2018,37(4):718-724

闫聪聪, 符博敏, 罗吉伟,等. 阳离子强度及类型对生物质炭吸附土霉素的影响[J]. 农业环境科学学报, 2018, 37(4): 718-724. YAN Cong-cong, FU Bo-min, LUO Ji-wei, et al. Effects of cation strength and species on adsorption of oxytetracycline by biochars[J]. *Journal of Agro-Environment Science*, 2018, 37(4): 718-724.

阳离子强度及类型对生物质炭吸附土霉素的影响

闫聪聪, 符博敏, 罗吉伟, 黄 鹏, 葛成军, 俞花美*

(海南大学热带农林学院 资源与环境学院,海口 570228)

摘 要:以 OECD Guideline 106 为基础,采用批量平衡法研究不同 Ca²⁺强度(0.01、0.03、0.05、0.08、0.1 mol·L⁻¹)以及不同阳离子类型 (0.01 mol·L⁻¹ KCl、ZnCl₂、CaCl₂、AlCl₃)对土霉素在 3 种菠萝皮渣生物质炭(BL350、BL500、BL650)中吸附的影响。结果表明,随着溶 液中 Ca²⁺浓度的增加,土霉素在生物质炭中的吸附参数 lgK_f 逐渐减小趋于稳定,且 lgK_f 值与 CaCl₂ 浓度之间呈显著负相关(*P*< 0.05)。与此同时,Ca²⁺浓度的增加对低浓度土霉素溶液的吸附影响与高浓度时相比不明显。不同阳离子条件下,Freundlich 和 Langmuir 模型均能较好地对吸附数据进行非线性拟合,平均 *R*²分别是 0.922 1、0.946 3。除了土霉素在 BL650 的 AlCl₃ 介质中 1/n 接 近 1,吸附趋于线性外,其他介质条件下的吸附等温线均呈"L"型。4 种阳离子对土霉素在 3 种生物质炭中吸附行为的影响存在较大 差异,具体表现为 K*与 Al³⁺之间存在显著差异(*P*<0.05),而 Zn²⁺与 K*、Al³⁺之间存在极显著差异(*P*<0.01)。与其他阳离子相比,K*的存 在显著降低溶液中土霉素在生物质炭上的吸附强度(1/n)。

关键词:土霉素;菠萝皮渣;生物质炭;阳离子强度;阳离子类型;吸附

中图分类号:X52 文献标志码:A 文章编号:1672-2043(2018)04-0718-07 doi:10.11654/jaes.2017-1475

Effects of cation strength and species on adsorption of oxytetracycline by biochars

YAN Cong-cong, FU Bo-min, LUO Ji-wei, HUANG Peng, GE Cheng-jun, YU Hua-mei*

(College of Natural Resources and Environment, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China) **Abstract**: Based on OECD Guideline 106, batch sorption methods were used to investigate the effects of calcium ion strength (i.e. 0.01, 0.03, 0.05, 0.08, 0.1 mol $Ca^{2+} \cdot L^{-1}$) and different cations (0.01 mol $\cdot L^{-1}$ solution of KCl, ZnCl₂, CaCl₂, AlCl₃) on the oxytetracycline (OTC) adsorption process in pineapple residue biochars prepared at three temperatures (BL350, BL500, BL650). The results indicated that the values of the OTC adsorption coefficient lg K_f gradually decreased with increasing Ca^{2+} concentration in solution until reaching steady state. A significantly negative correlation existed between calcium ion strength and lg K_f value (P<0.05). The effects of Ca^{2+} concentration on the OTC adsorption by biochars were negligible at lower OTC concentrations compared to those at higher concentrations. Under the condition of different cations, both the Freundlich and Langmuir models were well-fitted isotherms for describing the OTC adsorption by biochars, with average fitting correlation coefficients of 0.922 1 and 0.946 3, respectively. Whereas the OTC adsorption isotherm of BL650 tended to be linear (with the value of 1/n close to 1) in 0.01 mol $\cdot L^{-1}$ AlCl₃, other isotherms were L-type curves. Different effects of different cations on the OTC adsorption by the biochars were observed. In particular, whereas a significant difference existed between K⁺ and Al³⁺(P<0.05), more significant differences existed between Zn²⁺ and K⁺ or Al³⁺(P<0.01). Moreover, the presence of K⁺ significantly reduced the adsorption strength of OTC by biochar(1/n) as compared with the presence of other cations.

Keywords: oxytetracycline; pineapple peel waste; biochar; cation strength; cation species; adsorption

Project supported: The National Natural Science Foundation of China (21467008, 21367011, 41763015); The Natural Science Foundation of Hainan Province(413123); Major Science and Technology Programme of Hainan Province(ZDKJ2017002)

收稿日期:2017-10-01 录用日期:2017-12-13

作者简介:闫聪聪(1994—),男,陕西西安人,硕士研究生,研究方向为污染物环境行为。E-mail:hndxycc@163.com

^{*} 通信作者:俞花美 E-mail:yuhuamei3007@163.com

基金项目:国家自然科学基金项目(21467008,21367011,41763015);海南省自然科学基金项目(413123);海南省重大科技计划(ZDKJ2017002)

随着集约化畜禽养殖业的不断发展,抗生素作为 饲料防病添加剂而被广泛应用于养殖业中。其中四环 素类抗生素的生产和使用量占据世界第二,而在中国 则排名第一^[1]。土霉素(Oxytetracycline,OTC)作为四环 素类广谱抗菌剂,由于价格低廉、副作用小、使用方 便、在预防动物疾病和促进生长方面有较好的效果等优 点,在水产养殖和畜禽养殖业中得到了广泛应用。据报 道,我国土霉素产量在 2003 年达到了 10 000 t,占到世 界土霉素总产量的65%,而且其产量和用量还会保持 快速增长的趋势四。抗生素的生产和使用对人类健康 的保障和畜牧业的发展起到积极作用^[3]。然而,随着抗 生素使用量的逐年增大,抗生素类药物的污染问题引 起了广泛关注[44]。研究表明,人类或动物服用的抗生 素只有少部分残留在体内,而大部分以原有的结构或 其代谢产物的形式通过排便进入环境^[7]。据报道,在河 流、地下水以及地表水中都发现了土霉素的残留。这 些残留于环境中的土霉素可以通过饮用水、畜禽产品 等途径进入食物链,导致人体内产生相应的抗生素耐 药性。每年有大量的土霉素通过各种渠道(如污水灌 溉、田间径流、粪便施肥等)进入土壤和水体环境,由 于长期不断地施入和暴露, 土霉素对微生物抗性、动 植物毒性以及通过食物链生物放大作用对人类健康 已产生严重威胁^[8-10]。

生物质炭(Biochar)是生物质在低温(<700 ℃)、 限氧条件下的热解炭化产物^[11]。它是一种化学性质相 对稳定的多孔性物质,具有较大的比表面积、发达的 孔隙结构和存在芳香族化合物等特性,同时表面含有 羧基、羰基、酚羟基等含氧官能团,因此可作为一种高 效的吸附功能材料[12-13]。研究表明,生物质炭对抗生 素、多环芳烃和杀虫剂等有机污染物具有较强的吸附 能力,并能降低有机污染物在环境中的迁移能力和生 物有效性[14-18]。制备生物质炭的原材料可以是农业废 弃物(如甘蔗渣、木薯渣、秸秆),也可以是城市垃圾或 畜畜粪便等。目前,国内外关于介质和功能材料对土 霉素的去除研究颇多,但以生物质炭为吸附剂,土霉 素为目标污染物的文献较少,尤其是以菠萝皮渣为原 材料制备的生物质炭对土壤中土霉素的去除效应及 毒性影响未见报道。笔者前期研究表明,菠萝皮渣生 物质炭对土霉素具有较好的吸附效果[18]。但考虑到在 实际环境中各种阳离子与污染物共存,并且许多研究 表明外来离子会对土壤等介质吸附有机污染物产生 影响,这些离子可能与土霉素的吸附位点结合,从而 影响生物质炭对土霉素的吸附行为。另外,由于土霉

素分子结构特性,其能够与阳离子形成 2:1 的复合 体,也可能会造成土霉素环境行为的变化¹⁹。鉴于此, 本试验采用 OECD Guideline 106 批量平衡方法,研究 不同 Ca²⁺强度和不同阳离子类型对 3 种菠萝皮渣生 物质炭吸附土霉素的影响,以期为废水中抗生素的去 除研究提供理论依据。

1 材料与方法

1.1 供试材料

1.1.1 供试生物质材料

本试验制备生物质炭的原材料菠萝皮渣收集自 海南省海口市各水果店。

1.1.2 药品或试剂

土霉素标准品(纯度>98%,分子质量:460.43g· mol⁻¹)购自德国 DR. Ehrenstofer 公司; KCl、CaCl₂、 ZnCl₂、AlCl₃和 NaN₃均为分析纯;其他有机溶剂均为 色谱级;试验用水由优普超纯水制造系统提供。 1.1.3 仪器设备

高效液相色谱仪(Waters Alliance 2695);恒温培

养摇床(NRV-211);优普系列超纯水器(UPH-I-10T)。

1.2 实验方法

1.2.1 生物质炭的制备

菠萝皮渣自然风干后,经高速旋转破碎机碾成粉 末备用。将菠萝渣基粉末填充于瓷坩埚中,加盖密封 置于马弗炉中,使其在 200 ℃条件下预炭化 2 h,再分 别升温至 350、500、650 ℃保持热解炭化 3 h,待自然 冷却至室温后取出。根据热解温度分别标记为 BL350、BL500 和 BL650, 并研磨过平均粒径为 0.15 mm 筛,置于干燥器中密封贮存备用。供试生物质炭 基本理化性质见表1。

表1 供试菠萝皮渣生物质炭基本理化性质[18]

Table 1 Physiochemical properties of the tested pineapple residue biochars[18]

生物质 炭类型	pН	阳离子交换量/ cmol・kg ⁻¹	比表面积/ m ² ·g ⁻¹	灰分 含量/%	产率/%
BL350	9.37	62.17	0.815	10.41	33.94
BL500	9.57	85.10	2.729	12.58	25.74
BL650	9.74	116.57	6.643	13.23	23.74

1.2.2 不同离子强度的影响

参照 OECD Guideline106 批平衡方法^[20],分别称 取 0.100 0 g BL350、BL500 和 BL650 于 50 mL 聚丙烯 塑料离心管中,按照统一固液比(1:100)加入 10 mL 含不同浓度的 CaCl₂(0.01、0.03、0.05、0.08、0.10 mol·L⁻¹)的不同浓度的土霉素溶液(土霉素的浓度梯度为 2、5、10、15、20 mg·L⁻¹,其中加入 0.01 mol·L⁻¹ NaN₃ 以 抑制细菌活动)。在恒温 25 ℃下于 200 r·min⁻¹ 恒温培养摇床振荡 24 h,取样并经 0.45 µm 水系滤膜过滤 后,采用高效液相色谱仪(HPLC)检测滤液中残留的 土霉素浓度。以上处理均 3 个重复。由吸附前后溶液 中土霉素浓度之差计算得到生物质炭的吸附量。1.2.3 阳离子类型的影响

将上述试验中的 CaCl₂ 更换为 0.01 mol·L⁻¹ 的 KCl、ZnCl₂ 或 AlCl₃ 溶液(含 0.01 mol·L⁻¹ NaN₃),分别 于恒温 25 ℃和 200 r·min⁻¹ 条件下振荡 24 h 后,测定 土霉素在生物质炭上的吸附量。

1.2.4 土霉素的测定

土霉素测定的高效液相色谱(HPLC)操作条件: 配置 2487 紫外检测器,Gemini C18 色谱柱(150 mm× 4.6 mm I.D.,5 μm),Gemini C18 保护柱(4.0 mm×3.0 mm I.D.);流速 1 mL·min⁻¹;柱温 30 ℃;检测波长 355 nm;流动相 A 为乙腈,B 为 0.5%磷酸水溶液,A:B=15: 85;进样量为 20 μL。该色谱条件下土霉素的保留时 间为 3.5 min。

1.2.5 数据分析

采用 SPSS 20.0、Excel 2010 和 Origin 8.0 软件对 试验数据进行分析和图表绘制,并利用 Freundlich 模 型和 Langmuir 模型对吸附过程进行拟合^[21]。

Freundlich 模型:lgq_e=lgK_f+
$$\left(\frac{1}{n}\right)$$
lgC_e (1)

式中: q_e 是土霉素在单位质量生物质炭上的吸附量, mg·kg⁻¹; C_e 为平衡液中吸附质的浓度,mg·L⁻¹; K_f 为生 物质炭吸附强度和容量常数,与土霉素吸附速率呈正 相关;n为 Freundlich 方程常数,表征吸附质与吸附剂 之间的亲和力。

Langmuir 模型:
$$\frac{1}{q_{e}} = \frac{1}{Q_{m}} + \left(\frac{1}{K_{L}Q_{m}}\right) \left(\frac{1}{C_{e}}\right)$$
 (2)

式中: q_e 为生物质炭对土霉素吸附量, $mg\cdot kg^{-1}$; K_L 为 平衡液中土霉素的浓度, $mg\cdot L^{-1}$; Q_m 是土霉素的最大 吸附量, $mg\cdot kg^{-1}$; K_L 为吸附常数。

2 结果与讨论

2.1 不同离子强度对生物质炭吸附土霉素的影响

平衡溶液中土霉素的浓度随 CaCl₂浓度的变化 趋势如图 1 所示。随着平衡溶液中 CaCl₂浓度的增大, 土霉素残留浓度也增加。对数据分别进行线性、对数、 平方、三次方以及指数函数拟合。结果表明,在不同土

农业环境科学学报 第 37 卷第 4 期

霉素浓度以及不同生物质炭情况下,离子强度与平衡 溶液中土霉素浓度均以对数拟合效果为最佳,这说明 在土霉素的吸附过程中,随着 CaCl₂ 浓度的升高,吸附 过程是非线性变化的,而对数拟合效果最佳的结果表 明,随着离子强度的增大,其对吸附的影响逐渐趋于 缓和。并且可能在某一范围内,CaCl₂ 浓度的变化对土 霉素的吸附影响较其他范围大。

从图 1 中可见,在低浓度下(≤5 mg·L⁻¹)土霉素 的生物质炭吸附受 CaCl₂浓度的影响不大,而当土霉 素浓度较高时(>5 mg·L⁻¹),CaCl₂浓度的变化对生物

Figure 1 Oxytetracycline concentration of adsorption solution in the three biochars on different $CaCl_2$ concentration

质炭吸附土霉素的影响较大。这一点从土霉素的生物 质炭吸附系数 K_{d} 值的变化可以体现出来(表 2)。由 于平衡溶液中土霉素的残留浓度和生物质炭的吸附 量能直接体现土霉素的吸附变化,因此K。值更能直 观地表现出其吸附变化趋势。

 K_{d} 为生物质炭吸附系数,表示生物质炭对土霉 素的吸附量与平衡溶液中土霉素浓度之比。由表2可 知,在同一离子强度下,随着土霉素浓度的增加,其在 3种生物质炭的 Ka值逐渐减小, 但这一趋势是非线 性的,这与之前得到的土霉素吸附是非线性过程的结 论一致^[18]。同样地,当土霉素浓度一定时,K_d值随 CaCl₂浓度的升高也逐渐减小,且减小的趋势也呈非 线性。对 3 种生物质炭中各相邻 CaCl₂浓度处理间的 K_{d} 值进行配对样本 T 检验,结果显示,BL350 和 BL500 在 CaCl₂ 浓度为 0.01 mol·L⁻¹ 和 0.03 mol·L⁻¹ 间存在显著差异(0.01<P<0.05), BL650在CaCl2浓度

为 0.03 mol·L⁻¹ 和 0.05 mol·L⁻¹ 间存在显著差异 (0.01<P<0.05), 再对比 0.08 mol·L⁻¹ 和 0.10 mol·L⁻¹ 范围,K。值不存在显著差异,这表明随着 CaCl₂ 浓度 的增加,离子浓度对土霉素吸附的影响逐步减小,与 之前结论一致。另外 BL650 在 0.01 mol·L⁻¹ 和 0.03 mol·L⁻¹之间不存在显著差异,可能原因是 BL650 的 比表面积较其他两种生物质炭大,从而对土霉素的吸 附能力较强,低浓度的 CaCl2 对其吸附的影响与其吸 附能力相比较可以忽略。

2.2 吸附模型参数

不同离子强度下,采用 Freundlich 模型和 Langmuir 模型均能较好地拟合 3 种生物质炭对土霉素 的吸附过程。两种吸附模型参数 $\lg K_{f_{x}} 1/n_{x} Q_{m}$ 的值见 表3。

 $\lg K_f$ 表示生物质炭对土霉素的吸附容量。通过相 关性分析可知,生物质炭的 $\lg K_{l}$ 值与 CaCl₂ 浓度之间

表 2 不同 CaCl ₂ 浓度	夏下土霉素(OTC)在 3 种生物	の质炭中的 K _d 值(L·kg ⁻¹)
-----------------------------	-------------------	---

Table 2	K ₁ values o	of OTC in	three biochars	on different	CaCl ₂ conce	ntration(L•kg ⁻¹)
rabic 2	nd values o	n oro m	unce bioenais	on unicient	Guong conice	manon L Kg /

生物质炭类型	CaCl₂浓度/mol·L ⁻¹ —	OTC 浓度/mg·L ⁻¹						
		2	5	10	15	20		
BL350	0.01	0.314 2	0.193 3	0.116 2	0.086 2	0.071 4		
	0.03	0.190 3	0.093 3	0.052 7	0.049 4	0.033 8		
	0.05	0.116 2	0.081 3	0.051 1	0.036 0	0.025 1		
	0.08	0.099 6	0.068 3	0.039 5	0.033 8	0.024 0		
	0.10	0.099 0	0.062 4	0.038 0	0.030 9	0.021 7		
BL500	0.01	0.956 6	1.153 9	0.534 2	0.361 5	0.257 7		
	0.03	0.697 8	0.405 7	0.251 6	0.170 5	0.135 3		
	0.05	0.599 1	0.378 5	0.235 3	0.141 1	0.114 1		
	0.08	0.445 0	0.332 1	0.179 1	0.140 7	0.099 7		
	0.10	0.391 0	0.326 0	0.166 9	0.123 5	0.096 1		
BL650	0.01	3.482 9	6.717 2	3.053 2	1.362 8	0.798 6		
	0.03	3.227 8	3.018 6	0.762 7	0.728 8	0.380 8		
	0.05	3.037 5	2.781 9	0.744 5	0.552 2	0.356 7		
	0.08	3.007 6	1.384 1	0.680 2	0.510 9	0.339 8		
	0.10	2.839 4	0.799 9	0.672 8	0.418 7	0.307 6		

表 3 不同 CaCl₂ 浓度下的吸附模型参数

Table 3 Adsorption parameters for two models on different CaCl2 concentration

CaCl ₂ 浓度/	BL350			BL500			BL650		
$mol \cdot L^{-1}$	$\lg K_{ m f}$	1/n	$Q_{ m m}/{ m mg} \cdot { m kg}^{-1}$	lgK_{f}	1/n	$Q_{ m m}/{ m mg} \cdot { m kg}^{-1}$	$\lg K_{\rm f}$	1/n	$Q_{ m m}/{ m mg} \cdot { m kg}^{-1}$
0.01	2.367 5	0.530 2	833	2.776 5	0.574 4	2000	3.135 3	0.519 8	3333
0.03	2.192 0	0.455 6	500	2.584 7	0.534 7	1111	2.949 4	0.472 3	1667
0.05	2.093 3	0.474 2	500	2.551 7	0.519 0	1111	2.924 2	0.463 4	1429
0.08	2.028 6	0.496 5	455	2.493 5	0.546 3	1111	2.886 8	0.493 5	1111
0.10	2.022 2	0.472 2	417	2.469 5	0.547 3	1111	2.842 8	0.494 6	1000

呈显著负相关(P<0.05)。由表 3 可知,3 种生物质炭 吸附土霉素的 1/n 值均有差别,说明其吸附机理略有 差异,且当离子强度一定时,BL500 的 1/n 值最大,说 明 BL500 相较于其他两种生物质炭的非线性程度 弱。当离子强度增大时,1/n 值都有不同程度的减少, 说明 CaCl₂ 浓度的增加对生物质炭的吸附机理存在 影响。3 种生物质炭的最大吸附量 Q_m 值均有变化,且 随着 CaCl₂浓度的增加最终趋于稳定。

2.3 阳离子类型对土霉素吸附的影响

图 2 为 4 种 0.01 mol·L⁻¹不同阳离子(KCl、ZnCl₂、 CaCl₂ 和 AlCl₃)条件下土霉素在 3 种生物质炭中的吸 附等温线。由图可知,不同阳离子对土霉素在生物质 炭上的吸附影响存在差异。

通常情况下,污染物的吸附过程可以通过不同的 吸附等温线进行描述,本研究采用 Freundlich 和 Langmuir 模型对其吸附等温线进行定量描述。按上述 两种方程进行计算,分别得到了土霉素在4种不同介 质条件下和3种生物质炭中的吸附相关参数,拟合参 数见表 4。根据得到的等温吸附方程的拟合相关系数 可知 Freundlich 方程和 Langmuir 方程均能较好地拟 合吸附过程,其平均 R² 值分别为 0.922 1 和 0.946 3, 表明生物质炭对土霉素的吸附包括单分子层吸附和 多分子层吸附作用。其中 Freundlich 方程的拟合参数 $\lg K_f$ 值表征吸附剂的吸附能力, $\lg K_f$ 值越大表明吸附 能力越强。本研究中,土霉素在3种生物质炭中的 lgK_f在 2.367 5~3.173 2 之间,这说明在 4 种不同介质 条件下,3种生物质炭对土霉素的吸附容量较大。另 外,在同一阳离子介质中,3种生物质炭对土霉素的 lgK_f值表现为 BL650>BL500>BL350, 这与前人研究 结果一致,主要是生物质炭比表面积增大和芳香性增 强造成的[15]。

此外,不同阳离子存在下,土霉素在 BL350 上的 吸附 lgK_i 值变化趋势为 Zn²⁺>K⁺>Al³⁺>Ca²⁺;在 BL500 和 BL650 中,lgK_i 值的变化趋势为 Zn²⁺>Ca²⁺>K⁺>Al³⁺。 经过方差分析显示,K⁺与 Al³⁺之间存在显著差异(P< 0.05),而 Zn²⁺与 K⁺、Al³⁺之间存在极显著差异(P<0.01), 其余均未达到显著性差异水平(P>0.05),这可能跟阳 离子在与土霉素竞争生物质炭上吸附位点时的差异 有关。研究表明,Ca²⁺与抗生素的吸附位点可能不重 叠^[22],因此以 Ca²⁺介质为对照,在 3 种生物质炭中,Zn²⁺对生物质炭的吸附能力都有不同程度的增强,而 Al³⁺对 BL350 吸附土霉素的能力有所增强,这可能是 由于金属离子的水解作用造成的。有研究报道,Al³⁺

OTC to biochars

在 pH=6 时大部分以 Al(OH) 4存在,只有少部分以 Al(OH) 的形式存在^[23], Al³⁺可作为"桥"为土霉素增加 吸附位点。Freundlich 方程的拟合参数 1/n 代表生物质 炭对土霉素的吸附强度,由表 4 可知,1/n 在 0.484 1~1.001 1 之间,除了土霉素在 BL650 的 AlCl₃ 介质中 1/n 趋近于 1 外,其他条件下 1/n <1,属于"L型"等温线。 土霉素在 BL650 的 AlCl₃ 介质中 1/n 接近 1,表明土 霉素在其上的吸附趋于线性。4 种阳离子介质中,KCl 存在下的 1/n 值最小,说明以 KCl 为介质使得土霉素 2018年4月

表 4 不同阳离子影响下土霉素在 3 种生物质炭中的吸附参数

Table 4 Adsorption parameters of OTC in three biochars under the existence of different cations

生物质炭种类	阳离子类型 —		Freundlich 模型			Langmuir 模型			
		$\lg K_{ m f}$	1/n	R^2	$Q_{ m m}/{ m mg} \cdot { m kg}^{-1}$	$K_{ m L}$	R^2		
BL350	KCl	2.601 4	0.484 1	0.962 0	1111	0.818 2	0.993 5		
	$ZnCl_2$	2.916 9	0.669 4	0.984 8	2500	0.666 7	0.998 9		
	CaCl ₂	2.367 5	0.530 2	0.996 0	833	0.461 5	0.992 2		
	AlCl ₃	2.479 2	0.703 9	0.918 9	5000	0.060 6	0.980 2		
BL500	KCl	2.656 8	0.545 0	0.941 0	1429	0.636 4	0.993 4		
	$ZnCl_2$	2.989 2	0.596 7	0.954 9	2500	1.000 0	0.994 3		
	CaCl ₂	2.776 5	0.574 4	0.947 9	2000	0.555 6	0.973 4		
	AlCl ₃	2.555 5	0.656 4	0.728 0	-5000	-0.057 1	0.766 9		
BL650	KCl	2.887 7	0.498 6	0.960 0	1429	1.750 0	0.992 0		
	$ZnCl_2$	3.173 2	0.539 4	0.847 2	5000	1.000 0	0.859 6		
	$CaCl_2$	3.135 3	0.519 8	0.873 6	3333	1.500 0	0.828 0		
	AlCl ₃	2.703 7	1.001 1	0.950 4	-5000	-0.087 0	0.983 1		
平均值		_	_	0.922 1	_	_	0.946 3		

吸附等温线的"L型"更加明显。

3 结论

(1)在土霉素低浓度范围内,生物质炭对土霉素的吸附受离子强度变化的影响不大,而随着土霉素浓度升高,其受离子强度变化影响增大。

(2)不同 Ca²⁺浓度条件下,3 种生物质炭对土霉素 的吸附过程均符合 Freundlich 和 Langmuir 模型。随 平衡溶液中 CaCl₂浓度的升高,生物质炭对土霉素的 吸附容量($\lg K_f$)逐渐减小,且 $\lg K_f$ 值与 CaCl₂浓度之 间呈显著负相关(P<0.05)。

(3)4 种不同阳离子条件下, 土霉素在 3 种生物 质炭中的吸附过程均符合 Freundlich 和 Langmuir 模型。3 种生物质炭对土霉素具有强烈的吸附作用, lgK_f 值范围为 2.367 5~3.173 2, 其吸附机制属于物理吸附。

(4)不同阳离子间的竞争吸附能力存在差异,Zn²⁺ 的存在对 3 种生物质炭的吸附能力都有不同程度的 增强,而 Al³⁺对 BL350 吸附土霉素的能力有所增强。 与其他阳离子相比,K⁺的存在更能降低溶液中土霉素 在生物质炭上的吸附强度(1/n)。

参考文献:

- Cheng G. Interaction of tetracycline with aluminum and iron hydrous oxides[J]. Environment Science & Technology, 2005, 39(8):2660–2667.
- [2] Richardson B J, Lam P K, Martin M. Emerging chemicals of concern: Pharmaceuticals and personal care products(PPCPs) in Asia, with particular reference to Southern China[J]. *Marine Pollution Bulletin*, 2005, 50(9):913.

- [3] Sun J T, Zeng Q T, Tsang D, et al. Antibiotics in the agricultural soils from the Yangtze River Delta, China[J]. *Chemosphere*, 2017, 189:301– 308.
- [4] Wang F H, Qiao M, Lv Z E, et al. Impact of reclaimed water irrigation on antibiotic resistance in public parks, Beijing, China[J]. *Environment Pollution*, 2014, 184(1):247–253.
- [5] Wang F H, Qiao M, Su J Q, et al. High throughput profiling of antibiotic resistance genes in urban park soils with reclaimed water irrigation[J]. *Environment Science & Technology*, 2014, 48(16):9079–9085.
- [6] Hou J, Wan W, Mao D, et al. Occurrence and distribution of sulfonamides, tetracyclines, quinolones, macrolides, and nitrofurans in livestock manure and amended soils of Northern China[J]. *Environmental Science & Pollution Research International*, 2015, 22(6):4545–4554.
- [7] Hu X G, Zhou Q X, Luo Y. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, Northern China[J]. *Environmental Pollution*, 2010, 158(9):2992–2998.
- [8] 姚建华,牛德奎,李兆君,等.抗生素土霉素对小麦根际土壤酶活性 和微生物生物量的影响[J].中国农业科学,2010,43(4):721-728. YAO Jian-hua, NIU De-kui, LI Zhao-jun, et al. Effects of antibiotics oxytetracycline on soil enzyme activities and microbial biomass in wheat rhizosphere[J]. Scientia Agricultua Sinica, 2010, 43(4):721-728.
- [9] Campbell D A, Pantazis P, Kelly M S. Impact and residence time of oxytetracycline in the sea urchin, *Psammechinus miliaris*, a potential aquaculture species[J]. *Aquaculture*, 2001, 202(1/2):73–87.
- [10] 马瑞阳, 闫聪聪, 符博敏, 等. 生物质炭对土霉素胁迫下小白菜种子 萌发的影响[J]. 生态毒理学报, 2017, 12(3):564-571.
 MA Rui-yang, YAN Cong-cong, FU Bo-min, et al. Effects of biochar on seed germination of cabbage under the stress of oxytetracycline[J]. *Asian Journal of Ecotoxicology*, 2017, 12(3):564-571.
- [11] Wu W X, Yang M, Feng Q B, et al. Chemical characterization of rice straw-derived biochar for soil amendment[J]. Biomass & Bioenergy,

724

2012, 47(4): 268-276.

- [12] Liang B, Lehnann J, Solomon D, et al. Black carbon increases cation exchange capacity in soils[J]. Soil Science Society of America Journal, 2006, 70(5):1719–1730.
- [13] Rebecca R. Rethinking biochar[J]. Environmental Science & Technology, 2007, 41(17): 5932–5933.
- [14] Karakoyun N, Kubilay S, Aktas N, et al. Hydrogel-biochar composites for effective organic contaminant removal from aqueous media[J]. *De-salination*, 2011, 280(1):319–325.
- [15] Oleszczuk P, Hale S E, Lehmann J, et al. Activated carbon and biochar amendments decrease pore-water concentrations of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge [J]. *Bioresource Technology*, 2012, 111:84–91.
- [16] Yu X Y, Mu C L, Gu C, et al. Impact of woodchip biochar amendment on the sorption and dissipation of pesticide acetamiprid in agricultural soils[J]. *Chemosphere*, 2011, 85(8):1284–1289.
- [17] Ji L L, Liu F L, Xu Z Y, et al. Adsorption of pharmaceutical antibiotics on template-synthesized ordered micro-and mesoporous carbons[J]. *Environmental Science & Technology*, 2010, 44(8):3116-3122.
- [18] Fu B M, Ge C J, Yue L, et al. Characterization of biochar derived from

pineapple peel waste and its application for sorption of oxytetracycline from aqueous solution[J]. *Bioresources*, 2016, 11(4):9017–9035.

- [19] Oka H, Ito Y, Matsumoto H. Chromatographic analysis of tetracycline antibiotics in foods[J]. *Journal of Chromatography A*, 2000, 882(2):109– 133.
- [20] OECD. OECD guidelines for testing of chemicals, Test guideline106: Adsorption/desorption using a batch equilibrium method[M]. Revised draft document. Paris: OECD, 2000:1–45.
- [21] 刘新程, 董元华, 刘惠君. 阳离子与金霉素在土壤中竞争吸附的研究[J]. 土壤学报, 2010, 47(4):781–785.
 LIU Xin-cheng, DONG Yuan-hua, LIU Hui-jun. Competitive absorption of chlortrtracycline by cation in typical soils of China[J]. A cta Pedologica Sinica, 2010, 47(4):781–785.
- [22] Zhang D, Pan B, Wu M, et al. Adsorption of sulfamethoxazole on functionalized carbon nanotubes as affected by cations and anions[J]. *Environmental Pollution*, 2011, 159(10):2616–2621.
- [23] Pei Z G, Yang S, Li L Y, et al. Effects of copper and aluminum on the adsorption of sulfathiazole and tylosin on peat and soil[J]. *Environmental Pollution*, 2014, 184(1):579–585.