb×Cd在根中表现为拮抗,在茎叶中表现为协同, Zn×Cd对Cd富集则表现为拮抗效应,与本研究结果 一致,但在Cd-Pb-Zn复合胁迫时,Pb和Zn的加入对 Cd在日本楤木体内的吸收富集起促进作用,Cd×Pb× Zn表现为协同效应的结果与本研究不同,说明Cd-Pb-Zn复合胁迫的交互作用较为复杂,其交互效应可 能因植物种类和作用器官的不同而存在差异,而重金 属胁迫浓度的化学计量比可能是产生不同交互效应 的重要原因^[33-34],具体作用机制有待进一步研究。

此外,相同的复合污染对不同的指标也可能产生 不同的效应^[35]。在本研究中,Cd由土壤向滇杨体内 富集时,Zn×Cd表现为拮抗抑制,而Cd在滇杨体内转 运时,Zn×Cd表现为协同促进,原因是Cd与Zn具有相 同的价态和近似相同的离子半径,二者在植物体内运 输时可能共用细胞质上的同一个转运子,Zn竞争转 运子结合位点时可导致 Cd 的移动性增强,从而促使 Cd从根部向地上部转移^[36]。周启星等^[37]有关水稻的 研究表明,Zn×Cd在Cd富集(根部)、Cd转运(叶部)时 均表现为加和效应,说明Cd-Zn复合污染对重金属积 累的影响不是单一的加和、协同或拮抗效应,它与植 物的类型以及作用部位有关[38-39],同时还受土壤重金 属复合方式以及土壤理化性质的影响[40]。通常,土壤 pH值越低,重金属生物有效性则越高,植物越容易吸 收、积累重金属[41],而土壤有机质含量越高,与重金属 的络合作用越强,土壤中易被植物吸收的交换态重金 属含量则越低,越不利于重金属的吸收与积累[42]。冗 余分析的结果亦表明土壤pH值、土壤有机质与土壤 交换态重金属含量呈负相关关系。此外,磷酸盐含量 亦会对重金属富集、转运过程产生影响,原因是磷酸 盐极易与土壤以及植物体内重金属形成沉淀从而降 低重金属的移动性和有效性,进而影响植物对重金属 的富集与转运。

在滇杨-土壤互作体系中,植物应答重金属胁迫 时亦会对土壤性质产生影响。冗余分析的结果表明,

农业环境科学学报 第42卷第2期

土壤pH值、有机质、有效磷与滇杨Cd富集指标呈显 著负相关关系,说明滇杨Cd富集量的增多会伴有土 壤pH值的降低以及有机质、有效磷含量的减少。富 集重金属能力强的植物,往往可以通过释放特异的根 系分泌物来降低土壤pH值以促进植物对重金属的活 化和吸收^[43]。土壤有效磷的减少,一方面是有效磷与 土壤重金属形成难溶态磷所致,另一方面可能是植物 增强了对磷酸盐的吸收以降低重金属对其自身的伤 害,但具体机制有待进一步验证。

4 结论

(1)滇杨幼苗在单一Cd和Cd-Pb、Cd-Zn复合胁 迫时表现出较强耐受性,在Cd-Pb-Zn复合胁迫时耐 受性最低且生物量显著下降;滇杨更适宜修复Cd、 Pb、Zn含量分别低于50、500、500 mg·kg⁻¹的单一Cd 污染或Cd-Pb、Cd-Zn复合污染的土壤。

(2)与单一Cd胁迫相比,Cd-Pb胁迫下,滇杨茎 中Cd含量显著提高,根、叶中无显著变化,Pb与Cd仅 在茎中产生协同效应;Cd-Zn胁迫下,滇杨根、茎、叶 中Cd含量以及Cd积累量较单一Cd胁迫显著降低, Zn与Cd产生拮抗效应;Cd-Pb-Zn复合胁迫时,根、 茎、叶中Cd含量以及茎、叶中Cd积累量和总积累量 均显著降低,Pb×Zn复合对Cd产生拮抗效应。

(3)从富集系数看,茎、地上部富集系数以及总富 集系数均表现出Pb×Cd的协同效应,而Zn×Cd均表现 出拮抗效应,当Cd-Pb-Zn共同胁迫时,Pb×Zn对Cd 富集亦产生拮抗效应。从转运系数看,两种重金属胁 迫时,Pb×Cd、Zn×Cd均表现出协同效应,而Cd-Pb-Zn 共同胁迫时,Pb×Zn对Cd转运产生拮抗效应。

参考文献:

- 李梓萌,李肖乾,张文慧,等.重金属复合污染对生物影响的研究进展[J].环境化学,2021,40(11):3331-3343. LIZM,LIXQ,ZHANGWH, et al. Research progress on the effects of heavy metal compound pollution on organisms[J]. *Environmental Chemistry*, 2021, 40(11): 3331-3343.
- [2]林晓燕, 唐彪, 熊云武, 等. 铅锌矿区土壤重金属含量及木本植物吸收特征[J]. 湖北农业科学, 2016, 55(18):4656-4659. LIN X Y, TANG B, XIONG Y W, et al. Heavy metal concentrations in soils and woody plants absorption characteristics around lead/zinc mineland[J]. *Hubei Agricultural Sciences*, 2016, 55(18):4656-4659.
- [3] 张昭昱, 文一, 刘伟江,等. 四川省某铅锌矿尾矿库周边环境重金属 污染特征[J]. 环境污染与防治, 2016, 38(6):105-110. ZHANG Z
 Y, WEN Y, LIU W J, et al. Polluted characteristics of heavy metals in surrounding environment near a Pb-Zn mine tailing in Sichuan Prov-

ince[J]. Environmental Pollution & Control, 2016, 38(6):105-110.

- [4] 张德刚, 袁寒, 刘艳红. 云南锡矿尾矿库土壤肥力特征与重金属污染分析[J]. 西南农业学报, 2017, 30(5):1158-1161. ZHANG D G, YUAN H, LIU Y H. Analysis of soil heavy metal pollution and fertility properties in tin tailings storehouse of Yunnan Province[J]. Southwest China Journal of Agricultural Sciences, 2017, 30(5):1158-1161.
- [5] 蒋旭升, 刘杰, 李海翔, 等. 复垦铅锌矿尾砂库的植被恢复和基质演变[J]. 环境工程, 2021, 39(12):220-226. JIANG X S, LIU J, LI H X, et al. Vegetation restoration and substrate amendment of a reclaimed lead-zinc mine tailings pond[J]. Environmental Engineering, 2021, 39(12):220-226.
- [6] 刘孝敏, 赵运林, 庹瑞锐. 重金属复合污染植物修复的研究进展[J]. 贵州农业科学, 2011, 39(10):214-218. LIU X M, ZHAO Y L, TUO R R. Research progress in phytoremediation of soil polluted by heavy metals[J]. Guizhou Agricultural Sciences, 2011, 39(10):214-218.
- [7] LIU X L, ZHANG S Z, SHAN X Q, et al. Combined toxicity of cadmium and arsenate to wheat seedlings and plant uptake andantioxidative enzyme responses to cadmium and arsenate co-contamination[J]. *Ecotoxicology and Environmental Safety*, 2007, 68(2):305–313.
- [8] CAI Y M, XU W B, WANG M E, et al. Mechanisms and uncertainties of Zn supply on regulating rice Cd uptake[J]. *Environmental Pollution*, 2019, 253:959–965.
- [9] 于静波. Cd、Pb及其复合胁迫对樟树生理特性的影响[D]. 福州:福 建农林大学, 2012:51-52. YU J B. Effects of Cd/Pb and their compound stress on physiological characteristics of *Camphor*[D]. Fuzhou: Fujian Agriculture and Forestry University, 2012:51-52.
- [10] 朱秀红, 程红梅, 季柳洋, 等. 锌、镉及其复合胁迫下白花泡桐幼苗的生理及富集特征[J]. 生物工程学报, 2021, 37(7): 2463-2473. ZHU X H, CHENG H M, JI L Y, et al. Physiological and enrichment characteristics of *Paulownia fortune* seedlings under zinc, cadmium and their combined stress[J]. *Chinese Journal of Biotechnology*, 2021, 37(7): 2463-2473.
- [11] 彭玲. 镉铅锌复合污染下日本楤木的耐性特征及重金属富集研究 [D]. 天津:天津理工大学, 2016:29, 33. PENG L. Tolerance characteristics and heavy metal accumulation in *Aralia elata* var. *inermis* under Cd, Pb and Zn combind pollution[D]. Tianjin:Tianjin University of Technololgy, 2016:29, 33.
- [12] 何承忠,车鹏燕,周修涛,等. 滇杨基因资源及其研究概况[J]. 西南林学院学报, 2010, 30(1):83-88, 94. HE C Z, CHE P Y, ZHOU X T, et al. A survey of research progress on gene resources of *Populous yunnanensis*[J]. *Journal of Southwest Forestry College*, 2010, 30(1): 83-88, 94.
- [13] JIANG H, KORPELAINEN H, LI C Y. Populus yunnanensis males adopt more efficient protective strategies than females to cope with excess zinc and acid rain[J]. Chemosphere, 2013(91):1213-1220.
- [14] PENG S, WU L, SEYLER B C, et al. The combined effects of Cu and Pb on the sex-specific growth and physiology of the dioecious *Populus yunnanensis*[J]. *Environmental Research*, 2020, 184:109276.
- [15] 郑武扬, 王艳霞, 郑雁方, 等. 镉, 铅胁迫对滇杨(Populus yunnanensis) 幼苗生长及其光合生理的影响[J]. 生态与农村环境学报, 2021, 37(10):1331-1340. ZHENG W Y, WANG Y X, ZHENG Y

F, et al. Effects of cadmium and lead stress on growth and photosynthetic physiology of *Populus yunnanensis* seedlings[J]. *Journal of Ecology and Rural Environment*, 2021, 37(10):1331-1340.

- [16] 张健琳, 瞿明凯, 陈剑, 等. 中国西南地区金属矿开采对矿区土壤 重金属影响的 Meta 分析[J]. 环境科学, 2021, 42(9):4414-4421. ZHANG J L, QU M K, CHEN J, et al. Meta-analysis of the effects of metal mining on soil heavy metal concentrations in southwest China [J]. Environmental Science, 2021, 42(9):4414-4421.
- [17] PENG S M, WU L R, SEYLER B C, et al. The combined effects of Cu and Pb on the sex-specific growth and physiology of the dioecious *Populus yunnanensis*[J]. *Environmental Research*, 2020, 184:109276.
- [18] LIU D, ZHENG K Y, WANG Y, et al. Harnessing an arbuscular mycorrhizal fungus to improve the adaptability of a facultative metallophytic poplar(*Populus yunnanensis*) to cadmium stress: Physiological and molecular responses[J]. *Journal of Hazardous Materials*, 2022, 424:127430.
- [19] 易嘉欣, 马晓雨, 孙国语, 等. 铅锌复合胁迫对小黑杨、黑青杨生长及生理的影响[J]. 东北林业大学学报, 2022, 50(4):15-20. YI J X, MA X Y, SUN G Y, et al. Characteristics of lead-zinc composite stress on the growth and physiological response of *Populus simonii*×*P*. *nigra* and *P. euramericana* 'N3016' × *P. ussuriensis*[J]. *Journal of Northeast Forestry University*, 2022, 50(4):15-20.
- [20] 彭维新, 庄玉婷, 梁智淇, 等. 小叶榕对土壤铅镉污染的抗性和修复潜力研究[J]. 农业环境科学学报, 2021, 40(8):1707-1717. PENG W X, ZHUANG Y T, LIANG Z Q, et al. Resistance and remediation potential of *Ficus microcarpa* to Pb and Cd pollution in soil[J]. *Journal of Agro-Environment Science*, 2021, 40(8):1707-1717.
- [21] 张杏锋, 吴萍, 冯健飞, 等. 超富集植物与能源植物间作对 Cd、Pb、Zn 累积的影响[J]. 农业环境科学学报, 2021, 40(7):1481-1491.
 ZHANG X F, WU P, FENG J F, et al. Effects of intercropping on Cd, Pb, and Zn accumulation using hyperaccumulators and energy plants
 [J]. Journal of Agro-Environment Science, 2021, 40(7):1481-1491.
- [22] 胡慧蓉,田昆. 土壤学实验指导教程[M]. 北京:中国林业出版社,
 2012:48-87. HU H R, TIAN K. Experiment tutorial of soil science
 [M]. Beijing: China Forestry Press, 2012:48-87.
- [23] 刘艳丽, 吴凤霞, 徐莹, 等. 杨树修复重金属污染土壤的研究进展 [J]. 林业科学, 2012, 48(9):139-144. LIU Y L, WU F X, XU Y, et al. Research progress in the remediation of heavy metal contaminated soil with populus[J]. *Scientia Silvae Sinicae*, 2012, 48(9):139-144.
- [24] 李晓宇. 杨树修复土壤重金属污染研究进展[J]. 辽宁林业科技, 2021(4):59-61. LIXY. Research progress in the remediation of soil heavy metal pollution through poplar plantations[J]. *Liaoning Forestry Science and Technology*, 2021(4):59-61.
- [25] 温瑀,穆立蔷.土壤铅、镉胁迫对4种绿化植物生长、生理及积累 特性的影响[J].水土保持学报,2013,27(5):234-239. WEN Y, MU L Q. Effects of soil Pb, Cd stress on the growth, physiological and accumulating characteristics of four ornamental trees[J]. Journal of Soil and Water Conservation, 2013, 27(5):234-239.
- [26] 李高钰. Cd、Pb单一及复合污染对银杏幼苗生长及银杏黄酮含量的影响[D]. 成都:四川农业大学, 2019:15-25. LIGY. Effects of single and combined pollution of Cd, Pb on the growth of *Ginkgo bi*-

www.aer.org.cn

1 GS 318

loba seedlings and the content of flavonoids in *Ginkgo biloba* L.[D]. Chengdu:Sichuan Agricultural University, 2019:15-25.

- [27] 周强英, 黄泽梅, 陈瑶, 等. 秋枫对 Pb和 Cd 复合胁迫的耐受及累积特性[J]. 西南师范大学学报(自然科学版), 2020, 45(7):42-46. ZHOU Q Y, HUANG Z M, CHEN Y, et al. Tolerance and accumulative characteristics of *Bischofia Javanica* under combined stresses of Pb and Cd[J]. *Journal of Southwest China Normal University*(*Natural Science Edition*), 2020, 45(7):42-46.
- [28] 陈筱圆. 铅锌胁迫对假苹婆苗木生长和生理特性的影响[D]. 南 宁:广西大学, 2021:12-18. CHEN X Y. Research on the response of *Sterculia lanceolata* seedlings to Pb and Zn[D]. Nanning: Guangxi University, 2021:12-18.
- [29] 赵胡, 李裕红. 植物对重金属耐性机理的研究进展[J]. 阜阳师范学院学报(自然科学版), 2008(3):35-40. ZHAO H, LI Y H. Research advances on the mechanisms of heavy metal tolerance in plants [J]. Journal of Fuyang Teachers College (Natural Science), 2008(3): 35-40.
- [30] 宋菲, 郭玉文, 刘孝义, 等. 土壤中重金属镉锌铅复合污染的研究
 [J]. 环境科学学报, 1996(4):431-436. SONG F, GUO Y W, LIU X Y, et al. Study on the combined pollution of cadmium, zinc and lead in soil[J]. Acta Scientiae Circumstantiae, 1996(4):431-436.
- [31] ZHAO F J, TANG Z, SONG J J, et al. Toxic metals and metalloids: Uptake, transport, tetoxification, phytoremediation and crop improvement for safer food[J]. *Molecular Plant*, 2022, 15(1):27–44.
- [32] TAN L T, QU M M, ZHU Y X, et al. Zinc transporter5 and zinc transporter9 function synergistically in zinc / cadmium uptake[J]. *Plant Physiology*, 2020, 183:1235-1249.
- [33] 宗良纲, 丁园. 土壤重金属(Cu Zn Cd)复合污染的研究现状[J]. 农业环境保护, 2001(2):126-129. ZONG L G, DING Y. Present investigation on synergism of heavy metals copper, zinc and cadmium in soil[J]. Agro-Environmental Protection, 2001(2):126-129.
- [34] 赵晓祥, 冯璐, 王字晖. 锌、镉单一及复合胁迫下番茄幼苗生理响应及联合毒性的研究[J]. 安全与环境学报, 2020, 20(3):1176-1184. ZHAO X X, FENG L, WANG Y H. Physiological responses and joint toxicity of tomato seedlings under single and combined stress of zinc and cadmium[J]. Journal of Safety and Environment, 2020, 20(3):1176-1184.
- [35] 郭俊姆,杨俊兴,杨军,等.Cd、Zn交互作用对三七景天根系形态 和重金属吸收积累的影响[J].环境科学,2019,40(1):470-479. GUO J M, YANG J X, YANG J, et al. Interaction of Cd and Zn affect-

农业环境科学学报 第42卷第2期

ing the root morphology and accumulation of heavy metals in *Sedum aizoon*[J]. *Environmental Science*, 2019, 40(1):470-479.

- [36] 王吉秀,祖艳群,李元.镉锌交互作用及生态学效应研究进展[J]. 农业环境科学学报,2010,29(增刊1):256-260. WANG J X, ZU Y Q, LI Y. The interaction of cadmium and zinc and its ecological effects[J]. Journal of Agro-Environment Science, 2010, 29(Suppl1): 256-260.
- [37] 周启星, 吴燕玉, 熊先哲. 重金属 Cd-Zn 对水稻的复合污染和生态 效应[J]. 应用生态学报, 1994(4):438-441. ZHOU Q X, WU Y Y, XIONG X Z. Compound pollution of Cd and Zn and its ecological effect on rice plant[J]. Chinese Journal of Applied Ecology, 1994(4): 438-441.
- [38] 李忠海, 王海燕, 梁文彬, 等. 土壤镉、锌、铅复合污染对芹菜的影响[J]. 中南林学院学报, 2002(1):36-39. LI Z H, WANG H Y, LI-ANG W B, et al. Effects of the compound pollution of soil Cd, Zn and Pb on celery in red soil[J]. Journal of Central South Forestry College, 2002(1):36-39.
- [39] RAU S, MIERSCH J, NEUMANN D, et al. Biochemical responses of the aquatic moss *Fontinalis antipyretica* to Cd, Cu, Pb and Zn determined by chlorophyll fluorescence and protein levels[J]. *Environmental & Experimental Botany*, 2007, 59(3):299–306.
- [40] NING Y Z, ZHANG X M, LI B Z, et al. Distribution of Cd and Cu fractions in Chinese soils and their relationships with soil pH: A meta-analysis[J]. Sustainability, 2019, 11(2):337.
- [41] 张会民, 徐明岗, 吕家珑, 等. pH 对土壤及其组分吸附和解吸镉的 影响研究进展[J]. 农业环境科学学报, 2005, 24(增刊): 320-324.
 ZHANG H M, XU M G, LÜ J L, et al. A review of studies on effects of pH on cadmium sorption and desorption in soil[J]. Journal of Agro-Environment Science, 2005, 24(suppl): 320-324.
- [42] 刘霞, 刘树庆. 土壤重金属形态分布特征与生物效应的研究进展
 [J]. 农业环境科学学报, 2006(增刊):407-410. LIU X, LIU S Q. Progress in research on relationship between heavy metal speciation and bioavailability in soils[J]. Journal of Agro-Environment Science, 2006(Suppl):407-410.
- [43] 闫研,李建平,赵志国,等.超富集植物对重金属耐受和富集机制的研究进展[J].广西植物,2008(4):505-510. YAN Y, LI J P, ZHAO Z G, et al. Advances in the mechanisms of heavy metal tolerance and accumulation in hyperaccumualtors[J]. *Guihaia*, 2008(4): 505-510.

(责任编辑:叶飞)