文章摘要
褚向乾,吕卫光,樊海丹,白娜玲,郑宪清,李双喜,张娟琴,张海韵,张月,张翰林.稻鳝种养模式对土壤氨氧化微生物群落多样性和结构的影响[J].农业环境科学学报,2024,43(6):1350-1359.
稻鳝种养模式对土壤氨氧化微生物群落多样性和结构的影响
Effects of the rice-eel breeding model on the diversity and structure of soil ammonia-oxidizing microbial communities
投稿时间:2023-08-14  
DOI:10.11654/jaes.2023-0660
中文关键词: 稻鳝种养  氨氧化微生物  高通量测序  土壤理化性质  微生物群落
英文关键词: rice-eel breeding model  ammonia-oxidizing microorganism  high-throughput sequencing  soil physical and chemical property  microbial community
基金项目:上海市现代农业产业技术体系项目[沪农科产字(2022)第3号];上海市农业科学院卓越团队建设计划[沪农科卓(2022)008]
作者单位E-mail
褚向乾 上海市农业科学院生态环境保护研究所, 上海 201403  
吕卫光 上海市农业科学院生态环境保护研究所, 上海 201403
农业农村部东南沿海农业绿色低碳重点实验室, 上海 201403 
 
樊海丹 上海市农业科学院生态环境保护研究所, 上海 201403  
白娜玲 上海市农业科学院生态环境保护研究所, 上海 201403
农业农村部东南沿海农业绿色低碳重点实验室, 上海 201403 
 
郑宪清 上海市农业科学院生态环境保护研究所, 上海 201403
农业农村部东南沿海农业绿色低碳重点实验室, 上海 201403 
 
李双喜 上海市农业科学院生态环境保护研究所, 上海 201403
农业农村部稻渔综合种养生态重点实验室, 上海 201403
农业农村部上海农业环境与耕地保育科学观测实验站, 上海 201403 
 
张娟琴 上海市农业科学院生态环境保护研究所, 上海 201403
农业农村部东南沿海农业绿色低碳重点实验室, 上海 201403 
 
张海韵 上海市农业科学院生态环境保护研究所, 上海 201403
农业农村部东南沿海农业绿色低碳重点实验室, 上海 201403 
 
张月 上海市农业科学院生态环境保护研究所, 上海 201403
农业农村部东南沿海农业绿色低碳重点实验室, 上海 201403 
 
张翰林 上海市农业科学院生态环境保护研究所, 上海 201403
农业农村部稻渔综合种养生态重点实验室, 上海 201403
农业农村部上海农业环境与耕地保育科学观测实验站, 上海 201403 
zhanghanlinchick@163.com 
摘要点击次数: 236
全文下载次数: 126
中文摘要:
      为深入了解稻鳝种养模式对土壤氮循环关键微生物的影响,本研究采用Illumina MiSeq高通量测序系统,分析了稻鳝种养模式下氨氧化微生物[氨氧化古菌(AOA)、氨氧化细菌(AOB)和完全氨氧化微生物(Comammox)]的群落结构和多样性,以明确该模式对土壤氨氧化微生物群落的影响机制。试验设置两个处理(常规稻田处理和稻鳝种养处理),分别在处理小区的中心区域和沟渠边缘区域取样,即:常规稻田中心区域(CCS)、常规稻田沟渠边缘区域(CMS)、稻鳝种养处理中心区域(ICS)和稻鳝种养处理沟渠边缘区域(IMS)。结果表明:与常规稻田处理相比,稻鳝种养模式显著降低了土壤pH,减少了稻田中心区域和边缘区域间有机质和总氮的含量差异,增加了土壤硝化势;相较于常规稻田处理,稻鳝种养模式显著提高了 AOA、Comammox Clade-A和Comammox Clade-B的丰富度,显著降低了 AOB的丰富度;同时,IMS显著提高了 AOA的群落多样性,但降低了 AOB的群落多样性;土壤pH、有机质和速效氮是影响氨氧化微生物的关键环境因子(P<0.05);AOA和Comammox促进了土壤硝化速率,而AOB反之;稻鳝种养模式改变了氨氧化微生物群落的结构,并增强了氨氧化微生物之间的信息交流,使其内部连接更加紧密。研究表明,稻鳝种养模式通过改变土壤环境因子,特别是土壤pH、有机质和速效氮,显著影响了土壤氨氧化微生物群落的组成、结构和多样性,增强了氨氧化微生物之间的相互作用,对土壤氮循环关键微生物产生了重要影响。
英文摘要:
      Research on the composition, structure, and diversity changes of soil ammonia-oxidizing microbial communities under the rice-eel breeding model is needed to gain in-depth insights into the impact on key microbes involved in soil nitrogen cycling. In this study, Illumina MiSeq high-throughput sequencing was systematically employed to analyze the community structure and diversity of ammoniaoxidizing microbes [ammonia oxidizing archaea(AOA), ammonia oxidizing bacteria(AOB)and complete ammonia oxidizer(Comammox)] in the rice-eel breeding model. Two treatments were established:conventional rice field and rice-eel breeding treatments. Samples were collected from the central area and the edge of the ditch in each treatment, namely:conventional fertilization in the central area of rice fields (CCS), conventional fertilization in the ditch edge area of rice fields(CMS), rice-eel breeding model in the central area(ICS), and riceeel breeding model in the ditch edge area(IMS). The results showed that:compared to conventional rice field treatment, the rice-eel breeding model significantly reduced soil pH and decreased the difference in soil organic matter(SOM)and soil total N(TN)contents between the central and edge areas of the rice field, and increased soil potential nitrification rate(PNR); In comparison to the conventional rice field treatment, the rice-eel breeding model markedly increased the abundance of AOA and Comammox Clade-A and Comammox Clade-B, while significantly decreasing the abundance of AOB. Meanwhile, IMS significantly enhanced the community diversity index of AOA, but reduced the community diversity index of AOB. AOA and Comammox promoted soil nitrification rates, while AOB did the opposite; Soil pH, SOM, and available nitrogen(AN)were identified as key environmental factors influencing ammonia-oxidizing microorganisms(P<0.05); The rice-eel breeding model altered the structure of the ammonia-oxidizing microbial community and enhanced communication among these microorganisms, resulting in a more tightly connected internal network. The rice-eel breeding model, by altering soil environmental factors, especially soil pH, SOM, and AN content, significantly influences the composition, structure, and diversity of soil ammonia-oxidizing microbial communities. It enhances interactions among ammonia-oxidizing microbes and exerts a significant impact on key microbes involved in soil nitrogen cycling.
HTML    查看全文   查看/发表评论  下载PDF阅读器