

中文核心期刊/CSCD

请通过网上投稿系统投稿 网址:http://www.aes.org.cn

蝇蛆预处理及辅料添加对鸡粪堆肥氨挥发和温室气体排放的影响

刘尚斌,郑祥洲,王煌平,吴一群,吕健,张玉树

引用本文:

刘尚斌,郑祥洲,王煌平,吴一群,吕健,张玉树.蝇蛆预处理及辅料添加对鸡粪堆肥氨挥发和温室气体排放的影响[J].农业环境科学学报,2024,43(5):1151-1162.

在线阅读 View online: https://doi.org/10.11654/jaes.2023-0547

您可能感兴趣的其他文章

Articles you may be interested in

Fe₂O₃对鸡粪堆肥过程中含硫臭气排放的影响

陈文旭, 李国学, 马若男, 刘燕, 袁京 农业环境科学学报. 2021, 40(11): 2465-2471 https://doi.org/10.11654/jaes.2021-0857

双氰胺和氢醌添加对堆肥温室气体排放的影响

杨燕, 尹子铭, 袁京, 罗一鸣, 李国学 农业环境科学学报. 2021, 40(11): 2439-2447 https://doi.org/10.11654/jaes.2021-0955

畜禽粪便堆肥过程中碳氮损失及温室气体排放综述

袁京, 刘燕, 唐若兰, 马若男, 李国学 农业环境科学学报. 2021, 40(11): 2428-2438 https://doi.org/10.11654/jaes.2021-0986

添加生物炭对海南燥红壤N₂O和CO₂排放的影响

刘丽君,朱启林,李凯凯,李淼,孟磊,伍延正,汤水荣,何秋香 农业环境科学学报. 2021, 40(9): 2049-2056 https://doi.org/10.11654/jaes.2021-0187

工厂化条件下外源添加剂对猪粪堆肥过程中NH₃和H₂S的减排效果

宋修超,郭德杰,成卫民,罗佳,徐烨红,王光飞,刘新红,马艳 农业环境科学学报.2021,40(9):2014-2020 https://doi.org/10.11654/jaes.2021-0221

关注微信公众号,获得更多资讯信息

刘尚斌,郑祥洲,王煌平,等.蝇蛆预处理及辅料添加对鸡粪堆肥氨挥发和温室气体排放的影响[J].农业环境科学学报,2024,43 (5):1151-1162.

LIU S B, ZHENG X Z, WANG H P, et al. Effects of excipient incorporation and fly maggot pretreatment on ammonia emissions and greenhouse gases emissions during chicken manure composting[J]. *Journal of Agro-Environment Science*, 2024, 43(5): 1151–1162.

蝇蛆预处理及辅料添加对鸡粪堆肥氨挥发 和温室气体排放的影响

刘尚斌^{1,2},郑祥洲^{2*},王煌平²,吴一群²,吕健¹,张玉树²

(1. 福建农林大学资源与环境学院/福建省土壤环境健康与调控重点实验室, 福州 350002; 2. 福建省农业科学院土壤肥料研究所/ 福建省植物营养与肥料重点实验室, 福州 350013)

摘 要:为明确蝇蛆预处理及辅料添加对鸡粪堆肥过程中NH₃挥发及温室气体排放的影响,本研究分别将风化褐煤、厨余垃圾、蘑菇渣与鸡粪混合,在进行蝇蛆预处理后堆肥,研究试验过程中NH₃挥发和温室气体的排放规律。试验设置8个处理,分别为对照组(无蝇蛆预处理):纯鸡粪(CK1)、30%风化褐煤+70%鸡粪(CK2)、30%厨余垃圾+70%鸡粪(CK3)、30%蘑菇渣+70%鸡粪(CK4);试验组(蝇蛆预处理):纯鸡粪(T1)、30%风化褐煤+70%鸡粪(T2)、30%厨余垃圾+70%鸡粪(T3)、30%蘑菇渣+70%鸡粪(T4)。结果表明:蝇蛆预处理能够延长堆肥高温期,≥50℃天数均达到10 d以上,相比CK1增加5~9 d;在整个试验期间试验组NH₃挥发集中在堆肥第2天,试验组NH₃累积排放量显著低于对照组,降幅达到42.7%~61.1%,菇渣添加处理的NH₃累积排放量在对照组中最低;风化褐煤的添加能够显著降低N₂O排放,T2相比于T1降低84.2%,CK2相比于CK1降低51.7%。蝇蛆预处理能够显著降低CO₂排放当量,相比CK1降低32.1%~73.2%,其中,T4的CO₂排放当量最低。研究表明,蝇蛆预处理能够提高堆肥温度、延长堆肥高温期、显著降低NH₃排放和CO₂排放当量,若从堆肥温度及CO₂排放当量方面考虑蝇蛆预处理和菇渣组合为最优处理。 关键词:蝇蛆预处理;好氧堆肥;厨余垃圾;温室气体减排;氨挥发

中图分类号:X713;S141.4 文献标志码:A 文章编号:1672-2043(2024)05-1151-12 doi:10.11654/jaes.2023-0547

Effects of excipient incorporation and fly maggot pretreatment on ammonia emissions and greenhouse gases emissions during chicken manure composting

LIU Shangbin^{1, 2}, ZHENG Xiangzhou^{2*}, WANG Huangping², WU Yiqun², LÜ Jian¹, ZHANG Yushu²

(1. College of Resource and Environmental Science, Fujian Agriculture and Forestry University/ Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, Fuzhou 350002, China; 2. Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences/ Fujian Provincial Key Laboratory of Plant Nutrition and Fertilizer, Fuzhou 350013, China)

Abstract: To investigate the effects of fly maggot pretreatment and excipient incorporation on greenhouse gas emissions and NH₃ volatilization during chicken manure composting, a mixture of weathered lignite, kitchen waste, mushroom residue, and chicken manure was chosen for evaluation. Specifically, NH₃ volatilization and greenhouse gas emissions during composting were studied. The study included four control groups(no fly maggot pretreatment), which were composed of pure chicken manure(CK1), a blend of 30% weathered

收稿日期:2023-07-10 录用日期:2023-10-19

作者简介:刘尚斌(1998—),男,甘肃永靖人,硕士研究生,从事废弃物资源化研究。E-mail:1124285947@qq.com

^{*}通信作者:郑祥洲 E-mail:z85103@qq.com

基金项目:福建省农业科学院科技创新团队项目(CXTD202102-2);福建省农业科学院农业高质量发展超越协同创新工程项目(XTCXGC2021009); 福建省公益项目(2023R11030086,2023R1023001);福建省农业科学院英才项目(YC2021010)

Project supported : The Foundation of Fujian Academic of Agricultural Sciences(CXTD202102–2);Fujian Academy of Agricultural Sciences Agricultural High Quality Development Beyond Collaborative Innovation Project (XTCXGC2021009) ; The Basic Scientific Foundation of Public Service Research Institutes of Fujian Province, China(2023R11030086,2023R1023001);Fujian Academy of Agricultural Sciences Talent Prouect(YC2021010)

lignite and 70% chicken manure (CK2), 30% kitchen waste and 70% chicken manure (CK3), and 30% mushroom residue and 70% chicken manure (CK4). Additionally, there were four test groups with fly maggot pretreatment, including pure chicken manure (T1), a blend of 30% weathered lignite and 70% chicken manure (T2), 30% kitchen waste and 70% chicken manure (T3), and 30% mushroom residue and 70% chicken manure (T4). The results indicated that maggot pretreatment prolonged the period with temperatures \geq 50 °C by 5–9 days compared to CK1. During the whole test period, the NH₃ emissions of the test group were concentrated in the 2nd day of composting, and the NH₃ cumulative emission of pretreatment of fly maggots was significantly lower than that of the control group, with a decrease of 42.7%-61.1%. The NH₃ cumulative emission from mushroom residue was the lowest in the control group. N₂O emissions were significantly reduced by weathered lignite. Fly maggot pretreatment significantly reduced CO₂ emission equivalent (E_{CO_2e}), which is 32.1%-73.2% lower than CK1. The combined combination of mushroom residue and fly maggot pretreatment had the lowest E_{CO_2e} . In summary, the test group experienced increased composting temperatures, while significantly reduced NH₃ and E_{CO_2e} . Based on composting temperature and E_{CO_2e} , a combination of fly maggot pretreatment and mushroom residue is recommended as an optimal management solution.

Keywords: fly maggot pretreatment; aerobic composting; kitchen waste; greenhouse gases mitigation; ammonia volatilization

我国是蛋鸡和肉鸡养殖大国,鸡粪的可持续利用 是社会所面临的一个重大问题^[1]。我国每年约产生 1.7亿t的鸡粪,且其资源化利用率不高,导致养分大 量流失并造成严重的环境污染^[2]。堆肥是处理鸡粪 的有效手段之一,堆肥产品可以作为土壤调理剂和作 物长期的营养供应来源^[3]。但无论哪种堆肥方式均 会在一定程度上产生有害气体,并直接对大气环境产 生影响。氨(NH₃)作为主要的污染物是一种具有刺 激性气味的气体,也是形成酸雨的主要气体,对大气 及土壤造成很大的危害,氧化亚氮(N₂O)、二氧化碳 (CO₂)、甲烷(CH₄)是引起全球变暖的主要温室气 体^[4],因此在堆肥期间对NH₃和温室气体的减排至关 重要。

一般情况下,新鲜鸡粪具有高含水量、高pH、高 黏性和低C/N等特征,这些特征不利于鸡粪堆肥升温 发酵而且堆肥过程中会产生大量温室气体^[5]。针对 该问题,研究人员通过将稻草、木屑、生物炭等物料与 鸡粪混合堆肥在不同程度上优化堆体,降低NH₃和温 室气体排放^[6-7],但这也存在堆肥周期长、储存压力大 和增加成本等缺点。除此之外,可以通过添加腐食性 昆虫——蝇蛆对畜禽粪便进行快速预处理^[8],该技术 可调节鸡粪理化性状、优化C/N、改善鸡粪黏性结构 使其变松散进而缩短堆肥周期^[9],同时还可将鸡粪中 多余的氮转化为高蛋白幼虫生物质,大幅度降低鸡粪 堆体质量^[10]。有研究表明,该方式处理畜禽粪便过程 中NH₃排放少,温室气体排放量低,不仅能减少碳素 的损失,获得优质蛋白及有机肥,而且不会对环境产 生二次污染^[11-13]。

鸡粪理化性质并不适宜蝇蛆生长,而添加辅料是 改善物料理化性质、提高蝇蛆产量、提升后期堆肥效 果的有效途径。通过添加辅料提高蝇蛆在预处理阶 段活性,是否可在一定程度上降低堆肥阶段NH₃挥发 和温室气体排放并不明确,因此本文针对蝇蛆预处理 阶段及堆肥阶段的NH₃和温室气体排放进行系统性 研究,并在此基础上进一步探究不同辅料添加对蝇蛆 预处理阶段及堆肥阶段NH₃和温室气体排放的影响, 旨在为鸡粪资源化利用提供科学参考。

1 材料与方法

1.1 供试材料

本试验所用鸡粪取自福建省创辉生物科技有限 公司,辅料分别为风化褐煤、菇渣、厨余垃圾,厨余垃 圾取自当地食堂,经粉碎机粉碎为匀浆状。试验在该 公司发酵车间进行,堆肥初始理化性质见表1。

表1 堆肥物料的理化性质

Table 1 Physical and chemical properties of compost materials

物料 Material	含水率 Water content/%	рН	有机碳(干基) Organic carbon/%	总氮(干基) Total nitrogen/%	C/N	
鸡粪	61.1	6.53	21.9	2.56	8.5	
风化褐煤	6.4	6.20	9.5	0.42	22.7	
厨余垃圾	64.5	3.87	39.8	3.79	10.5	
菇渣	11.4	7.69	43.2	2.40	18.1	

1.2 试验设计

试验采用双因素完全随机区组设计,底物在堆肥前部分进行蝇蛆预处理,部分不进行预处理。试验共设置8个处理(具体处理及编号见表2),每个处理设3组平行,以纯鸡粪堆肥为原始对照(CK1)。将辅料与鸡粪的含水量分别调至65%,以3:7比例进行混合,各处理底物总质量为100kg,底物混合均匀后将其平铺成10 cm厚度的长方形。试验组将新鲜的蝇卵接种至底物上面,蝇卵的接种量为底物总质量的2%。

2024年5月

Table 2. Composting test treatments

表2 堆肥试验处理

对	照组(无蝇蛆预处理)	试验组(蝇蛆预处理)			
Control g	group(pretreatment without	Test group(fly maggots			
	fly maggots)	pretreatment)			
编号	处理	编号	处理		
Number	Treatment	Number	Treatment		
CK1	纯鸡粪	T1	纯鸡粪		
CK2	30%风化褐煤+70%鸡粪	Т2	30%风化褐煤+70%鸡粪		
CK3	30% 厨余垃圾+70% 鸡粪	Т3	30% 厨余垃圾+70% 鸡粪		
CK4	30%蘑菇渣+70%鸡粪	Τ4	30%蘑菇渣+70%鸡粪		

试验组蝇蛆预处理为期4d,对照组静置4d。试验第4天分离虫体后,将所有处理的含水量调至60%左右,称取25kg底物转入约50L(37 cm×37 cm×37 cm)泡沫箱中进行为期30d的堆肥试验。堆肥期间采用强制间歇式通风设施,通风速率为0.15L·kg⁻¹·min⁻¹,每间隔50 min鼓风10 min^{16.14}。分别于第7、14、22天翻堆。为区分试验阶段,蝇蛆预处理天数用罗马数字表示。

1.3 样品采集与测定

分别于蝇蛆预处理阶段第Ⅰ、Ⅲ天和堆肥阶段第 1、3、5、7、10、13、16、20、26天采集NH₃和温室气体进 行测定。

NH₃采用吸收法测定,用质量分数为2%的硼酸 溶液吸收,然后用稀硫酸进行滴定^[15]。温室气体采集 前关闭鼓风机,打开泡沫箱顶部盖子,使箱内与外界 空气充分接触交换(约30 min),取周边空气作为对 照,再将取样器连接于顶部,30 min后用医用针筒从 取样器顶部预留的取气口采集60 mL箱内气体,存放 在100 mL的密闭气袋内。温室气体浓度采用安捷伦 气相色谱仪(7890A,美国)测定。CH₄和CO₂气体样 品分析色谱柱采用填充60/80目porapak Q的填充柱, 镍触媒转化器温度为375 °C,FID温度为200 °C,助燃 气为空气,流速300 mL·min⁻¹。N₂O 气体样品分析色 谱柱采用填充80/100目porapak Q的填充柱,ECD 温 度为330 °C。3 种气体同时测定,色谱柱的温度均为 55 °C,定量六通阀进样,进样量1 mL,载气为N₂,流速 30 mL·min⁻¹,总测定时间为5 min^[16]。

试验期间测定鸡粪pH、铵态氮(NH[‡]-N)和硝态 氮(NO⁵-N)的样品为鲜样,pH采用pH计[水土比(质 量比)2.5:1]浸提测定,NH[‡]-N和NO⁵-N采用戴氏合 金蒸馏法^[17]测定。有机碳(TOC)采用重铬酸钾容量 法测定,全氮(TN)采用H₂SO₄-H₂O₂联合消煮,消煮至 无色或者淡黄色的澄清液后使用凯氏定氮仪测定^[18]。 1.4 数据处理与分析

NH₃排放通量计算公式:

$$F = \frac{c \times (V - V_0) \times 14.0}{W \times t} \tag{1}$$

式中:F为NH₃排放通量,g·m⁻²·h⁻¹;c为硫酸标准溶液 浓度,0.05 mol·L⁻¹;t为取样器所覆盖的时间,h;V为 样品滴定硫酸标准体积,mL; V_0 为空白滴定硫酸标准 体积,mL;14.0为氮原子摩尔质量,g·mol⁻¹;W为取样 器所覆盖的面积, $m^{2[15]}$ 。

N₂O、CO₂和CH₄排放通量计算公式:

$$F = \rho \times \frac{dc}{dt} \times V \times \frac{273}{(273 + T) \times W}$$
(2)

式中:F为气体排放通量, $mg \cdot m^{-2} \cdot h^{-1}$; ρ 为被测气体标 准状态下的密度,CH₄为0.717 kg·m⁻³、N₂O为1.978 kg·m⁻³、CO₂为1.977 kg·m⁻³;dc/dt为单位时间内气体 浓度增加量,10⁻⁶·h⁻¹或10⁻⁹·h⁻¹;V为取样器中气体的 有效空间体积,m³;W为取样器所覆盖的面积,m²;T为环境温度, $\mathbb{C}^{[19]}$ 。

通过相邻两次气体排放通量平均值和间隔时间 计算该时间段内的排放气体总量,继而求出温室气体 累积排放量,如公式(3)所示:

$$C_{i+1} = \sum_{i=1}^{n} \frac{F_{i+1} + F_i}{2} \times 24 \times D$$
(3)

式中: C_{i+1} 为第i次和第i+1次采样期间的气体累积排放量,mg·m⁻²; F_i 和 F_{i+1} 分别为第i次和第i+1次采样时气体瞬时排放速率,mg·m⁻²·d⁻¹;i为采样次数;D为两次采样间隔时间,d^[19]。

为更直观地表示试验过程中温室气体累积排放 效应,根据IPCC 2014年第五次会议报告,以百年影 响尺度为计算,在相同质量下,CH₄和N₂O的增温潜势 (GWP)分别是CO₂的28倍和265倍^[4]。CO₂排放当量 (E_{co_2e})的计算公式为:

*E*_{CO2}e=28×*E*_{CH4}+265×(*E*_{N2}O+0.01×*E*_{NH3}×44/28) (4) 式中:*E*_{N2}O为N₂O排放量,mg·m⁻²;*E*_{CH4}为CH4排放量, mg·m⁻²;*E*_{NH3}为NH3排放量,mg·m⁻²。*E*_{CO2}e为*E*_{N2}O、*E*_{CH4} 直接排放产生的CO2当量以及*E*_{NH3}引起的N₂O间接排 放产生的CO2当量之和。

文中数据为3次重复的平均值,采用Excel 2021 进行数据分析,利用SPSS 27.0软件在Duncan(SSR)方 法下分析确定显著性差异,利用Origin Pro 2022制图。

2 结果与分析

2.1 试验过程中温度的变化规律

好氧堆肥过程中各温度变化如图1所示,在蝇蛆

养殖阶段各处理温度均保持在40.0℃左右。堆肥阶 段第2天各处理迅速进入高温期(≥50.0℃),温度均 达到60℃以上,其中CK4、T3和T4的温度分别为 72.6、71.0℃和78.3℃,随即各处理温度整体上呈现 出下降趋势。在第8天翻堆以后各处理的温度均出 现不同程度的上升,第10天时各处理温度均达到 50.0℃以上的高温。在第15天的第二次翻堆后只有 T1、T2进入高温期,其余处理温度并未发生明显变 化。在整个堆肥过程中,各处理的高温时间表现为 T3>CK4>T1=T2>T4>CK3=CK2>CK1,高温时间依次 为14、13、12、12、10、7、7、5 d。T3、CK4、T1、T2和T4 的高温期均超过10d,达到《粪便无害化卫生标准》 (GB 7959—2012)中好氧堆肥温度≥50.0℃至少10 d 的要求。

2.2 试验过程中基本理化性质的变化

如表3所示,经过4d的蝇蛆预处理及陈化(堆肥 第0天),各处理pH迅速上升至8.8左右,试验组pH、 C/N均略高于对照组,NHi-N和TN含量均低于对照 组。纯鸡粪处理中,T1的NO5-N含量高于CK1。试验 组(T1、T2、T4)TOC含量均低于对照组(CK1、CK2、 CK4)。堆肥结束时(堆肥第28天),C/N、TOC和NHi-N 也出现不同程度下降,试验组TOC低于对照组。各处 理NHi-N含量降幅为31.2%~82.3%,其中CK4和T4仍 有较高的含量,分别为821.91 mg·kg⁻¹和762.95 mg· kg⁻¹。由于浓缩效应,堆肥后各处理TN含量上升。

2.3 试验过程中NH₃排放规律

蝇蛆预处理及堆肥过程中NH₃排放通量和累积 排放量如图2所示,T2和T3的NH₃排放峰值在蝇蛆 预处理第Ⅲ天,其余处理排放峰值均出现在好氧堆肥

农业环境科学学报 第43卷第5期

第2天。试验组NH₃排放通量峰值要低于对照组。 在好氧堆肥8d后,NH₃排放通量处于较低水平,在翻 堆后并无发生明显变化。图2e显示,蝇蛆预处理能 够大幅度降低NH₃累积排放量,T1比CK1降低47% 且处理间达到极显著差异水平(P<0.01),试验组T2、 T3和T4的NH₃累积排放量分别比对照组CK2、CK3 和CK4下降52.7%、61.1%和42.7%,且处理间也达到 极显著差异水平(P<0.01)。CK2和CK4比CK1降低 21.8%、42.5%,处理间达到显著差异水平(P<0.05)。 T2、T3和T4处理比T1处理降低30.2%、15.4%和 37.8%,且T2和T4与T1处理间的差异达到显著性水 平(P<0.05)。双因素方差分析表明,预处理、辅料及 两者交互作用对NH₃累积排放量均有极显著影响(P<

2.4 试验过程中温室气体排放规律

2.4.1 温室气体排放通量的变化

如图3显示,试验第1天除CK3外其余处理均有 较高水平的CO₂排放通量,且试验组各处理CO₂排放 通量均高于对照组。在好氧堆肥期间,菇渣处理CO₂ 排放主要发生在第2~6天,而在其余T处理主要在第 14~21天,各处理CO₂排放通量随着堆肥时间和翻堆 时间呈现出先上升后下降的循环变化趋势,在堆肥第 21天后趋于稳定。此外,堆肥期间试验组CO₂排放通 量也均高于对照组。在整个试验中N₂O排放通量一 直处于较低水平(图4),CK4和T4在试验第I天就达 到排放峰值,分别为7.7 mg·m⁻²·d⁻¹和12.9 mg·m⁻²· d⁻¹,其余处理在堆肥第4、11、17天出现短暂的排放高 峰。纯鸡粪处理中,蝇蛆预处理提高了N₂O排放通 量。本试验中各处理CH₄排放通量峰值均出现在蝇

图1 试验过程中各处理温度变化

Figure 1 Temperature of different treatments during experiment

2024年5月

表3 不同处理的基本理化性质变化

Table 3 (Changes in [basic ph	vsical and	d chemical	properties o	f different	treatments
-----------	--------------	----------	------------	------------	--------------	-------------	------------

处理 Treatment	时间 Time/d	рН	$\frac{\rm NH_4^+-N}{\rm (mg\cdot kg^{-1})}$	$\frac{\text{NO}_{3}^{-}-\text{N/}}{(\text{mg}\cdot\text{kg}^{-1})}$	有机碳 Organic carbon/%	总氮 Total nitrogen/%	C/N
CK1	0	$8.84 \pm 0.08 \mathrm{b}$	1 223.32±81.63a	$205.84{\pm}10.93{ m b}$	15.96±0.15a	2.03±0.18b	7.95±0.04a
	28	9.11±0.05a	$213.62{\pm}16.24\mathrm{b}$	430.96±29.56a	$14.39 \pm 0.26 \mathrm{b}$	2.59±0.04a	$5.55 \pm 0.12 \mathrm{b}$
CK2	0	8.80±0.29a	1 297.26±96.99a	$214.67{\pm}23.92\mathrm{b}$	14.01±0.14a	$1.27 \pm 0.06 \mathrm{b}$	11.03±0.11a
	28	8.71±0.01a	478.82±16.71b	430.69±55.14a	$11.48\pm0.28\mathrm{b}$	1.80±0.08a	$6.37 \pm 0.09 \mathrm{b}$
CK3	0	8.78±0.14a	1 420.21±58.37a	$251.80{\pm}14.82\mathrm{b}$	16.88±0.31a	$2.47\pm0.20\mathrm{b}$	6.83±0.10a
	28	$8.34 \pm 0.03 \mathrm{b}$	$448.53 \pm 17.20 \mathrm{b}$	404.61±81.25a	15.38±0.45a	3.06±0.09a	$5.02\pm0.11\mathrm{b}$
CK4	0	8.83±0.06a	1 422.50±55.71a	$273.61 \pm 21.03 \mathrm{b}$	22.03±0.69a	2.51±0.04a	8.31±0.12a
	28	8.77±0.12a	$821.91{\pm}46.15{ m b}$	429.43±33.12a	$18.59 \pm 0.41 \mathrm{b}$	2.65±0.07a	7.40 ± 0.15 b
T1	0	9.12±0.04a	1 064.34±33.52a	$284.81 \pm 14.19 \mathrm{b}$	15.56±0.13a	$1.45 \pm 0.07 \mathrm{b}$	11.00±0.09a
	28	8.99±0.13a	$300.39{\pm}21.03{\rm b}$	512.42±42.18a	$13.98 \pm 0.25 \mathrm{b}$	2.07±0.06a	$6.75 \pm 0.11 \mathrm{b}$
T2	0	8.91±0.18a	1 042.77±27.27a	$315.70{\pm}20.57{\rm b}$	13.36±0.29a	$0.97 \pm 0.05 \mathrm{b}$	13.77±0.15a
	28	8.78±0.05a	$532.22{\pm}66.15\mathrm{b}$	473.95±56.23a	12.40±0.21a	1.43±0.04a	$8.67{\pm}0.04{\rm b}$
Т3	0	8.84±0.07a	1 159.65±75.09a	$220.74{\pm}27.90\mathrm{b}$	17.71±0.25a	2.07±0.21b	8.55±0.12a
	28	$8.65{\pm}0.09{\rm b}$	$449.64 \pm 19.56 \mathrm{b}$	425.86±59.45a	$15.43\pm0.36b$	2.65±0.10a	$5.82 \pm 0.08 \mathrm{b}$
Τ4	0	8.94±0.11a	1 124.55±37.90a	$270.56{\pm}16.88\mathrm{b}$	21.55±0.28a	2.40±0.15a	8.98±0.09a
	28	8.95±0.06 a	$762.95 \pm 23.53 \mathrm{b}$	417.52±23.12a	$16.56 \pm 0.37 \mathrm{b}$	2.51±0.04a	6.87±0.08b

注:不同字母表示同一处理第0天和第28天差异显著(P<0.05)。

Note: Different letters indicate significant differences between the 0th and 28th days of the same treatment (P<0.05).

蛆预处理阶段第 I 天(图 5),好氧堆肥期间各处理 CH₄排放通量均低于 1 mg·m⁻²·d⁻¹,在腐熟后期呈现出 缓慢上升的趋势。除 T4处理在堆肥期间有小幅度波 动外,其余处理均在 0.2 mg·m⁻²·d⁻¹上下波动。

2.4.2 温室气体累积排放量

由图6a可知,蝇蛆预处理使得CO2累积排放量得 到大幅度提高,T1、T2和T3分别比CK1、CK2和CK3 增加39.2%、57.3%和48.9%,且处理间均达到极显著 差异水平(P<0.01)。CK4比CK1增加35.3%,且处理 间达到显著差异水平(P<0.05)。CK2处理CO2累积 排放量最低。在 $N_{2}O$ 累积排放量方面(图 6b),除T1 外试验组其他处理N2O累积排放量均低于对照组,其 中T3、T4相比于CK3、CK4分别降低28.3%和30.4%, 均达到显著差异水平(P<0.05)。在辅料添加方面,风 化褐煤的添加能够显著降低 N₂O 累积排放量,CK2 比 CK1下降52.7%, 而CK3比CK1增加37.7%。试验组 中 T2、T3 和 T4 分别比 T1 下降 84.7%、47.8% 和 68.8%,各处理与T1间均达到显著差异水平(P< 0.05)。T1的CH4累积排放量显著低于CK1,降幅达 到 37.6%。与 T1 相比, T4 下降 67.4%, 而 T3 增加 29.1%。对照组中辅料的添加在不同程度上均降低 了CH4排放量,CK2、CK3和CK4相比于CK1降幅分别 达到 33.1%、61.9% 和 87.1%, 各处理均与 CK1 达到显

著差异水平(P<0.05)。菇渣添加处理相比其他处理 CH₄累积排放量最低(图6c)。

2.4.3 温室气体累积排放效应

依据 IPCC 2014年第五次会议报告中的温室气体折算方法,并参照《畜禽粪便腐殖化堆肥项目温室 气体减排量核算技术规范》T/ZGCERIS 0006—2019^[20] 温室气体核算边界,动物粪便有机质属于生物源,堆 肥过程中分解产生的 CO₂排放不计算在温室气体排 放中。结果表明(表4),蝇蛆预处理、辅料添加及其 交互作用均能显著降低 E_{CO_2e} ,各处理表现为 CK1> CK3>CK2>T3>T1>T2>CK4>T4。T4具有最低的 E_{CO_2e} , 为66.90 g·m⁻²,相比 CK1下降71.8%。

2.4.4 不同辅料及堆体预处理方式对堆肥过程中温室 气体排放的双因素分析

通过预处理和辅料之间的双因素方差分析可知 (表5),蝇蛆预处理仅对 CO_2 排放和 E_{CO_2e} 有显著影响, 辅料和辅料及预处理的交互作用显著影响 N_2O 排放、 CH_4 排放、 CO_2 排放和 $E_{CO_2e_o}$

2.4.5 气体排放与堆体理化因子间的相关性

相关分析表明(表6):NH₃排放通量与堆体pH和 NHL-N呈显著正相关,与TN呈显著负相关,与NO₃-N呈 极显著负相关。CO₂排放通量与pH呈极显著负相 关,与TN、TOC呈极显著正相关。N₂O排放通量与

不同小写字母表示对照组(CK)处理间差异显著(P<0.05),不同大写字母表示试验组(T)处理间差异显著(P<0.05);*代表处理间差异显著(P<0.05),**代表处理间差异极显著(P<0.01),ns代表处理间无显著差异。下同。

Different lowercase letters indicate significant differences between treatments in the control group(CK)(P<0.05), and different uppercase letters indicate significant differences between treatments in the experimental group(T)(P<0.05). * The difference between representative treatments is significant(P<0.05), while * * representative treatments have extremely significant differences (P<0.01). ns represents no significant difference between treatments. The same below.

图2 不同处理 NH₃排放通量和累积排放量的变化

Figure 2 Emission flux and cumulative amount of NH3 from different treatments

NO₅-N呈显著正相关。CH₄排放通量与pH呈极显著 负相关,与TOC呈极显著正相关。

3 讨论

3.1 辅料添加显著降低堆体 NH₃排放

NH₃是导致堆肥过程中氮素大量损失的主要活 性氮气体之一,其挥发也是导致最终有机肥品质降低 的重要原因^[21]。在对照处理中30%蘑菇渣引入相对 于其他对照处理减排效果最佳,比纯鸡粪处理下降 44.1%。蘑菇渣具有疏松多孔的结构,以及丰富的酶 含量(如纤维素酶、酯酶),可通过优化堆体条件提高 微生物数量,以微生物同化作用来减少氮素损 失^[22-23],同时疏松结构也能够提高堆肥过程中的供氧 效率,而堆体含氧量的增加可以增强NH₃向NO₃-N的 硝化过程并提高硝化细菌的活性,从而显著降低气态 氮的损失来达到NH₃减排的目的^[24]。其次胡伟桐等^[25]的 研究还表明添加的辅料的比表面积也会影响气体排 放,蘑菇渣的比表面积最大且具有极性,更易于吸附 NH₃。因此蘑菇渣与鸡粪堆肥,有无蝇蛆预处理时, 其NH₃和*E*co₂e排放均最低。风化褐煤的添加也能够 显著降低NH₃排放量,这与Mei等^[26]的研究一致,由于风化褐煤偏酸性,经风化褐煤添加改良后的鸡粪pH

图4 不同试验处理N2O排放通量

Figure 4 N₂O emission flux of different treatments during experiment

www.aes.org.cn

图5 不同试验处理CH4排放通量

Figure 5 CH4 emission flux of different treatments during experiment

表4 不同试验处理温室气体累积排放效应

Table 4 Cumulative greenhouse gas emissions of different treatments

か III Treatmont	E_{N_20} N ₂ O emission/(g·m ⁻²)		$E_{\mathrm{CH}_4}\mathrm{CH}_4$ en	$E_{CH_4} CH_4 emission/(g \cdot m^{-2})$		$E_{\rm NH_3}$ NH ₃ emission/(g·m ⁻²)	
处理 Treatment -	N ₂ O	CO ₂ e	CH ₄	CO ₂ e	NH ₃	CO ₂ e	2 C02ef (g·m)
CK1	0.036	9.54	4.06	113.68	27.32	113.77	236.99
CK2	0.017	4.50	2.70	75.60	21.34	88.87	168.97
CK3	0.058	15.37	1.56	43.68	31.46	131.01	190.06
CK4	0.035	9.27	0.54	15.12	15.64	65.13	89.52
Τ1	0.080	21.2	2.54	71.12	14.46	60.22	152.54
Τ2	0.012	3.18	2.54	71.12	10.08	41.98	116.28
Т3	0.042	11.13	3.28	91.84	12.22	50.89	153.86
Τ4	0.025	6.63	0.82	22.96	8.96	37.31	66.90

表5 不同辅料、堆体预处理及其交互作用对堆肥过程中气体排放双因素分析

Table 5 Interaction effects of auxiliary materials and reactor pretreatment on gas emissions during composting

处理因素 Treatment factor	N ₂ O 排放 N ₂ O emissions	CH4排放 CH4 emissions	$E_{\rm CO_2e}$	CO ₂ 排放CO ₂ emissions
蝇蛆预处理	3.061ns	0.102ns	22.735**	448.546**
辅料	145.520**	36.358**	62.005**	38.366**
辅料×预处理	72.697**	17.639**	8.071**	33.848**

注:表中数据为F值,*P<0.05,**P<0.01,ns代表无显著影响。

Note: The data in the table is an F value, * P < 0.05, ** P < 0.01, ns represents no significant effect.

降低,从而降低了NH₃排放量,本研究结果也显示 NH₃排放通量与pH呈显著正相关。此外,风化褐煤 具有的较多的裂缝和孔隙可在一定程度上吸收NH^{*} 和NH₃以达到减排效果。

3.2 蝇蛆预处理进一步降低堆体 NH₃排放

在本试验中,蝇蛆预处理相比对照处理降低初始

表6 温室气体排放通量与理化因子间的相关分析

Table 6 Correlation coefficient between greenhouse gas emission and environmental factors	
---	--

项目 Item	рН	NH_4^+-N	NO ₃ -N	TN	TOC	C/N
CO ₂ 排放通量CO ₂ emission rate	-0.723**	0.238*	-0.056	0.623**	0.410**	0.260
N2O 排放通量 N2O emission rate	0.003	-0.077	0.275*	0.005	0.310	-0.269
CH4排放通量CH4emission rate	-0.309**	0.091	0.161	0.208	0.423**	-0.160
NH3排放通量NH3emission rate	0.231*	0.271*	-0.405**	-0.347*	-0.148	0.031

注:*表示在0.05水平上显著相关;**表示在0.01水平上显著相关。

Note: *indicates significant correlation at the 0.05 level. **indicates significant correlation at the 0.01 level.

图6 不同试验处理温室气体累积排放量

Figure 6 Cumulative greenhouse gas emissions of different treatments

底物中NH4-N和TN含量,相关性分析表明NH4-N与 NH3排放通量呈显著正相关,试验组NH3累积排放量 也显著低于对照组(图2),这一结果与Chen等^[27]的研 究一致。相比于传统堆肥,黑水虻在不同含水率下生 物转化畜禽粪便可大幅度降低NH3排放,而在此过程 中只有1.47%~2.75%的氮转化为NH3和温室气体。 在整个试验初期引入蝇蛆进行预处理,能在短期内快 速消耗大量氮源。Alejandro等^[28]的研究也表明黑水 虻的添加使得转化后的猪粪中氮减少25%,这可能是 此次试验中试验组NH3排放量降低的主要原因之一。 此外,预处理后的虫沙黏度降低、疏松多孔,氧气的大 量进入能够促进堆体中微生物繁殖及代谢活动,从而 对NH3排放量起到有效的抑制作用^[29]。

3.3 蝇蛆预处理与辅料添加及其交互处理具有不同的温室气体排放规律

堆肥过程中N₂O排放是由微生物活动、堆肥表面 硝化作用和堆肥内部反硝化作用产生的。在本试验 中,试验组中T2、T3和T4的N₂O累积排放量显著低于 CK2、CK3和CK4,说明蝇蛆预处理能够有效降低N₂O 排放,这与Boakye等^[30]的研究一致,黑水虻蠕动会引 起底物内的曝气,通过减少反硝化细菌数量来抑制反 硝化,从而降低N₂O排放。在蝇蛆预处理阶段第I天 中CK4和T4均处于N₂O排放通量峰值,其余处理都 维持在很低的水平。由此可见,蘑菇渣的加入对堆肥 过程中N₂O排放有着较大的影响。Zhang等^[31]研究发 现,鸡粪与适量的蘑菇渣共堆肥时,N₂O的排放主要

发生在堆肥初期,各处理在第1天时排放通量达到峰 值。NH₄-N和NO₅-N是微生物硝化和反硝化的基 质,N2O的产生在很大程度上受这两种基质影响,堆 肥前期NO_x-N含量高是导致N₂O排放的重要原因,同 时活性反硝化细菌也有着较高的贡献[32-33]。除添加 蘑菇渣处理的CK4、T4,其余处理均表现出前期N₂O 的排放量维持在很低的水平,随着堆肥时间的增加 N₂O的排放通量也小幅度增加,这与Miguel等^[34]和Jiang等[35]的研究相似,在堆肥过程早期,高温和高浓度 的游离铵(300~1650 mg·L⁻¹)可能对硝化细菌产生抑 制作用,有效碳源的缺乏也会在一定程上抑制异养反 硝化细菌活性。也有研究表明 N₂O 排放的关键因素 是堆体氮素的供应水平1361,反硝化细菌在消耗尽有机 碳后才会产生 N₂O^[37]。CK2 和 T2 处理相比于其他处 理N2O累积排放量均处于较低水平,且处理间并没有 显著的差异(P>0.05)。有研究表明风化褐煤表面有 较多的孔隙及裂隙^[38],而风化褐煤的添加能延长堆肥 高温阶段及堆体通风量,促进硝化作用,导致N2O排 放量降低。

好氧堆肥过程中CO₂的排放主要是微生物降解 有机质引起的,CO₂的排放通量可以直接反映堆肥过 程中微生物的活性及有机质的降解矿化速率[39]。在 生物转化阶段 CO₂排放通量也可以间接表明底物的 生物降解率^[40]。试验初期,CO2主要来源于底物中微 生物活动代谢和蝇蛆幼虫呼吸,在生物转化第 [天 T2和T4的CO₂排放通量明显低于对照组,这可能是 风化褐煤及蘑菇渣的加入对蝇蛆活性具有抑制作用 或者辅料与蝇蛆的协同作用在一定程度上抑制了 CO₂排放。在堆肥阶段试验组CO₂排放均来自于微生 物代谢,而在此阶段CO2的排放通量明显高于对照 组,说明蝇蛆引入能够改善底物性状,提高微生物活 性。菇渣添加使得堆体CO2排放通量在堆肥前期就 达到峰值,这是因为菇渣疏松多孔的结构使堆体氧气 较为充裕,再加上堆肥初期堆体养分含量较高,好氧 微生物快速繁殖,使部分容易分解的可溶性物质氧化 分解生成 CO2和 H2O^[41]。试验组其余处理 CO2排放通 量峰值均出现在堆肥第17天,由于试验初期大量的 有机物料被生物转化,所以导致堆肥初期CO2排放较 少。随着堆肥天数的增加,不易分解的有机物料被转 化,导致堆肥中期大量的CO2排出[42]。对照组在前期 也具有较低的CO₂排放通量,其主要原因在于物料性 状,鸡粪的黏性结构不同程度地抑制了微生物活性。 此外,随着含水率的降低,鸡粪抱团为小球状阻隔了

氧气的进入,使其内部的氧气含量降低,进而导致 CO₂排放较低^[43-44]。

试验过程中氧气浓度是影响 CH4产生的重要因 子,堆体内部的易降解有机物质及水分含量在一定程 度上能够加速CH4的释放^[7]。各处理CH4排放主要集 中在整个试验的第 I 天,早期阶段底物水分含量大、 孔隙度低和微生物活动较为剧烈,当完成有氧代谢后 堆体中出现部分小分子有机酸(甲酸、乙酸和丙酸), 在厌氧条件下甲烷菌利用CO2和乙酸产生CH145,这 可能是导致第 I 天 CH₄排放通量高的主要原因。本 试验中T1处理CH4排放通量峰值和累积排放量均低 干CK1,说明蝇蛆预处理在一定程度上能够降低CH4 排放,有机物降解过程中的厌氧条件会产生大量的 CH4排放,而蝇蛆的饲养在半好氧条件下,因此导致 较低的CH4排放[46]。此外,蝇蛆通过生物转化和蠕动 改善底物空气循环并减少CH4产生[47]。本研究发现, 翻堆后CH4排放通量会出现小幅度下降。Jiang 等^[35] 的研究也发现不翻堆处理 CH4 排放量显著高于翻堆 处理。分析表明,底层环境条件包括厌氧环境、低于 200 mV 的氧化还原电位和较高的温度均有利于 CH4 的排放^[32]。Szanto等^[48]也有类似发现,翻堆以CH4的 形式损失 0.4% 的初始有机碳, 而静态堆肥损失 12.9%。翻动堆体能使物料混合均匀并能改善堆体 通风,而且能使有厌氧条件的大颗粒破碎[49]。

4 结论

(1)蝇蛆预处理可以延长堆肥高温期,使其各处 理高温期均超过10d,相比无蝇蛆预处理的纯鸡粪堆 肥增加了5~9d,符合《粪便无害化卫生标准》(GB 7959—2012)。

(2)NH₃排放通量与pH、NH₄-N、NO₃-N和总氮间 具有显著相关性。蝇蛆预处理相比于无预处理对照 组能够显著降低NH₃排放,在纯鸡粪条件下蝇蛆预处 理降低47%的NH₃排放,菇渣和蝇蛆预处理组合达到 最佳减排效果,比纯鸡粪处理降低67.1%。

(3) 蝇蛆预处理能够显著降低 CO₂ 排放当量 (*E*_{CO₂e}),但同时提高各处理 CO₂排放量。其中,菇渣 和蝇蛆预处理组合有最低的*E*_{CO₂e},其相比 CK1下降 73.2%。

参考文献:

LIM S S, PARK H J, HAO X Y, et al. Nitrogen, carbon, and dry matter losses during composting of livestock manure with two bulking agents

as affected by co-amendments of phosphogypsum and zeolite[J]. *Ecology Environment & Conservation*, 2017, 10(2):280-290.

- [2] 陈江珊.水虻转化农业有机废弃物过程中氮素形态及转化效率研究[D]. 武汉:华中农业大学, 2021:1-9. CHEN J S. The research on nitrogen forms and conversion efficiency of agricultural organic wastes by black soldier fly[D]. Wuhan: Huazhong Agricultural University, 2021:1-9.
- [3] TURAN N G. Nitrogen availability in composted poultry litter using natural amendments[J]. Waste Management & Research, 2009, 27(1): 19-24.
- [4] IPCC 2014. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [R]. Geneva: Climate Change 2014 Synthesis Report, 2014.
- [5] SOREN O, PETENSR, SVEN G, et al. Ammonia and nitrous oxide interactions: roles of manure organic matter management[J]. Animal Feed Science and Technology, 2011, 166:503-513.
- [6] 王义祥, 高凌飞, 辛思洁, 等. 菌渣-发酵床废弃垫料堆肥中温室气体排放及与微生物的关系[J]. 环境科学学报, 2017, 37(12): 4662-4669. WANG Y X, GAO L F, XIN S J, et al. Greenhouse gas emission and its correlation with microbial in composting of waste packing and fungus chaff[J]. Acta Scientiae Circumstantiae, 2017, 37(12): 4662-4669.
- [7] 王义祥, 叶菁, 林怡, 等. 花生壳生物炭用量对猪粪堆肥温室气体和 NH₃ 排放的影响[J]. 中国农业大学学报, 2021, 26(6):114-125.
 WANG Y X, YE J, LIN Y, et al. Effect of peanut shell biochar on greenhouse gas and NH₃ emission during swine manure composting[J]. *Journal of China Agricultural University*, 2021, 26(6):114-125.
- [8] 王芳, 朱芬, 雷朝亮. 中国家蝇资源化利用研究进展[J]. 应用昆虫学报, 2013, 50(4):1149-1156. WANG F, ZHU F, LEI C L. Recent advances in the utilization of the housefly as a food resource in China[J]. *Chinese Journal of Applied Entomology*, 2013, 50(4):1149-1156.
- [9] HUIS V A, ONINCX B A G D. The environmental sustainability of insects as food and feed: a review[J]. Agronomy for Sustainable Development, 2017, 37(5):275-282.
- [10] BORTNLINI S, MACAVEI I L, SAADUON H J, et al. *Hermetia illucens*(L.) larvae as chicken manure management tool for circular economy[J]. *Journal of Cleaner Production*, 2020, 262:121289.
- [11] YANG F, LI G X, SHI H, et al. Effects of phosphogypsum and superphosphate on compost maturity and gaseous emissions during kitchen waste composting[J]. Waste Management, 2015, 36(6):70–76.
- [12] BESKIN K V, HOLCOMB C D, JONATHAN A, et al. Larval digestion of different manure types by the black soldier fly (*Diptera*: *Stratiomy-idae*) impacts associated volatile emissions[J]. Waste Management, 2018, 74:213-220.
- [13] 朱新梦. 洱海流域奶牛粪便堆肥过程中氮素转化和温室气体排放 研究[D]. 北京:中国农业科学院, 2017:1-5. ZHU X M. Research of nitrogen transformation and greenhouse gas emissions in Erhai basin during dairy manure composting[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017:1-5.
- [14] 袁京, 刘燕, 唐若兰, 等. 畜禽粪便堆肥过程中碳氮损失及温室气体排放综述[J]. 农业环境科学学报, 2021, 40(11): 2428-2438.

YUAN J, LIU Y, TANG R L, et al. A review of carbon and nitrogen losses and greenhouse gas emissions during livestock manure composting[J]. *Journal of Agro – Environment Science*, 2021, 40 (11) : 2428–2438.

- [15] 刘沐衡, 王贵云, 张彦东, 等. 牛场粪水添加外源添加物施用后对 土壤氨挥发的影响[J]. 农业环境科学学报, 2021, 40(11):2568-2573. LIU M H, WANG G Y, ZHANG Y D, et al. Effect of exogenous additives in cattle farm slurry on soil ammonia volatilization after application[J]. Journal of Agro - Environment Science, 2021, 40 (11):2568-2573.
- [16] 王跃思, 刘广仁, 王迎红, 等. 一台气相色谱仪同时测定陆地生态 系统 CO₂、CH₄和 N₂O 排放[J]. 环境污染治理技术与设备, 2003 (10):84-90. WANG Y S, LIU G R, WANG Y H, et al. Simultaneous measurement of CO₂, CH₄ and N₂O emission from terrestrial ecosystem with one improved gas chromatography[J]. *Chinese Journal of Environmental Engineering*, 2003(10):84-90.
- [17] 鲍士旦. 土壤农化分析[M]. 3版. 北京:中国农业出版社, 2000.
 BAO S D. Soil and agricultural chemistry analysis[M]. 3rd Edition.
 Beijing: China Agriculture Press, 2000.
- [18] 中华人民共和国农业农村部.有机肥料:NY/T 525—2021[S].北京:中国农业出版社, 2021. Ministry of Agriculture and Rural Affairs of the PRC. Organic fertilizer:NY/T 525—2021[S]. Beijing:China Agriculture Press, 2021.
- [19] 赵伟东, 郭宝玲, 郑祥洲, 等. 烟-稻轮作不同施肥土壤 N₂O 排放对水分的响应[J]. 农业环境科学学报, 2023, 42(7):1655-1665. ZHAO W D, GUO B L, ZHENG X Z, et al. Effects of moisture content on N₂O emission in different fertilized soils under tobacco-rice rotation[J]. Journal of Agro-Environment Science, 2023, 42(7):1655-1665.
- [20] 中关村生态乡村创新服务联盟. 畜禽粪便腐殖化堆肥项目温室气体减排量核算技术规范:T/ZGCERIS 0006—2019[S]. 北京:中关村生态乡村创新服务联盟, 2019. Eco-Rural Innovation Services. Technical specification for accounting of greenhouse gas emission reduction of livestock manure humus composting project:T/ZGCERIS 0006—2019[S]. Beijing:Eco-Rural Innovation Services, 2019.
- [21] CHEN W, LIAO X D, WU Y B, et al. Effects of different types of biochar on methane and ammonia mitigation during layer manure composting[J]. Waste Management, 2017, 61:506-515.
- [22] MENG X Y, LIU B, XI C, et al. Effect of pig manure on the chemical composition and microbial diversity during co-composting with spent mushroom substrate and rice husks[J]. *Bioresource Technology*, 2018, 251:22-30.
- [23] WANG G Y, KONG Y L, LIU Y, et al. Evolution of phytotoxicity during the active phase of co-composting of chicken manure, tobacco powder and mushroom substrate[J]. Waste Management, 2020, 114: 25-32.
- [24] ZHANG L, SUN X Y. Changes in physical, chemical, and microbiological properties during the two-stage co-composting of green waste with spent mushroom compost and biochar[J]. *Bioresource Technology*, 2014, 171:274-284.
- [25] 胡伟桐, 余雅琳, 李喆, 等. 不同调理剂对生物沥浸污泥堆肥氮素

农业环境科学学报 第43卷第5期

损失的影响[J]. 农业环境科学学报, 2015, 34(12):2379-2385. HU W T, YU Y L, LI Z, et al. Effects of different organic bulking agents on nitrogen loss during composting of dewatered bioleached sludge on a commercial scale[J]. *Journal of Agro-Environment Science*, 2015, 34(12):2379-2385.

- [26] MEI B, ROBERT I, TREVOR C, et al. Lignite effects on NH₃, N₂O, CO₂ and CH₄ emissions during composting of manure[J]. Journal of Environmental Management, 2020, 271:110960.
- [27] CHEN J S, HOU D J, PANG W C, et al. Effect of moisture content on greenhouse gas and NH₃ emissions from pig manure converted by black soldier fly[J]. *Ecology Environment & Conservation*, 2019, 697 (C):133840.
- [28] ALEJANDRO P, WALTER J J, GERRTIS, et al. Black soldier fly reared on pig manure: bioconversion efficiencies, nutrients in the residual material, greenhouse gas and ammonia emissions[J]. Waste Management, 2021, 126:674-683.
- [29] CHEN H, AWASTHI K S, LIU T, et al. Effects of microbial culture and chicken manure biochar on compost maturity and greenhouse gas emissions during chicken manure composting[J]. Journal of Hazardous Materials, 2020, 389:121908.
- [30] BOAKYE Y K A, ALESSIO I, DANIELE D. Greenhouse gas emissions and life cycle assessment on the black soldier fly (*Hermetia illucens* L.)[J]. Sustainability, 2022, 14:10456.
- [31] ZHANG B X, YIN R X, TAN Y, et al. Evaluation of maturity and greenhouse gas emission in co-composting of chicken manure with tobacco powder and vinasse/mushroom bran[J]. *Processes*, 2021, 12(9): 2105.
- [32] LI R H, WANG Q, ZHANG Z Q, et al. Nutrient transformation during aerobic composting of pig manure with biochar prepared at different temperatures[J]. *Environmental Technology*, 2015, 36(7):815–826.
- [33] YASUDA T, WAKI M, FUKUMOTO Y, et al. Community structure of denitrifying and total bacteria during nitrogen accumulation in an ammonia-loaded biofilter[J]. *Journal of Applied Microbiology*, 2017, 123 (6):1498-1511.
- [34] MIGUEL A, SANCHEZ M, NURIA S, et al. Greenhouse gas emissions during composting of two-phase olive mill wastes with different agroindustrial by-products[J]. *Chemosphere*, 2010, 81(1):18-25.
- [35] JIANG T, SCHUCHARDT F, LI X G, et al. Gaseous emission during the composting of pig feces from Chinese Ganqinfen system[J]. *Chemo-sphere*, 2013, 90(4):1544–1551.
- [36] HUI C H, SO N K, LEE G Y S. Nitrous oxide flux from landfill leachate – sawdust nitrogenous compost[J]. Chemosphere, 2003, 52 (9): 1547–1551.
- [37] HE Y, INAMORI Y, MIZUOCHI M, et al. Nitrous oxide emissions from aerated composting of organic waste[J]. *Environmental Science & Technology*, 2001, 35(11):2347-2351.
- [38] 张双斌, 赵树峰, 郭红玉, 等. 风化煤与褐煤转化生物甲烷的差异 性分析[J/OL]. 煤炭科学技术, 1-10[2023-05-25]. https://doi.org/

10.13199/j.cnki.cst. 2022–1945. ZHANG S B, ZHAO S F, GUO H Y, et al. Analysis of the difference between weathered coal and lignite in the conversion of biomethane[J]. *Coal Science and Technology*, 1–10 [2023–05–25]. https://doi.org/10.13199/j.cnki.cst.2022–1945.

- [39] HE X Q, YIN H J, SUN X X, et al. Effect of different particle-size biochar on methane emissions during pig manure/wheat straw aerobic composting: insights into pore characterization and microbial mechanisms[J]. *Bioresource Technology*, 2018, 268:633-637.
- [40] ERMOLAEV E, LALANDER C, VINNERAS B. Greenhouse gas emissions from small-scale fly larvae composting with *Hermetia illucens* [J]. Waste Management, 2019, 96(C):65-74.
- [41] 朱海生, 左福元, 董红敏, 等. 堆体规模对牛粪堆肥氨气和温室气体排放的影响[J]. 西北农林科技大学学报(自然科学版), 2018, 46 (5):77-84. ZHU H S, ZUO F Y, DONG H M, et al. Effect of pile scale on emission of ammonia and greenhouse gas during cattle manure composting[J]. Journal of Northwest A&F University, 2018, 46 (5):77-84.
- [42] GOLD M, TOMBERLIN K J, DIENER S, et al. Decomposition of biowaste macronutrients, microbes, and chemicals in black soldier fly larval treatment: a review[J]. Waste Management, 2018, 82:302-318.
- [43] 谢军飞,李玉娥.不同堆肥处理猪粪温室气体排放与影响因子初步研究[J].农业环境科学学报,2003,22(1):56-59. XIE J F, LI Y E. Release of greenhouse gases from composting treatments on piggery excreta[J]. Journal of Agro-Environmental Science, 2003, 22(1): 56-59.
- [44] 孙凯佳, 戚鑫, 付形, 等. 塑料薄膜覆盖对牛粪便温室气体排放的 影响[J]. 农业工程学报, 2015, 31(3):262-267. SUN K J, QI X, FU T, et al. Effects of plastic sheet covering on greenhouse gas emission from beef cattle manure during storage[J]. *Transactions of the Chinese Society of Agricultural Engineering*, 2015, 31(3):262-267.
- [45] ZANG B, LI S Y, MICHEL F, et al. Effects of mix ratio, moisture content and aeration rate on sulfur odor emissions during pig manure composting[J]. Waste Management, 2016, 56:498–505.
- [46] PEREDNIA D A, ANDERSON J, RICE A, et al. A comparison of the greenhouse gas production of black soldier fly larvae versus aerobic microbial decomposition of an organic feed material[J]. Journal of Ecology and Environmental Sciences, 2017, 5:10–16.
- [47] LINDBERG L, ERMOLAEV E, VINNERAS B, et al. Process efficiency and greenhouse gas emissions in black soldier fly larvae composting of fruit and vegetable waste with and without pre-treatment[J]. *Journal of Cleaner Production*, 2022, 338:130552.
- [48] SZANTO G L, HAMELERS H V M, RULKENS W H, et al. NH₃, N₂O and CH₄ emissions during passively aerated composting of straw-rich pig manure[J]. *Bioresource Technology*, 2007, 98(14):2659–2670.
- [49] JIANG T, SCHUCHARDT F, LI G X, et al. Effect of C/N ratio, aeration rate and moisture content on ammonia and greenhouse gas emission during the composting[J]. *Journal of Environmental Sciences*, 2011, 23(10):1754-1760.

(责任编辑:李丹)

