

请通过网上投稿系统投稿 网址:http://www.aes.org.cn

表面活性剂在强化疏水性有机污染物土壤修复中的研究与应用进展

吴文伶,杨明辉,张鹤清,王圆生,汪磊

引用本文:

吴文伶,杨明辉,张鹤清,王圆生,汪磊.表面活性剂在强化疏水性有机污染物土壤修复中的研究与应用进展[J].农业环境科学学报,2024,43(6):1220-1229.

在线阅读 View online: https://doi.org/10.11654/jaes.2023-0672

您可能感兴趣的其他文章

Articles you may be interested in

鼠李糖脂-混合降解菌强化三角梅去除土壤中对硫磷

辛鑫, 刘家女 农业环境科学学报. 2017, 36(5): 943-949 https://doi.org/10.11654/jaes.2016-1459

DDTs污染农田土壤的强化微生物修复研究

王晓旭, 孙丽娜, 郑学昊, 吴昊, 王辉, 刘春跃 农业环境科学学报. 2018, 37(1): 72-78 https://doi.org/10.11654/jaes.2017-0882

BS-DTAB复配修饰红壤对苯酚的吸附

张洋, 孟昭福, 李文斌, 任爽, 王腾, 刘伟, 田凯 农业环境科学学报. 2019, 38(1): 132-139 https://doi.org/10.11654/jaes.2018-0293

纳米材料在有机污染土壤修复中的应用与展望

岳宗恺,周启星 农业环境科学学报.2017,36(10):1929-1937 https://doi.org/10.11654/jaes.2017-0330

改性生物炭的制备及其在环境修复中的应用

张倩茹, 冀琳宇, 高程程, 吕宏虹, YONGSik-Ok 农业环境科学学报. 2021, 40(5): 913-925 https://doi.org/10.11654/jaes.2020-1253

关注微信公众号,获得更多资讯信息

农业环境科学学报 Journal of Agro-Environment Science

吴文伶,杨明辉,张鹤清,等.表面活性剂在强化疏水性有机污染物土壤修复中的研究与应用进展[J].农业环境科学学报,2024, 43(6):1220-1229.

WU W L, YANG M H, ZHANG H Q, et al. Research and application progress in surfactant–enhanced remediation of hydrophobic organic contaminants in soil[J]. *Journal of Agro–Environment Science*, 2024, 43(6): 1220–1229.

表面活性剂在强化疏水性有机污染物 土壤修复中的研究与应用进展

吴文伶1,杨明辉2*,张鹤清3,王圆生4,汪磊2

(1.中建工程产业技术研究院有限公司,北京 101399;2.南开大学环境科学与工程学院,天津 300350;3.中建环能科技股份有限 公司,成都 610045;4.天津市博创环保科技有限公司,天津 300042)

摘 要:疏水性有机污染物(Hydrophobic organic contaminants, HOCs)在土壤环境中分布广泛。由于不易从土壤颗粒中解吸,迁移性和生物有效性低,化学、生物与物理修复技术对土壤中HOCs的修复效果常受到抑制。表面活性剂对HOCs具有增溶能力,常被用于强化其他修复技术的处理效率。本文对近20年来表面活性剂在强化土壤化学、生物或物理技术修复土壤HOCs污染领域的研究与应用情况进行了分类总结,并比较分析了各类表面活性剂强化技术的适用性及局限性,提出了联合修复技术和表面活性剂泡沫是表面活性剂强化土壤HOCs修复的未来研究方向。

关键词:表面活性剂;疏水性有机物;土壤修复;增溶

中图分类号:X53 文献标志码:A 文章编号:1672-2043(2024)06-1220-10 doi:10.11654/jaes.2023-0672

Research and application progress in surfactant-enhanced remediation of hydrophobic organic contaminants in soil

WU Wenling¹, YANG Minghui^{2*}, ZHANG Heqing³, WANG Yuansheng⁴, WANG Lei²

(1. China Construction Industrial Engineering and Technology Research Academy Co., Ltd., Beijing 101399, China; 2. College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; 3. Cscec Scimee Sci. & Tech. Co., Ltd., Chengdu 610045, China; 4. Bochuang Environmental Protection Technology Co., Ltd., Tianjin 300042, China)

Abstract: Hydrophobic organic contaminant (HOCs) are widely distributed in soil environments. Due to their limited desorption from soil particles, low mobility and bioavailability, the effectiveness of chemical, biological, and physical remediation techniques on HOCs in soil is often inhibited. Surfactants, known for their solubilization capacity for HOCs, have been employed to enhance the efficiency of other remediation technologies. This review categorizes and summarizes research and applications of surfactant–enhanced techniques in remediating soil HOCs pollution over the past two decades. A comparative analysis of various surfactant–enhanced techniques is presented, highlighting their applicability and limitations. Furthermore, the potential of combined remediation approaches and surfactant foam technology is explored as promising avenues for future research in enhancing soil HOCs remediation with surfactants.

Keywords: surfactant; hydrophobic organic contaminant(HOCs); soil remediation; solubilization

*通信作者:杨明辉 E-mail:YangMinghui1018@163.com

收稿日期:2023-08-20 录用日期:2023-10-12

作者简介:吴文伶(1991—),女,天津蓟州人,高级工程师,从事土壤修复技术开发与应用研究。E-mail:wuwenling8314@163.com

基金项目:国家重点研发计划项目(2019YFC1804400);中建股份科技研发计划课题(CSCEC-2021-Z-1,CSCEC-2021-Z-52);住建部研究开发项目(2021-K-129)

Project supported: National Key Research and Development Program of China (2019YFC1804400); Research and Development Plan Project of China Construction Corporation Technology (CSCEC-2021-Z-1, CSCEC-2021-Z-52); Research and Development Project of Ministry of Housing and Urban-Rural Development(2021-K-129)

疏水性有机污染物(Hydrophobic organic contaminants, HOCs)如石油烃、多氯联苯、多溴联苯醚、有机 磷阻燃剂、多环芳烃等不断进入环境并发生积累^{III}。 《2014年全国土壤调查公报》显示,我国土壤中六六 六、滴滴涕、多环芳烃3类有机污染物点位超标率分 别高达0.5%、1.9%、1.4%。这些HOCs污染的土壤对 生态系统和人类健康构成严重威胁。由于具有较大 的辛醇/水分配系数,HOCs易于吸附在土壤颗粒表面 或形成非水相液体(Non-aqueous phase liquid, NAPL),不易随土壤溶液迁移,因而其环境自净效率 通常较低,这也给受HOCs污染土壤的修复造成巨大 困难^[2-3]。

表面活性剂对 HOCs 具有增溶能力,因此表面活 性剂强化土壤修复技术研发成为近年来土壤修复研 究的热点领域。其中,阴-非离子混合表面活性剂由 于具有更低的临界胶束浓度、较低的土壤吸附性能和 较小的沉淀损失,以及对温度、盐度、pH等条件的更 宽适用范围,近年来被广泛研究^[4]。受到场地土壤类 型和环境因素异质性的影响,单独使用表面活性剂进 行土壤淋洗的实际修复效率有时并不稳定,且含污染 物的表面活性剂废水处理成本较高^[3]。因此,近年来 在土壤修复技术研发中,表面活性剂主要用于增强其 他修复技术的处理效能,其不仅可提高修复效率,同 时又降低了成本^[5-6]。表面活性剂在 HOCs 修复领域 的关注度不断提高,且表面活性剂强化的 HOCs 修复 技术的研究与应用也逐渐增多。

1 表面活性剂强化的化学氧化修复技术

1.1 化学氧化修复技术

化学氧化修复技术采用强氧化性的化学氧化剂 将土壤中的有机污染物彻底矿化或氧化为无毒或低 毒形态物质^[7]。土壤有机污染修复中常用的氧化剂 包括高锰酸钾、过硫酸钠、臭氧和Fenton试剂等^[8]。在 原位应用中,氧化剂被注入污染场地区域,并在重力、 地下水流和浓度梯度的作用下不断扩散,与污染物接 触并将其氧化,在短期内实现快速修复。

由于氧化反应主要在水相发生,对于吸附在土壤 颗粒表面的HOCs,化学氧化技术的效率易受到限制。 一项实践应用表明,在处理含大量NAPL污染的场地 时,未能被氧化分解的吸附态污染物可能会重新迁移 进入地下水,导致修复拖尾或反弹。因此,对HOCs 污染土壤进行化学氧化修复的强化技术方法一直受 到关注^[9]。 1.2 表面活性剂强化的化学氧化修复技术的提出与 发展

在21世纪初,Li¹¹⁰提出了以表面活性剂增溶与氧 化剂降解相结合处理NAPL污染物的设想,并通过实 验模拟验证了其可行性。表面活性剂强化的原位化 学氧化技术(Surfactants enhanced *in-situ* chemical oxidation, S-ISCO)可削弱 HOCs 的吸附行为,有效提高 HOCs 的去除效率,减轻化学氧化修复过程中的拖尾 和反弹现象。表面活性剂和氧化剂通常被同时注入 污染土壤,并根据有机污染物的组成和污染水平优化 表面活性剂的用量,以获得直径较小的微乳液。

大量研究表明,表面活性剂的添加对不同类型土 壤和含水层中的多环芳烃和石油烃等多种HOCs污 染土壤的化学氧化去除具有明显效果^[8,11-13]。Lominchar 等^[13]使用非离子表面活性剂 Verusol-3 与碱活化过硫 酸钠原位去除场地土壤中的石油烃,发现与普通原位 化学氧化技术相比,S-ISCO处理使石油烃的去除率 从65%提升到95%。然而,氧化剂也可能与表面活性 剂反应,从而造成增溶效率下降和氧化剂损失[14-15]。 例如,聚氧乙烯型非离子型表面活性剂很容易被S2O%-氧化四。因此,在表面活性剂提高化学氧化修复效率 的同时,还需要考虑不同表面活性剂与氧化剂之间的 相容性^[16]。表1列举了有关表面活性剂对不同氧化 剂消耗损失的研究。虽然阴离子表面活性剂对氧化 剂的消耗较低,但也有研究认为,阴离子表面活性剂 SDS 抑制了碱活化过硫酸钠产生 OH·和 O₂·等自由 基,从而限制了氧化剂对污染物的降解效率四。

目前,S-ISCO技术的研究和应用仍在不断发展。 面对含有大量NAPLs的高污染场地,直接采用S-ISCO 技术会消耗大量的氧化剂,且修复效率较低。EthicalChem公司在2016年开发了SEPR/S-ISCO修复技 术四,该技术首先在表面活性剂加强产品回收技术 (Surfactant enhanced product recovery, SEPR)阶段向 受污染土壤中注入表面活性剂和低剂量过氧化物(如 H₂O₂),以降低NAPLs的黏度并解吸,去除大量自由相 的NAPLs;过氧化物分解产生的气体使土壤产生有助 于提取NAPLs的气孔;在S-ISCO阶段,再次注入表面 活性剂和氧化剂,以去除与土壤颗粒吸附紧密的 NAPLs和HOCs。在澳大利亚悉尼的一个前人工煤气 厂场地,成功地应用了SEPR/S-ISCO修复技术,在为 期2周的SEPR阶段,去除了950LNAPLs。随后,在 为期6.5周的S-ISCO阶段,对土壤和地下水中残留的 污染物进行了去除。结果显示,总石油烃去除率高达

www.aes.org.cn

1222

表1 表面活性剂对不同氧化剂消耗损失的研究总结

Table 1 Summary of consumption and loss of different oxidants by surfactants

氧化剂及浓度 Oxidant and concentration	活化方式/活化剂及浓度 Activation mode/Activator and concentration	表面活性剂及浓度 Surfactant and concentration	氧化剂损失 Oxidizer consumption	参考文献 Reference
高锰酸鉀 10 g·L ⁻¹	_	非离子型:鼠李糖脂、皂素、APG、Tween 80、Tween 20、AOS 阴离子型:SDS、SDBS 两性型:BS-12; 5 mmol·L ⁻¹	单一表面活性剂在 30 h时只有 BS-12、SDBS 和SDS与高锰酸钾的相容性较好,氧化剂损失 小于 30%,BS-12/SDBS 摩尔比为 2:1 复配时 增溶能力最强且相容性最好	[8]
过氧化氢 5 000 mg·L ⁻¹	${\rm FeSO_{4}} \ 5 \ mmol \cdot L^{-1}$	28种阴离子和非离子表面活性剂0.01%~3.5%(m/V)	只有两种阴离子表面活性剂 Alfoterra 145- 4PO和 Aerosol MA-801,仅在非常低的表面活 性剂和氧化剂浓度下两者相容	[18]
过硫酸钠 50 g·L⁻¹	热活(20、40℃和60℃)	非离子型:Brij 35、Triton X100、Tween 80 阴离子型:SDS、SDBS、SLS、C12-MADS、 AOT;10g·L ⁻¹	双价阴离子表面活性剂 Cn-MADS 对过硫酸 盐消耗最慢,40℃时第 14 天消耗约 40% 的过 硫酸盐,60℃时第 3 天消耗约 60% 的过硫酸盐	[19]
过硫酸钠 84 mmol・L⁻¹	碱活化 84 mmol L ⁻¹	阴离子型:SDS 非离子型:E-Mulse [®] 、Tween 80、Tween 80/Span80; 3、6、12g·L ⁻¹	15 d后 SDS 消耗约 10% 的过硫酸盐,而非离子型表面活性剂均消耗了约 70% 以上的过硫酸盐	[20]
过硫酸钠 2.25 mmol・L ⁻¹	柠檬酸0.15 mmol・L⁻¹; Fe(Ⅱ)0.30 mmol・L⁻¹	Tween 80、Brij-35和TX-100;1 g・L ⁻¹	在 Brij-35 和 TX-100 溶液中, 过硫酸钠的分解 率分别为 48.3% 和 49.5%, 而在 Tween 80 溶液 中, 过硫酸钠的分解率仅为 3.6%	[21]

97%,总多环芳烃去除率为73%。

1.3 表面活性剂泡沫淋洗技术在S-ISCO中的应用

S-ISCO 在有效去除渗流区和非均质介质中的 NAPL污染物方面仍存在局限。淋洗液在修复过程 中优先流向渗透性较好的土壤孔道,导致对污染区域 的覆盖有限,修复效果不佳;此外,淋洗液的流动难以 控制,易通过重力作用进入地下含水层,引发二次污 染[22]。为了克服这一问题, Peters 等[23]提出了表面活 性剂泡沫淋洗技术,即以向污染土壤注入泡沫形式的 表面活性剂气液混合体系取代传统的淋洗液[24]。表 面活性剂泡沫能够降低不同介质之间渗透性差异,使 表面活性剂在土壤污染区域分布更加均匀[2]。其次, 泡沫具有高黏度和低密度等特点,因而受重力影响较 小,可有效减少修复过程对地下水的污染[25-26]。此 外,表面活性剂泡沫还可以显著改善氧化剂的分布及 其停留时间^[27]。基于以上研究成果, Bouzid等^[25,27-28]开 发了一种依次注入表面活性剂泡沫和氧化剂的方法, 这种方法能够改善氧化剂在非均质层和包气带的输 送性能,减少表面活性剂的非生产性消耗,使S-ISCO 的成本和环境风险显著下降。

2 表面活性剂强化的微生物修复技术

2.1 微生物修复技术

1989年,"埃克森·瓦尔迪兹"号原油泄漏事故引发广泛关注,美国环保署首次使用高效微生物降解菌

剂对海岸线上的受污染土壤进行原位修复^[29]。此后, 微生物修复逐渐成为石油污染等有机污染场地修复 的重要手段之一^[30]。

微生物修复的效率通常受微生物群落的功能及 其在环境中的丰度和稳定性影响^[31]。修复场地的气 候及地理条件会限制修复物种的多样性,土壤自身环 境条件(如盐度、水分、pH和有机质含量)、营养元素 以及污染物都会影响生物的代谢活动、生长及修复效 率^[32-33],因此科学有效地选择功能物种成为微生物修 复的关键问题。此外,在修复污染土壤时,还要考虑 有机污染物的赋存形态、浓度和毒性,以提升生物修 复效率。HOCs易吸附在土壤颗粒上,难以被生物吸 收或降解。尽管筛选和优化出的适应能力强、酶活性 高的微生物菌种,可以一定程度上提高目标污染物的 生物有效性,然而,针对具有高分子量的HOCs,如多 环芳烃,其生物有效性较低^[34-35],且在土壤老化后这 些污染物易转变为结合态和锁定态^[36],因此仍需要寻 找更有效的策略以提高微生物修复的效率。

2.2 表面活性剂强化的微生物修复技术的发展与应用

表面活性剂对HOCs的增溶能力可提高污染土 壤中HOCs的生物有效性^[37];此外,一些表面活性剂的 亲水端可结合到降解微生物菌体的表面,而疏水端朝 向水相,这增强了菌体表面的疏水性,促使微生物与 HOCs直接接触,从而加速HOCs降解^[38-39]。图1展示 了表面活性剂对HOCs微生物修复的强化机制。研

I:表面活性剂疏水端吸附在HOCs表面;II:表面活性剂胶束溶解HOCs;II:HOCs从有机相转移到液相,并被微生物降解;IV:微生物摄取胶束中的HOCs;V:表面活性剂能够吸附在降解微生物菌体的表面,HOCs与微生物直接接触而被降解。

I :The hydrophobic side of the surfactant is adsorbed on the surface of the HOCs; II :HOCs are dissolved by surfactant micelles; II :HOCs transfer from organic phase to liquid phase and degraded by microorganisms; IV :microbial uptake of HOCs in micelles; V :surfactants can be adsorbed on the surface of degrading microorganisms, and HOCs will be degraded by direct contact with microorganisms.

图1 生物表面活性剂强化 HOCs 的微生物修复机制示意图

Figure 1 Schematic diagram of the mechanism of microbial repair of HOCs enhanced by biosurfactants

究表明^[40], 阴-非离子混合表面活性剂(SDBS-Tween 80)的加入, 对球形节杆菌(Arthrobacter globiformis)和 甲基营养型芽孢杆菌(Bacillus methylotrophicus)降解 农田土壤中的滴滴涕和多环芳烃具有强化作用, 使两 类污染物降解率较单独接菌的对照组分别提高了 14.9%和11.9%。

很多表面活性剂因自身对微生物降解菌株具有 毒性而影响修复效果^[41]。相比之下,由植物或微生物 代谢产生的生物表面活性剂,如鼠李糖脂、脂肽和皂 素等,或易被生物降解的化学表面活性剂对微生物生 长的抑制作用更低^[42],且被认为总体上具有更高的环 境友好性。此类表面活性剂在HOCs微生物修复中 的强化效果也已被证实。例如,Mnif等^[31]研究了枯草 芽孢杆菌属和不动杆菌属(Acinetobacter radioresistens)RI7对土壤中柴油的降解能力,发现直接添加 0.1%(m/V)的生物表面活性剂脂肽后,目标污染物的 生物降解率提高了38.42%。

尽管生物表面活性剂得到越来越广的重视,但生 产成本高、产量低、纯度低等原因限制了其大规模应 用及发展^[43]。因此,优化生产工艺以开发廉价生物表

面活性剂仍面临挑战[44]。除通过外源添加的方式将 表面活性剂注入到受污染的土壤中,也可以通过刺激 诱导微生物原位产生生物表面活性剂,这种方式被认 为更加高效且成本经济[37,45-46]。例如,在营养物质充 足的条件下,与不添加生物表面活性剂产生菌相比, 产生生物表面活性剂的 poae 假单胞菌 (Pseudomonas poae) BA1、布氏不动杆菌 (Acinetobacter bouvetii) BP18、苏云金芽孢杆菌(Bacillus thuringiensis)BG3和 嗜根窄食单胞菌(Stenotrophomonas rhizophila) BG32 使石油的降解率提高了16%~28%^[47]。Wu等^[48]研究可 产生生物表面活性剂的芽孢杆菌和柴油降解菌之间 的相互作用,发现当盐生单胞菌(Halomonas)HDMP1 和芽孢杆菌(Pseudomonas)HDMB2单独作用时,柴油 的降解率分别为50.52%和35.24%,而当两者组合使 用时,生物表面活性剂产生菌HDMB2产生的脂肽促 进了柴油的溶解,提升了柴油降解菌 HDMP1 的降解 能力,石油降解率达到了67.38%。

植物-微生物联合修复作为一种新型的修复有 机污染土壤的方法,也能被表面活性剂强化。例如, 谢萌^[49]使用黑麦草与混合菌修复多环芳烃、石油烃和 多氯联苯复合污染的土壤,发现添加生物表面活性剂 鼠李糖能显著增加土著微生物中不同优势菌属的相 对丰度,向植物-微生物修复体系中添加50 mg⋅kg⁻¹ 鼠李糖脂使5~6环多环芳烃的去除率提高了23.99%, 总石油烃的去除率提高了16.70%,多氯联苯的去除 率提高了19.92%。

2.3 表面活性剂泡沫淋洗技术在强化 HOCs 微生物修 复中的应用

相比于使用表面活性剂淋洗液的传统方法,基 于表面活性剂的泡沫淋洗技术具有一定优势。这种 技术能使液相在非均质土壤中更均匀地渗透,从而 使土壤的含水量更加均匀,提高修复剂与污染物的 接触效率;另外,由于泡沫是气液混合的体系,向土 壤内部注入表面活性剂泡沫有利于输送和保留氧 气、空气、氢气等,进而强化微生物修复技术[22,26]。 例如,Rothmel等^[50]证明了使用空气和阴离子表面活 性剂 Steol CS-330 产生的泡沫可以强化好氧微生物 降解三氯乙烯污染土壤,与直接使用表面活性剂淋 洗液相比,产生的表面活性剂泡沫显著提高了三氯 乙烯降解菌的分散性;且由于产生泡沫所需的表面 活性剂浓度较低,因此与三氯乙烯降解菌具有更好 的相容性;此外,泡沫通过气液混合的形式增强了氧 传质,提高了微生物活性。除了向土壤内部注入表 面活性剂泡沫之外,向土壤表面喷洒表面活性剂泡 沫,也能在不扰动土壤的情况下强化化学和生物修 复的效果。被喷洒在土壤表面的表面活性剂泡沫可

持续数小时,当泡沫破裂后,表面活性剂逐渐以水相 形式渗入土壤^[51]。表2列举了采用表面活性剂泡沫 强化微生物修复的研究案例。

3 表面活性剂强化的物理修复技术

3.1 表面活性剂对土壤 HOCs 电动力修复的强化作用

土壤中HOCs的电动力修复是将电极插入受污染土壤的修复区域,利用直流电场的驱动作用,通过电渗析、电迁移和电泳作用使污染物定向迁移富集至阴极、阳极或某一特定位置¹⁵⁰,然后再将其去除。该技术于20世纪80年代末兴起,因其成本低、速度快、无二次污染、不受土壤深度的限制、对土壤质地选择性低而被关注。

电动力修复技术对于脱附能力弱、溶解性差的 HOCs处理效率较低。加入表面活性剂可以促进 HOCs从土壤颗粒上脱附和迁移,增强HOCs的溶解 性,提高其在电场作用下的迁移效率,有效提高HOCs 的电动力修复效率^[57]。此外,表面活性剂还能改善土 壤的导电性,增加电解液与土壤颗粒之间的接触面 积,这进一步提高了电动力修复技术的效果。阳离子 表面活性剂在土壤颗粒上吸附较强且污染物去除效 率低,而阴离子表面活性剂趋向于通过电迁移的方式 向阳极迁移,但电渗析流通常向阴极迁移,因此也不 利于电动力学修复^[58]。因此,非离子表面活性剂或者 生物表面活性剂被认为是强化电动力修复的最优选 择^[59]。表3列举了采用表面活性剂强化电动力修复

Table 2 Summarizes the microbial remediation of HOCs enhanced by surfactant foam

表面活性剂泡沫组成	修复方式	强化效果	参考文献
Surfactant foam composition	Remediation mode	Enhanced efficiency	Reference
非离子表面活性剂 Steol CS- 330+三氯乙烯降解菌 ENV 435	表面活性剂泡沫强化好氧微生物 修复TCE-DNAPLS污染土壤	泡沫能去除75%的三氯乙烯,加入三氯乙烯降解菌ENV 435 后,95%~99%残留的三氯乙烯被降解	[50] ^a
生物表面活性剂皂素+洋葱伯克 霍尔德(Burkholderia cepacia) RPH1+营养物质	微气泡作为携带菲降解菌、氧气以及营养物质的载体	在限氧系统中,皂素微气泡使约30%的菲被生物降解,而使用 皂素溶液的对照组中的菲没有被生物降解	[52] ^a
两性表面活性剂月桂基甜菜碱+ 土著降解菌+营养物质	原位注入表面活性剂泡沫,再注 入芬顿试剂溶液	表面活性剂泡沫使氧化剂的用量降低了30%,多环芳烃的去除率高达75%左右	[53] ^a
阴离子表面活性剂 AOS+ 嗜 冷 假 单 胞 菌 (Pseudomonas) G2-2+营养物质	泡沫作为石油降解菌和营养物质的载体,每12h将表面活性剂泡沫喷洒在土壤表层	表面活性剂泡沫将土壤温度(6℃)提高2℃,与传统的耕地修 复方式相比,土壤中石油烃的去除率从46.3%提升到73.7%	[54] ^b
化学修复剂:AOS+过硫酸钠;生物修复剂:AOS+营养物质+不动 杆菌(Acinetobacter)K-6	先喷洒化学修复剂泡沫预处理, 然后每3d喷洒1次生物修复剂 泡沫,进行1个月的生物降解	过硫酸钠氧化优于过氧化氢氧化,具有更好的持久性和渗透性。化学和生物两种修复剂泡沫共同使用时,石油烃去除率为80%,而单独使用生物修复剂的对照组去除率为52%。化学氧化可以提高柴油的生物有效性,定期喷洒生物修复剂泡沫可以维持微生物的数量和活性	[55] ^b

注:"表面活性剂泡沫注入到土壤内部;^b表面活性剂泡沫喷洒在土壤表层上方。

Note: *surfactant foam is injected into the soil; ^b surfactant foam is sprayed above the surface of the soil.

2024年6月

表3 添加表面活性剂对HOCs电动力修复的强化效果

Table 3 Effects of surfactant enhanced electrokinetic remediation of HOCs polluted soil

		*	
表面活性	研究方法	强化效果	参考文献
Surfactant	Research technique	Enhanced efficiency	Reference
阴离子表面活性剂 SDBS 作为阴极液, 非离子表面活性剂 Tween 80 作为阳极液	使用不同表面活性剂强化修复十六烷和蒽 复合污染的土壤	十六烷和蔥的去除率分别为56.50%和48.68%; 而仅施加电动力的处理组无明显去除效果	[59]
非离子表面活性剂 Igepal CA-720	将 Igepal CA-720 添加至电动力修复体系 中	Igepal CA-720浓度为5%(m/V)时,土壤中的菲 在7 d内可完全去除	[60]
非离子表面活性剂TritonX-100	研究TritonX-100对电动力学-过硫酸钠修 复技术强化去除土壤中有机氯农药的效果	TritonX-100的加入使有机氯农药的去除率由 22.62%~55.78%增加至56.36%~88.05%	[61]
非离子表面活性剂 Igepal CA-720	Igepal CA-720强化电动力学-过硫酸钠修 复技术	Igepal CA-720 和过硫酸盐处理时,多氯联苯的 去除率最高可以达到38.0%	[62]

的研究案例。

电动力修复与化学修复的结合解决了化学修复 技术在低渗透性土壤中处理效果较差的缺点,也提高 了易吸附的HOCs的去除效果。然而,表面活性剂的 加入也可能对联用技术中HOCs的降解存在不利影 响。Huang等^[63]发现,加入Tween 80强化电动力-过 硫酸钠修复技术去除黏壤土中的多环芳烃时,Tween 80的存在使多环芳烃的去除率从21.3%降至19.9%, 这可能是因为Tween 80减少了电渗析流,抑制了过 硫酸钠从阳极液向土壤的迁移。此外,电动强化生物 修复技术能在不破坏土壤环境的前提下,显著减少营 养物质的投加量,提高修复效率,降低修复成本[4]。 章慧^[65]使用脂肽协同鞘氨醇菌GY2B增强电动力去除 砂土中的菲,结果发现添加脂肽的电动体系比添加菲 降解菌的电动体系具有更好的菲去除效果,且这两个 体系中菲的平均去除率比仅施加电动力的处理组分 别提高了10%和5%。在表面活性剂协同菲降解菌的 电动体系中,菲的去除率比仅施加电动力的处理组提 高了25%。

3.2 表面活性剂对土壤 HOCs 热脱附修复的强化作用

土壤热脱附修复技术通过加热受污染土壤,使有 机污染物从土壤介质上挥发并抽提至尾气处置系 统^[66]。热脱附技术被广泛应用于挥发和半挥发有机 物污染物的修复,具有去除效率高(通常在90%以 上)、修复时间短以及不会造成二次污染等优点^[67]。 实验表明^[68],当热脱附温度达到300℃以上时,DDT 污染土壤的污染物去除率即可达到97%以上,且处 理效果受污染土壤初始浓度的影响较小。

热脱附修复技术的效率主要受到温度和停留时间的影响。例如石油烃中C₁₀~C₂₈在热脱附温度为 100~350℃范围内具有较好的脱附效果;而要脱附石 油中C₂₈~C₄₀,需要将加热温度提高至350~550℃,或 者延长加热时间^[69]。高温或长时间的热脱附需要持续的能源输入,不利于节能减排。

采用添加表面活性剂的方法来提高污染物的脱 附率,可以降低热脱附能耗。例如在清洗-热脱附耦 合工艺中,表面活性剂清洗预处理可以削弱污染物的 吸附行为,实现土壤颗粒的水力筛分,减少热脱附工 艺段的土壤物料量,从而降低能耗。牛明芬等^[70]使用 阴离子型表面活性剂α-十六烯基磺酸钠对受污染土 壤进行洗脱,并对洗脱分离出的黏粒土再进行电阻热 脱附,可将1t含油率11.75%的石油污染土壤修复至 含油率<2%。与直接热脱附相比,该耦合工艺总耗能 降低了40kW·h,且修复时间更短。此外,表面活性 剂也被用于共沸共溶土壤低温热脱附工艺,在加热条 件下使用表面活性剂对土壤进行洗脱,降低污染物在 土壤颗粒上的吸附,并加速挥发性有机物在气相和液 相中的分配,以达到去除污染物的目的^[71]。挥发性有 机物与水共沸时共沸点温度一般低于100℃,因此该 方法可以降低热脱附的加热温度。冉雨灵四发现,添 加非离子表面活性剂Triton X-100并将系统加热至 95 ℃,在1h内土壤中的1,2-二氯乙烷含量可从8700 mg·kg⁻¹降至1.07 mg·kg⁻¹,去除效果显著优于不添加 表面活性剂的对照组。

热脱附-微生物联合修复技术通过低温加热提高目标区域HOCs的微生物可利用度和增强微生物活性,进而提高修复效率^[73-74]。生物表面活性剂与低温加热方法的耦合使用,可有效强化这一效果。Perfumo等^[75]研究了生物表面活性剂鼠李糖脂和温度对 土壤环境中普遍存在的嗜热菌地芽孢杆菌(*Geobacillus thermoleovorans*)T60降解土壤中十六烷的影响,发 现温度上升不仅使污染物的溶解度提高,还刺激了嗜 热降解菌群的生长;而在60℃条件下,鼠李糖脂的加 入使十六烷的去除率进一步提升了15%。

www.aes.org.cn

3.3 表面活性剂对土壤HOCs超声波修复的强化效果 超声波作用于土壤HOCs,可使其发生物理解吸 或化学降解^[76-77]。对于不同质地的受污染土壤,超声 波技术去除污染物的主要机制也不同。Shrestha等^[78] 采用超声波技术修复3种不同类型的受六氯苯和菲 污染的土壤,发现在人工和天然黏土的修复过程中, 自由基氧化在有机物分解中占主导地位,而在高岭土 的修复中,热降解占主导地位。

在单独使用超声波技术时,污染物的降解率较低,且必须将土壤制成泥浆才能进行修复,这增加了对洗脱废水的处理要求^[78]。同时,超声波处理可以使 土壤颗粒在溶液中分散得更加稳定,从而增大污染物 与表面活性剂的接触面积,因此其对表面活性剂洗脱 HOCs的效率有促进作用^[79-80]。研究发现,使用超声 波辅助,可将非离子表面活性剂Brij35处理菲污染土 壤的洗脱率由68.2%提升至76.3%^[81],使阴-非离子混 合表面活性剂(SDBS-TX100)对土壤中超重油的洗 脱率提高13%^[80]。

4 结论与展望

表面活性剂对土壤中的HOCs有增溶能力,其已 广泛用于强化化学、微生物或物理修复技术。然而, 各种表面活性剂强化技术具有一定的适用性和局限 性。表面活性剂强化的化学氧化修复技术去除效率 更稳定,适用范围更广,但需要考虑表面活性剂造成 的二次污染以及表面活性剂和氧化体系的相容性问 题。表面活性剂强化的生物修复技术多采用环境友 好型表面活性剂,对环境的影响较小,但在原位修复 过程中,还需要考虑不同环境状况变化对污染物降解 的影响,考察不同表面活性剂对微生物群落的影响机 制,进一步提高技术的适用性和效率。在物理修复技 术如电动力修复、热脱附修复和超声波修复中,加入 表面活性剂有助于降低能耗成本和提高修复效率,然 而修复效果的稳定性不足和较高的修复成本仍然是 需要解决的问题。基于近期的研究发展,以下方面有 望获得突破:

(1)新型表面活性剂的开发与应用。新型表面活 性剂如双子类(Gemini)表面活性剂、开关型表面活性 剂等,为表面活性剂强化原位修复提供了新的机遇。 双子类表面活性剂分子内具有多个亲水基和亲油基, 其自身即具有复合配方表面活性剂的功能特性。开 关型表面活性剂可由pH、CO₂、N₂和电流等外界刺激 控制表面活性官能团开关,实现非表面活性剂与表面 活性剂之间的转换,这使其在使用后易于再生回收, 极大降低了修复成本。这些新型表面活性剂的应用 尚停留在实验研究阶段,其在土壤原位修复方面应用 的效果仍有待现场验证。

(2)通过耦合技术减少表面活性剂使用量。在表面活性剂强化的HOCs污染土壤修复技术中,表面活性剂的过量残留常造成土壤和地下水的二次污染,或导致氧化剂损耗和表面活性剂浪费问题。因此,表面活性剂的减量化技术值得关注。除采用微生物原位生成获得生物表面活性剂外,超声波的耦合使用以及注入方式的改进如表面活性剂的泡沫注入法等,可有效减少表面活性剂用量,在表面活性剂强化其他原位修复技术发展中也值得关注。此外,结合污染土壤的精细诊断技术和微流控技术,理论上可以将"关闭"状态的表面活性剂,如胶囊缓释表面活性剂和开关型表面活性剂等精准输送到污染位点再"打开",从而实现表面活性剂的减量增效。

参考文献:

- UMEH A C, DUAN L, NAIDU R, et al. Residual hydrophobic organic contaminants in soil: are they a barrier to risk-based approaches for managing contaminated land?[J]. *Environment International*, 2017, 98: 18-34.
- [2] 孙红文,张闻.疏水性有机污染物在土壤/沉积物中的赋存状态研究[J]. 环境化学, 2011, 30(1):231-241. SUN H W, ZHANG W. Existing state of hydrophobic organic compounds in soils and sediments [J]. Environmental Chemistry, 2011, 30(1):231-241.
- [3] TRELLU C, PECHAUD Y, OTURAN N, et al. Remediation of soils contaminated by hydrophobic organic compounds: how to recover extracting agents from soil washing solutions? [J]. *Journal of Hazardous Materials*, 2021, 404:124137.
- [4] 廖艺, 牛亚宾, 潘艳秋, 等. 复配表面活性剂对油水界面行为和性质 影响的模拟研究[J]. 化工学报, 2022, 73(9):4003-4014. LIAO Y, NIU Y B, PAN Y Q, et al. Modeling the effects of mixed surfactants on the behaviors and properties of the oil-water interface with molecular dynamics[J]. CIESC Journal, 2022, 73(9):4003-4014.
- [5] CHENG M, ZENG G, HUANG D, et al. Advantages and challenges of Tween 80 surfactant-enhanced technologies for the remediation of soils contaminated with hydrophobic organic compounds[J]. *Chemical Engineering Journal*, 2017, 314:98–113.
- [6] BESHA A T, BEKELE D N, NAIDU R, et al. Recent advances in surfactant-enhanced *in-situ* chemical oxidation for the remediation of non-aqueous phase liquid contaminated soils and aquifers[J]. *Environmental Technology & Innovation*, 2018, 9:303-322.
- [7] 李倩,杨璐,姜越,等.农药生产场地污染土壤的化学氧化修复技术研究进展[J]. 生态与农村环境学报, 2021, 37(1):19-29. LI Q, YANG L, JIANG Y, et al. Chemical oxidation techniques for soil reme-

diation of contamination at pesticide – production sites[J]. Journal of Ecology and Rural Environment, 2021, 37(1):19–29.

- [8] 魏坤昊.表面活性剂增溶性能及强化 KMnO4氧化甲苯和菲效果研究[D]. 北京:中国环境科学研究院, 2022. WEI K H. The solubilization performance of surfactants and its effect on enhancing oxidation of toluene and phenanthrene by KMnO4[D]. Beijing: Chinese Research Academy of Environmental Sciences, 2022.
- [9] STROO H F, LEESON A, MARQUSEE J A, et al. Chlorinated ethene source remediation: lessons learned[J]. Environmental Science & Technology, 2012, 46(12):6438-6447.
- [10] LI Z. Surfactant-enhanced oxidation of trichloroethylene by permanganate-proof of concept[J]. *Chemosphere*, 2004, 54(3):419-423.
- [11] ETHICALCHEM. SEPR and S-ISCO remediation of creosote Bridgeville, Delaware, New York[EB/OL]. (2016-02-27) [2023-08-08]. http://media.wix.com/ugd/9b5eec_1cc453253d8d48149bc96f2ab39f0894.pdf.
- [12] SANTOS A, GARCÍA-CERVILLA R, CHECA-FERNÁNDEZ A, et al. Acute toxicity evaluation of lindane-waste contaminated soils treated by surfactant-enhanced ISCO[J]. *Molecules*, 2022, 27(24):8965.
- [13] LOMINCHAR M A, LORENZO D, ROMERO A, et al. Remediation of soil contaminated by PAHs and TPH using alkaline activated persulfate enhanced by surfactant addition at flow conditions[J]. Journal of Chemical Technology & Biotechnology, 2018, 93(5):1270-1278.
- [14] WANG L, WU H, DENG D. Role of surfactants in accelerating or retarding persulfate decomposition[J]. *Chemical Engineering Journal*, 2020, 384:123303.
- [15] 祝传力.表面活性剂协同活化过硫酸钠修复石油污染土壤研究[D]. 大庆:东北石油大学, 2023. ZHU C L. Study on remediation of petroleum contaminated soil by synergistic activation of sodium persulfate by surfactant[D]. Daqing: Northeast Petroleum University, 2023.
- [16] XU J C, YANG L H, YUAN J X, et al. Coupling surfactants with ISCO for remediating of NAPLs: recent progress and application challenges [J]. *Chemosphere*, 2022, 303:135004.
- [17] ELLOY F C, TEEL A L, WATTS R J. Activation of persulfate by surfactants under acidic and basic conditions[J]. *Groundwater Monitoring* & *Remediation*, 2014, 34(4):51–59.
- [18] DUGAN P J, SIEGRIST R L, CRIMI M L. Coupling surfactants/cosolvents with oxidants for enhanced DNAPL removal: a review[J]. *Remediation Journal*, 2010, 20(3):27–49.
- [19] WANG L, PENG L, XIE L, et al. Compatibility of surfactants and thermally activated persulfate for enhanced subsurface remediation[J]. Environmental Science & Technology, 2017, 51(12):7055-7064.
- [20] GARCÍA-CERVILLA R, SANTOS A, ROMERO A, et al. Compatibility of nonionic and anionic surfactants with persulfate activated by alkali in the abatement of chlorinated organic compounds in aqueous phase[J]. Science of the Total Environment, 2021, 751:141782.
- [21] SUN Y, LI M, GU X, et al. Mechanism of surfactant in trichloroethene degradation in aqueous solution by sodium persulfate activated with chelated-Fe (II) [J]. Journal of Hazardous Materials, 2021, 407: 124814.
- [22] 刘相良, 李英杰, 赵健艾, 等. 表面活性剂泡沫强化修复污染土壤

研究进展[J]. 化学通报, 2017, 80(12):1116-1122. LIUXL, LIY J, ZHAOJA, et al. Research progress of surfactant foam-enhanced remediation technology for contaminated soil[J]. *Chemistry*, 2017, 80 (12):1116-1122.

- [23] PETERS R W, ENZIEN M V, BOUILLARD J X, et al. Nonaqueousphase-liquids-contaminated soil/groundwater remediation using foams [R]. Columbus: Battelle Press, 1994.
- [24] MAIRE J, FATIN-ROUGE N. Surfactant foam flushing for *in situ* removal of DNAPLs in shallow soils[J]. *Journal of Hazardous Materials*, 2017, 321:247–255.
- [25] BOUZID I, MAIRE J, FATIN-ROUGE N. Comparative assessment of a foam-based oxidative treatment of hydrocarbon-contaminated unsaturated and anisotropic soils[J]. *Chemosphere*, 2019, 233:667–676.
- [26] MAIRE J, DAVARZANI H, COLOMBANO S, et al. Targeted delivery of hydrogen for the bioremediation of aquifers contaminated by dissolved chlorinated compounds[J]. *Environmental Pollution*, 2019, 249:443–452.
- [27] BOUZID I, MAIRE J, AHMED S I, et al. Enhanced remedial reagents delivery in unsaturated anisotropic soils using surfactant foam[J]. *Che*mosphere, 2018, 210:977–986.
- [28] BOUZID I, MAIRE J, FATIN-ROUGE N. Comparative assessment of a foam-based method for ISCO of coal tar contaminated unsaturated soils[J]. *Journal of Environmental Chemical Engineering*, 2019, 7(5): 103346.
- [29] LINDEBERG M R, MASELKO J, HEINTZ R A, et al. Conditions of persistent oil on beaches in Prince William Sound 26 years after the Exxon Valdez spill[J]. Deep-Sea Research, Part II: Topical Studies in Oceanography, 2018, 147:9-19.
- [30] AZUBUIKE C C, CHIKERE C B, OKPOKWASILI G C. Bioremediation techniques-classification based on site of application: principles, advantages, limitations and prospects[J]. World Journal of Microbiology and Biotechnology, 2016, 32(11):1–18.
- [31] MNIF I, MNIF S, SAHNOUN R, et al. Biodegradation of diesel oil by a novel microbial consortium: comparison between co-inoculation with biosurfactant-producing strain and exogenously added biosurfactants[J]. Environmental Science and Pollution Research, 2015, 22 (19):14852-14861.
- [32] 丁克强, 骆永明. 多环芳烃污染土壤的生物修复[J]. 土壤, 2001
 (4):169-178. DING K Q, LUO Y M. Bioremediation of soil contaminated by polycyclic aromatic hydrocarbons[J]. Soil, 2001 (4): 169-178.
- [33] 吴敏,施柯廷,陈全,等.有机污染土壤生物修复效果的限制因素及提升措施[J].农业环境科学学报,2022,41(5):919-932. WU
 M, SHI K T, CHEN Q, et al. Controlling factors and strategies to improve the bioremediation of organically contaminated soil: a review[J]. *Journal of Agro-Environment Science*, 2022, 41(5):919-932.
- [34] SHEN X, ZHANG J, XIE H, et al. Effect of humic acid on phenanthrene removal by constructed wetlands using birnessite as a substrate [J]. RSC Advances, 2022, 12(24):15231-15239.
- [35] NASERI M, BARABADI A, BARABADY J. Bioremediation treatment of hydrocarbon-contaminated arctic soils: influencing parame-

1228 In 1228

ters[J]. Environmental Science and Pollution Research, 2014, 21(19): 11250–11265.

- [36] 褚宴佳,何宝南,何江涛,等.微乳液增溶及微生物强化去除土壤 残留多环芳烃研究现状及展望[J].北京水务,2023(2):64-68. CHUYJ, HEBN, HEJT, et al. Research status and prospect of microemulsion and microbial removal of residual PAHs in soil[J]. Beijing Water, 2023(2):64-68.
- [37] DECESARO A, MACHADO T S, CAPPELLARO Â C, et al. Biosurfactants during in situ bioremediation: factors that influence the production and challenges in evalution[J]. *Environmental Science and Pollution Research*, 2017, 24(26):20831–20843.
- [38]任芳谊.鼠李糖脂在微生物表面的吸附及其对微生物表面性质的 影响[D].长沙:湖南大学,2008. REN F Y. Adsorption of rhamnolipid on microorganisms and the effect on cellsurface lypohydrophilic property[D]. Changsha; Hunan University, 2008.
- [39] SAJADI BAMI M, RAEISI ESTABRAGH M A, OHADI M, et al. Biosurfactants aided bioremediation mechanisms: a mini-review[J]. Soil and Sediment Contamination, 2022, 31(7):801-817.
- [40] 王晓旭, 孙丽娜, 郑学昊, 等. 表面活性剂强化微生物修复 DDTs-PAHs 复合污染农田土壤影响研究[J]. 生态环境学报, 2017, 26 (3): 486-492. WANG X X, SUN L N, ZHENG X H, et al. Enhanced effects of surfactants on the bioremediation of DDTs-PAHs in co-contaminated farmland soil[J]. Ecology and Environmental Sciences, 2017, 26(3): 486-492.
- [41] SAJNA K V, SUKUMARAN R K, GOTTUMUKKALA L D, et al. Crude oil biodegradation aided by biosurfactants from *Pseudozyma* sp. NII 08165 or its culture broth[J]. *Bioresource Technology*, 2015, 191: 133-139.
- [42] LIMA T M S, PROCÓPIO L C, BRANDÃO F D, et al. Evaluation of bacterial surfactant toxicity towards petroleum degrading microorganisms[J]. *Bioresource Technology*, 2011, 102(3):2957-2964.
- [43] GUDIÑA E J, RODRIGUES A I, DE FREITAS V, et al. Valorization of agro-industrial wastes towards the production of rhamnolipids[J]. *Bioresource Technology*, 2016, 212:144-150.
- [44] MÜLLER M M, KÜGLER J H, HENKEL M, et al. Rhamnolipids:next generation surfactants?[J]. Journal of Biotechnology, 2012, 162 (4): 366-380.
- [45] KUMAR M, LEON V, ILZINS O A. Enhancement of oil degradation by co-culture of hydrocarbon degrading and biosurfactant producing bacteria[J]. *Polish Journal of Microbiology*, 2006, 55(2):139–146.
- [46] MA Y, XIE Z, LOHMANN R, et al. Organophosphate ester flame retardants and plasticizers in ocean sediments from the North Pacific to the Arctic Ocean[J]. *Environmental Science & Technology*, 2017, 51 (7):3809–3815.
- [47] KHAN A H A, TANVEER S, ALIA S, et al. Role of nutrients in bacterial biosurfactant production and effect of biosurfactant production on petroleum hydrocarbon biodegradation[J]. *Ecological Engineering*, 2017, 104:158-164.
- [48] WU Y, XU M, XUE J, et al. Characterization and enhanced degradation potentials of biosurfactant-producing bacteria isolated from a marine environment[J]. ACS Omega, 2019, 4(1):1645-1651.

- [49] 谢萌.钢铁场地有机物污染的植物-微生物及表面活性剂强化修 复技术[D]. 济南:山东大学, 2021. XIE M. Plant-microorganism remediation and surfactant enhanced remediation technology for organic contamination in soil of iron and steel plant[D]. Jinan: Shandong University, 2021.
- [50] ROTHMEL R K, PETERS R W, ST MARTIN E, et al. Surfactant foam / bioaugmentation technology for *in situ* treatment of TCE– DNAPLs[J]. *Environmental Science & Technology*, 1998, 32 (11) : 1667–1675.
- [51] BAJAGAIN R, PARK Y, JEONG S W. Feasibility of oxidation-biodegradation serial foam spraying for total petroleum hydrocarbon removal without soil disturbance[J]. *Science of the Total Environment*, 2018, 626:1236-1242.
- [52] PARK J Y, CHOI Y J, MOON S, et al. Microbubble suspension as a carrier of oxygen and acclimated bacteria for phenanthrene biodegradation[J]. Journal of Hazardous Materials, 2009, 163(2/3):761-767.
- [53] BOUZID I, HERRERA D P, DIERICK M, et al. A new foam-based method for the (bio) degradation of hydrocarbons in contaminated vadose zone[J]. Journal of Hazardous Materials, 2021, 401:123420.
- [54] JEONG S W, JEONG J, KIM J. Simple surface foam application enhances bioremediation of oil-contaminated soil in cold conditions[J]. *Journal of Hazardous Materials*, 2015, 286:164–170.
- [55] BAJAGAIN R, LEE S, JEONG S W. Application of persulfate-oxidation foam spraying as a bioremediation pretreatment for diesel oil-contaminated soil[J]. *Chemosphere*, 2018, 207:565-572.
- [56]张锡辉,王慧,罗启仕.电动力学技术在受污染地下水和土壤修复中新进展[J].水科学进展,2001(2):249-255. ZHANG X H, WANG H, LUO Q S. Electrokinetics in remediation of contaminated groundwater and soils[J]. Advances in Water Science, 2001(2):249-255.
- [57] 杨珍珍, 耿兵, 田云龙, 等. 土壤有机污染物电化学修复技术研究 进展[J]. 土壤学报, 2021, 58(5):1110-1122. YANG Z Z, GENG B, TIAN Y L, et al. Research progresses on remediation of organic contaminated soils with electrochemical technologies[J]. Acta Pedologica Sinica, 2021, 58(5):1110-1122.
- [58] SAICHEK R E, REDDY K R. Electrokinetically enhanced remediation of hydrophobic organic compounds in soils: a review[J]. Critical Reviews in Environmental Science and Technology, 2005, 35(2):115– 192.
- [59] BOULAKRADECHE M O, AKRETCHE D E, CAMESELLE C, et al. Enhanced electrokinetic remediation of hydrophobic organics contaminated soils by the combination of non-ionic and ionic surfactants[J]. *Electrochimica Acta*, 2015, 174:1057–1066.
- [60] MATURI K, REDDY K R, CAMESELLE C. Surfactant-enhanced electrokinetic remediation of mixed contamination in low permeability soil[J]. Separation Science and Technology, 2009, 44 (10) : 2385– 2409.
- [61] SUANON F, TANG L, SHENG H, et al. Organochlorine pesticides contaminated soil decontamination using Triton X-100-enhanced advanced oxidation under electrokinetic remediation[J]. Journal of Hazardous Materials, 2020, 393:122388.

- [62] FAN G, CANG L, FANG G, et al. Surfactant and oxidant enhanced electrokinetic remediation of a PCBs polluted soil[J]. Separation and Purification Technology, 2014, 123:106–113.
- [63] HUANG Q, ZHOU M, ZHOU J, et al. Roles of oxidant, activator, and surfactant on enhanced electrokinetic remediation of PAHs historically contaminated soil[J]. *Environmental Science and Pollution Re*search, 2022, 29(59):88989–89001.
- [64] 刘五星, 骆永明, 王殿玺. 石油污染场地土壤修复技术及工程化应用[J]. 环境监测管理与技术, 2011, 23(3):47-51. LIU W X, LUO Y M, WANG D X. Advances and prospects in remediation technology and large-scale applications for petroleum contaminated soil[J]. Administration and Technique of Environmental Monitoring, 2011, 23 (3):47-51.
- [65] 章慧. 生物表面活性剂协同菲降解菌增强电动力去除砂土中的菲 [D]. 广州:华南理工大学, 2013. ZHANG H. Biosurfactant collaborated phenanthrene degrading bacteria enhanced electrokinetic dislodged phenanthrene from sandy[D]. Guangzhou: South China University of Technology, 2013.
- [66] 王博. 石油烃污染土壤间接热脱附关键影响因素研究[D]. 杭州: 浙江大学, 2021. WANG B. Study on key influencing factors of indirect thermal desorption of petroleum hydrocarbon contaminated soils [D]. Hangzhou: Zhejiang University, 2021.
- [67] 陈俊华, 祝红, 单晖峰, 等. 表面活性剂强化好氧生物修复 PAHs污染土壤效果研究[J]. 环境工程, 2020, 38(5):185-190. CHEN J H, ZHU H, SHAN H F, et al. Performance of surfactants enhanced aerobic bioremediation of PAHs contaminated soil[J]. *Environmental Engineering*, 2020, 38(5):185-190.
- [68] 王瑛, 李扬, 黄启飞, 等. 有机质对污染土壤中 DDTs 热脱附行为的 影响[J]. 环境工程学报, 2011, 5(6):1419-1424. WANG Y, LI Y, HUANG Q F, et al. Impact of organic matter on thermal desorption of DDTs in contaminated soils[J]. *Chinese Journal of Environmental Engineering*, 2011, 5(6):1419-1424.
- [69] 来珊珊, 李雪娇, 贺艳娟. 石油污染土壤热脱附修复的应用研究进展[J]. 石油化工应用, 2023, 42(2):1-7. LAISS, LIXJ, HEYJ. Application research progress of thermal desorption remediation for petroleum contaminated soil[J]. *Petrochemical Industry Application*, 2023, 42(2):1-7.
- [70] 牛明芬, 刘馨芷, 郭英达, 等. 采用清洗-热脱附工艺修复石蜡基与 环烷基原油污染土壤[J]. 环境工程, 2022, 40(9):167-172. NIU M F, LIU X Z, GUO Y D, et al. Washing-thermal desorption remediation of paraffin and naphthenicbased crude oil contaminated soil[J]. *Environmental Engineering*, 2022, 40(9):167-172.

- [71] 冉雨灵, 罗启仕, 赵秀红, 等. 基于共沸共溶原理脱除污染土壤中 1, 2-二氯乙烷[J]. 环境科学学报, 2020, 40(2):639-644. RAN Y L, LUO Q S, ZHAO X H, et al. Removal of 1, 2-dichloroethane from contaminated soil based on co-boiling and co-dissolving principle[J]. *Acta Scientiae Circumstantiae*, 2020, 40(2):639-644.
- [72] 冉雨灵. 基于共沸共溶的土壤低温热脱附修复技术研究[D]. 上海:华东理工大学, 2020. RAN Y L. The study on low-temperature thermal desorption technology for contaminated soil using co-boiling and co-dissolving[D]. Shanghai:East China University of Science and Technology, 2020.
- [73] 贾秀雯, 王盼盼, 张娟, 等. 热脱附对有机氯农药污染土壤微生物 响应效应[J]. 环境科学与技术, 2022, 45(8):197-205. JIA X W, WANG P P, ZHANG J, et al. Microbial response effects of thermal desorption in organochlorine pesticide - contaminated soil[J]. *Environmental Science & Technology*, 2022, 45(8):197-205.
- [74] NGUELEU S K, REZANEZHAD F, AL-RAOUSH R I, et al. Sorption of benzene and naphthalene on(semi)-arid coastal soil as a function of salinity and temperature[J]. *Journal of Contaminant Hydrology*, 2018, 219:61-71.
- [75] PERFUMO A, BANAT I M, MARCHANT R, et al. Thermally enhanced approaches for bioremediation of hydrocarbon-contaminated soils[J]. *Chemosphere*, 2007, 66(1):179–184.
- [76] JI G, ZHOU G. Impact of ultrasonication time on elution of super heavy oil and its biomarkers from aging soils using a Triton X-100 micellar solution[J]. *Journal of Hazardous Materials*, 2010, 179(1/2/3): 281-288.
- [77] SON Y, NAM S, ASHOKKUMAR M, et al. Comparison of energy consumptions between ultrasonic, mechanical, and combined soil washing processes[J]. Ultrasonics Sonochemistry, 2012, 19(3):395–398.
- [78] SHRESTHA R A, PHAM T D, SILLANPÄÄ M. Effect of ultrasound on removal of persistent organic pollutants (POPs) from different types of soils[J]. *Journal of Hazardous Materials*, 2009, 170(2/3):871–875.
- [79] SONG W, LI J, ZHANG W, et al. An experimental study on the remediation of phenanthrene in soil using ultrasound and soil washing[J]. *Environmental Earth Sciences*, 2012, 66(5):1487–1496.
- [80] JI G, ZHOU C, ZHOU G. Ultrasound enhanced gradient elution of super heavy oil from weathered soils using TX100/SBDS mixed salt micellar solutions[J]. Ultrasonics Sonochemistry, 2011, 18(2):506–512.
- [81] 王玲.表面活性剂与超声波联合使用去除土壤中PAHs的研究 [D].北京:华北电力大学, 2012. WANG L. Research on PAHs removal in soil using surfactant and ultrasound[D]. Beijing: North China Electric Power University, 2012.

(责任编辑:李丹)