周君玺, 翟晓芳, 孙浩然, 等. 控释氮肥配施对不同覆盖旱作农田 CO₂排放的影响[J]. 农业环境科学学报, 2019, 38(10): 2429-2438. ZHOU Jun-xi, ZHAI Xiao-fang, SUN Hao-ran, et al. Effects of controlled-release urea on CO₂ emission from dry farmland under different mulching patterns [J]. Journal of Agro-Environment Science, 2019, 38(10): 2429-2438.

控释氮肥配施对不同覆盖旱作农田 CO₂ 排放的影响

周君玺^{1,2},翟晓芳^{1,2},孙浩然¹,唐 靓^{1,2},沈玉芳²

(1.西北农林科技大学资源环境学院,陕西 杨凌 712100; 2.西北农林科技大学黄土高原土壤侵蚀与旱地农业国家重点实验室,陕西 杨凌 712100)

摘 要:为探讨黄土高原旱作不同覆盖下控释氮肥配施对春玉米农田二氧化碳(CO₂)排放的影响,2016—2018年在长武农业生态试验站进行了田间定位试验,采用静态暗箱 – 气相色谱法研究了地膜覆盖(FM)与秸秆覆盖(SM)条件下不施氮肥(NO)、100% 普通尿素(N1)、树脂尿素和普通尿素比例1:2(N2)三种施氮处理农田CO₂排放的动态变化特征。结果表明:旱作春玉米农田土壤CO₂排放通量的变化幅度在3.62~248.45 mg CO₂-C·m⁻²·h⁻¹,且呈先增加后降低的趋势。不同处理农田CO₂排放通量与0 cm 和 10 cm 土壤温度均呈极显著正相关。与不施肥相比,施用氮肥均显著增加农田CO₂排放通量和累积排放量。与施普通尿素相比,控释氮肥配施显著减少生长季和全年CO₂累积排放量达7.3%~10.12%。施氮处理CO₂排放通量与NO₅-N和NH[‡]-N呈显著正相关。 在相同施氮条件下,秸秆覆盖处理CO₂累积排放量均高于地膜覆盖处理。上述结果说明,控释氮肥配施处理有利于减少旱作不同覆盖春玉米农田CO₂排放。

关键词:地膜覆盖;秸秆覆盖;控释肥;CO2排放;旱作农田

中图分类号:X511 文献标志码:A 文章编号:1672-2043(2019)10-2429-10 doi:10.11654/jaes.2019-0340

Effects of controlled-release urea on CO₂ emission from dry farmland under different mulching patterns

ZHOU Jun-xi12, ZHAI Xiao-fang12, SUN Hao-ran1, TANG Liang12, SHEN Yu-fang2

(1.College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; 2.State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China)

Abstract: In order to investigate the effects of controlled–release urea (CRU) on carbon dioxide (CO₂) emission from spring maize farmland under different mulching patterns on the Loess Plateau, field experiments were conducted at Changwu Agricultural and Ecological Experimental Station from 2016 to 2018. The experimental treatments included no nitrogen fertilizer application (NO), application of 100% urea at a rate of 225 kg N · hm⁻²(N1), and CRU combined with conventional urea application ratio of 1:2 and rate of 225 kg N · hm⁻²(N2) under plastic film mulching(FM) and straw mulching(SM). The results showed that CO₂ emission in dry spring maize farmland increased first and then decreased, ranging from 3.62 to 248.45 mg CO₂–C · m⁻² · h⁻¹. There was a significant and positive correlation between CO₂ emission rate and soil temperature for 0~10 cm soil depths under different treatments. Compared with NO, nitrogen fertilizer application significantly increased the CO₂ emission rate and cumulative CO₂ emission. The cumulative CO₂ emission during the growing season of maize and the whole year for the treatment N2 was significantly lower, by 7.3%~10.12%, relative to N1. There was a significant positive correlation between CO₂ emission rate and nitrate and ammonium concentrations. Under the same nitrogen application rate, cumulative CO₂ emission under straw mulching was higher compared to that under plastic film mulching. These results indicate that CRU and conventional urea application ratio of 1:2 is beneficial for reducing CO₂ emission from spring maize fields under different mulching patterns in dry farmland. **Keywords**; plastic film–mulching; corn straw mulching; controlled–release fertilizer; CO₂ emissions; dry farmland

收稿日期:2019-03-28 录用日期:2019-05-28

作者简介:周君玺(1992—),男,山东烟台人,硕士研究生,研究方向为农田温室气体排放。E-mail:zhoujx814@163.com

^{*}通信作者:沈玉芳 E-mail:shenyufang@nwafu.edu.cn

基金项目:国家自然科学基金项目(41671307,51279197);国家重点研发计划项目(2017YFD0201807);陕西省自然科学基础科学研究计划项目 (2017JM3011)

Project supported: The National Natural Science Foundation of China (41671307, 51279197); The Major Research Plan of the National Natural Science Foundation of China (2017YFD0201807); The National Natural Science Foundation of Shaanxi (2017JM3011)

农业环境科学学报 第38卷第10期

"温室效应"是当前世界性的重要环境问题之一, 对生活环境、社会发展各方面产生了不同程度的影响。二氧化碳(CO₂)是一种重要的温室气体,其对全 球变暖的贡献率超过60%,其平均浓度0.78 mg·L⁻¹(在 0℃,标准大气压下),为工业化前水平的143%^[1]。研 究表明,农田生态系统是CO₂的一个重要来源,也是潜 在的"汇"^[2]。因此,研究农田土壤CO₂的排放规律,对 于如何优化农田管理措施来调控农田温室气体排放 具有重要意义。

地膜覆盖和秸秆覆盖是黄土高原旱作农田生产 中调控水分、促进作物生产的主要优化管理措施。地 膜覆盖通过物理阻隔层,改善通风透光条件,可有效 改变土壤温度、孔隙度和水分状况、土壤中的酶活性 和微生物数量,从而利于作物的生长发育^[3]。秸秆覆 盖也具有减少土壤水分蒸发、保墒蓄水、调节土壤温 度和提高肥力等作用[4];同时秸秆通过影响土壤理化 性质进而影响 CO₂排放,如增加 CO₂排放^[5]。但 Al-Kaisi和Yin研究却发现无秸秆覆盖处理CO₂排放量 明显高于秸秆覆盖处理。化肥在农业生产中占据 极其重要的地位,化肥的施用可提高土壤肥力,增加 作物产量,粮食增产的55%要归功于化肥的施用^四。 虽然李成芳等^[8]研究表明,施肥未显著影响农田CO₂ 排放,但是不合理施肥引起的CO,排放等环境问题也 不容忽视[9-10]。氮肥施入土壤后可导致土壤碳、氮等 发生较大变异,进而影响碳转化微生物数量和活性, 改变土壤碳氮循环,增加土壤CO2排放^[11];且氮肥施 用率越高,土壤CO2排放量越高,但当施氮量高于 135 kg N·hm⁻²时,则会降低其土壤 CO₂排放速率^[12]。 因此,施肥对土壤CO₂排放的影响比较复杂,肥料种 类、用量和土壤质地、有机质含量和pH值等土壤自 身性质和环境温度、湿度和植被类型等条件存在较 大差异。

近年来控释氮肥因其高效、长效、一次施用满足 作物生长发育对养分需求等的特性,在提高氮肥利用 率、减少劳动力等方面表现出较好的效果,已成为国 内外研究的热点^[13]。农业部颁布的《到2020年化肥 使用量零增长的行动方案》中明确提出要加大控释肥 料的应用,在实际大田生产中配施一定比例控释氮肥 料的应用,在实际大田生产中配施一定比例控释氮肥 既可保证作物产量,同时也能降低施肥的可操作成 本。目前有关控释氮肥的研究多集中在控释氮肥的 生产工艺、养分释放特性,及其施用对作物性状与产 量水平等方面^[14],但与普通尿素相比,控释氮肥对作 物产量和温室气体排放的影响因不同的气候、土壤特 性、施肥时间、施肥方式和作物轮作等因素而异^[15]。 控释氮肥配施条件下,不同覆盖处理旱作农田土壤 CO₂排放通量规律及其年际变化如何缺乏系统研究。 本研究以黄土旱塬典型的旱作春玉米农田为研究对 象,探讨控释氮肥配施一次性施用对农田生态系统 CO₂排放的影响,以期为旱作农田控释氮肥的经济合 理施用和环境评价提供一定的科学依据。

1 材料与方法

1.1 试验区概况

本研究于2016年4月—2018年4月在中国科学院水利部水土保持研究所长武农业生态试验站(35° 12′N,107°40′E)田间定位试验地进行。该试验站 位于黄土高原中南部陕甘交界处陕西省长武县洪家 镇王东村,海拔约1200m,属暖温带半湿润大陆性季 风气候,年平均气温9.1℃,年平均降水量584mm,地 下水埋深50~80m,属典型旱作农业区。该地区主要 种植模式为一年一熟的春玉米或冬小麦;区域内土壤 为黑垆土,土壤容重1.3g·cm⁻³,土壤pH7.8,土壤有 机质14.67g·kg⁻¹,土壤全氮0.94g·kg⁻¹,土壤速效磷 15.4 mg·kg⁻¹,土壤速效钾145.5 mg·kg⁻¹,土壤矿物氮 28.4 mg·kg⁻¹。

1.2 试验设计

本试验在地膜覆盖(FM)和秸秆覆盖(SM)条件 下,设置3个氮肥水平(表1),分别为不施氮肥(N0)、 100% 普通尿素(N1)、树脂尿素和普通尿素比例 1:2 (N2),共6个处理:地膜覆盖下不施氮肥(FN0)、地膜 覆盖下100% 普通尿素(FN1)、地膜覆盖下树脂尿素 和普通尿素比例1:2(FN2)、秸秆覆盖下不施氮肥 (SN0)、秸秆覆盖下100%普通尿素(SN1)、秸秆覆盖 下树脂尿素和普通尿素比例1:2(SN2),3次重复,18 个小区,随机区组排列,小区面积为8.6 m×7 m = 60.2 m²。100% 普通尿素(N1)处理,氮肥(含氮46.4% 的普 通尿素)分3次施用,基肥与种肥占40%,喇叭口追肥 占30%,抽雄期追肥占30%;控释氮肥配施(N2)处 理,氮肥(含氮量44%的树脂尿素和46.4%的普通尿 素)于播种前一次施用;施氮量均为225 kg N·hm⁻²。 试验磷肥、钾肥均于播种前一次性施用,以五氧化二 磷(P2O5)为16%的过磷酸钙为肥源,每公顷施纯磷 40 kg;以氧化钾(K₂O)为51%的硫酸钾为肥源,每公 顷施纯钾80kg。春玉米品种为郑单958,种植密度为 65 000株hm⁻²,各处理采用宽窄行、双垄沟种植法:宽 行 60 cm、窄行 40 cm、大垄高 10 cm, 小垄高 15 cm。

Table 1 Design of field experiment

处理Treatments	覆盖 Mulching patterns	氮肥 Nitrogen fertilizer/kg N・hm ⁻²	密度 Density/plant • hm ⁻²
FN0	地膜覆盖	0	65 000
FN1	地膜覆盖	常规尿素 225 kg·hm ⁻²	65 000
FN2	地膜覆盖	树脂包膜尿素:常规尿素=1:2 225 kg·hm ⁻²	65 000
SN0	秸秆覆盖	0	65 000
SN1	秸秆覆盖	常规尿素 225 kg·hm ⁻²	65 000
SN2	秸秆覆盖	树脂包膜尿素:常规尿素=1:2 225 kg·hm ⁻²	65 000

2016年4月24日播种,9月15日收获:2017年4月23 日播种,9月23日收获。

1.3 监测指标与测定方法

采用密闭静态箱法-气相色谱法采集和测定气 体。采样箱包括箱体和底座两部分,箱体外覆隔热泡 沫板以防止采样期间箱内温度变化过大,每个小区分 配一个底座并长期埋于田间(长、宽和高分别为50 cm、50 cm、15 cm)。采样时保证凹槽有水密封,箱体 (长、宽和高分别为50 cm、50 cm、50 cm)扣在植株上 且箱体内的顶部位置安装两个小风扇以充分混合箱 内气体,每次采样时记录箱内温度变化。在玉米生长 期和休闲期,每隔4d和15d采集一次气体样品,采集 时间为上午8:30到11:30^[16],在关闭气室后的0、10、 20 min 和 30 min 用装有三通旋塞的塑料注射器采集 50 mL箱内气体。施氮和降水后,每隔1~2 d采集一 次气体样品,持续约10d和5d,连续监测至气体通量 恢复到正常水平,恢复正常采气频率。保证当天使用 气相色谱仪(Agilent 7890A)对所采集的气体样品进 行测定;仪器装有电子捕获检测器FID检测器,载气 是气流量为21 mL·min⁻¹的高纯氮气(99.999 9%)。 样品中CO2通入H2先经Ni催化转化为CH4后再进 FID 检测器分析。检测器工作温度为200℃,柱箱温 度为80℃,燃气为高纯氢和空气。气相色谱仪工作 前用标准气体进行校准。

温度:采用便携式数字温度计(天津市金明仪器 有限公司, JM624)在气体采样开始和结束时, 测定地 表(0 cm)和10 cm处的土壤温度以及箱内空气温度, 两次测定的平均值代表气体取样期间的温度。

土壤水分、硝态氮和铵态氮:在施氮10d和降水 5 d内,每日采集 0~20 cm 土层土样,其余时间每 8 d 或15d采集0~20 cm 土样一次(12月至次年3月初冻 土期不进行土样采集)。土样采集与气体样品采集在 同一时间段内进行。用环刀烘干法测定土壤含水量,

计算土壤充水孔隙度(Water-filled pore space, WF-PS)。用1 mol·L⁻¹氯化钾溶液浸提-连续流动分析仪 测定硝态氮(NO₃-N)和铵态氮(NH₄-N)含量。

1.4 数据分析

CO₂排放通量采用直线回归法计算,并采用线性 插值法估算累积排放量。气体排放通量的计算公式 为[17]:

$$F = \rho \times \frac{V}{A} \times \frac{\Delta C}{\Delta T} \times \frac{273}{(273 + \theta)}$$

式中:F为气体通量, $mg\cdot m^{-2}\cdot h^{-1}$; ρ 为标准状态下的气 体密度,g·cm⁻³;V为静态箱实际体积,cm³;A为箱内土 壤表面积, m^2 : $\Delta C/\Delta T$ 为单位时间静态箱内的气体浓 度变化率, mg CO₂-C·m⁻²·h⁻¹; θ 为采样过程中采样箱 内的平均温度,℃。

土壤充水孔隙度(Water-filled pore space, WFPS) 计算公式为[18]:

$$WFPS = \frac{\theta_m \times \rho_b}{1 - \frac{\rho_b}{\rho_s}} \times 100\%$$

式中: θ_m 为土壤含水量,%; ρ_b 为土壤容重,g·cm⁻³; ρ_s 为土壤密度,2.65 g·cm⁻³。

试验数据分别采用 SPSS 19.0 进行处理,处理间 差异采用双因素方差分析,不同处理之间数据差异显 著性采用最小显著差法LSD进行(P<0.05)。CO2排放 与土壤温度、充水孔隙度、矿质氮的相关性分析采用 皮尔逊相关性分析,变异性用*表示,*表示显著水平 达到P<0.05,**表示显著水平达到P<0.01。采用Sigmaplot 12.5软件对数据进行作图。

2 结果与分析

2.1 不同处理旱作农田 CO₂排放通量的动态变化

2016—2018年各处理的田间CO2排放通量动态 变化规律相似(图1),变化幅度在 3.6~248.45 mg CO_2 -C·m⁻²·h⁻¹之间。第二年5月1号左右试验玉米

2431

田各处理 CO₂排放通量出现第一次较小峰值是在播 种前对土地进行了翻耕后,但气温很低峰值较小,随 后迅速降低。之后在温度较高、降雨充沛的夏季,土 壤 CO₂的排放通量一直维持在44.35~58.51 mg CO₂-C·m⁻²·h⁻¹较高水平,在6月出现最大值(238.7 mg CO₂-C·m⁻²·h⁻¹),玉米蜡熟期后开始下降,休闲季(9 月中旬到第二年3月中下旬)排放通量较低(3.6~23.4 mg CO₂-C·m⁻²·h⁻¹)。试验农田两种覆盖条件下的平 均 CO₂排放通量表现为:FN1>FN2>FN0、SN1>SN2> SN0,说明施氮增加农田 CO₂排放;但与FN1和SN1处 理相比,FN2和SN2处理的 CO₂平均排放分别减少了 13.31%和10.62%。地膜覆盖处理和秸秆覆盖处理 CO₂平均排放通量分别为77.7、84.35 mg CO₂-C·m⁻²·h⁻¹,地膜覆盖排放低于秸秆覆盖。

2.2 不同处理旱作农田CO2累计排放量及其差异

不同处理对春玉米农田生长季和休闲季 CO₂累 积排放量见表 2。无论地膜覆盖还是秸秆覆盖条件 下,施肥处理在玉米生长季、休闲季和全年期 CO₂累 积排放量均显著高于不施肥处理(*P*<0.05)。2016— 2017年,与 FN0 相比, FN1 和 FN2 处理全年 CO₂累积 排放量分别增加了 22.31% 和 12.63%; 与 SNO 相比, SN1 和 SN2 分别增加了 21.15% 和 8.89%。2017— 2018年, 与 FNO 相比, FN1 和 FN2 处理全年 CO₂ 累积 排放量分别增加了 21.49% 和 11.67%; 与 SNO 相比, SN1 和 SN2 分别增加了 18.23% 和 9.59%。 控释氮肥 配施处理的生长季和全年累积排放显著低于施用普 通尿素处理(P<0.05),试验两年 FN2 较 FN1 分别减少 了 7.9% 和 8.07%, SN2 较 SN1 分别减少了 10.12% 和 7.3%,但休闲季差异不显著。2016—2018年,同样施 氮条件下秸秆覆盖处理的 CO₂累积排放量均高于地膜 覆盖;地膜覆盖处理和秸秆覆盖处理的平均 CO₂累积 排放量分别为 4.17 t CO₂-C·hm⁻²和 4.57 t CO₂-C·hm⁻², 秸秆覆盖处理比地膜覆盖处理显著增加了 9.6%。

2.3 环境变量对CO2排放的影响分析

2016—2017年和2017—2018年玉米生长季降水 量分别为374.2 mm和368.4 mm,分别占全年降水量 的70.21%和68.05%(图2)。土壤充水孔隙度(WF-PS)主要受降水的影响,强降雨后,0~20 cm 土层的 WFPS显著增加,随后迅速减少(图2)。试验期内不 同处理的WFPS变化范围为25.4%~96.8%,而地膜覆

图1 不同处理CO2排放通量动态变化

Figure 1 Dynamic change of CO2 flux in different treatments

盖处理的土壤 WFPS 平均值较秸秆覆盖处理高

10.4%。相关分析表明,不同覆盖和施氮处理CO2排

(图3);同时,地膜覆盖处理10 cm土壤平均温度在-3.2~

27.6 ℃之间,秸秆覆盖处理在-3.3~28.7 ℃之间。相

关分析表明(表3),不同处理农田CO₂排放通量均与

土壤温度呈极显著正相关(P<0.01)。对土壤CO2排

放通量与0 cm 和 10 cm 土壤温度用二次方程和指数

方程分别进行拟合(表4),两种方程模拟效果均良 好,对比模拟结果的R²值发现,本研究所有处理中指

数方程能够更好地说明土壤CO2排放通量与地表0

试验中施肥后 0~20 cm 土壤硝态氮和铵态氮含 量显著增加(图4)。在施肥后10d内,硝态氮含量保

试验期内地膜覆盖处理0 cm 土壤平均温度在 -2.8~26.3 ℃之间,秸秆覆盖处理在-2.8~25.5 ℃之间

放通量与土壤WFPS呈不显著负相关。

cm和10 cm土层土壤温度的关系。

2.4 土壤矿质氮与CO₂排放的影响分析

持在较高水平,但铵态氮含量迅速下降。观测期内, 不施氮N0处理平均土壤硝态氮和铵态氮含量分别为 9.68 mg·kg⁻¹和2.01 mg·kg⁻¹;N1处理硝态氮和铵态氮 含量分别为48.49 mg·kg⁻¹和19.77 mg·kg⁻¹;N2处理硝 态氮和铵态氮含量分别为30.35 mg·kg⁻¹和10.05 mg· kg⁻¹;施氮处理硝态氮含量均显著高于不施氮处理,N1 处理硝态氮含量显著高于N2处理(P<0.05)。相关分 析表明(表3),施氮处理下CO₂排放通量与土壤矿质氮 均呈显著正相关(P<0.05)。

3 讨论

本研究发现,两年各处理春玉米农田CO,排放通 量动态变化规律相似,呈现双峰曲线变化。在温度较 高、降雨充沛的夏季CO2排放通量一直较高,于6-7 月份出现峰值,然后下降,玉米休闲季维持在较低的 水平,这与秦越、张俊丽等的研究结果基本一致[19-20]。 农田土壤 CO₂的排放通量与0 cm 和 10 cm 土壤温度

表2 不同处理 CO ₂ 累积排放量(t CO ₂ -C·hm ⁻²) Table 2 Accumulative CO ₂ flux in different treatments(t CO ₂ -C·hm ⁻²)							
年份 Time	处理 Treatments	生长争Gro 地膜覆盖 Plastic film mulching	with season 秸秆覆盖 Corn straw mulching	→ 小肉李Fa 地膜覆盖 Plastic film mulching	llow season 秸秆覆盖 Corn straw mulching	<u>生生</u> 地膜覆盖 Plastic film mulching	Annual 秸秆覆盖 Corn straw mulching
2016—2017	NO	3.11±0.14c	3.35±0.12c	0.61±0.03b	0.81±0.05b	3.72±0.21c	4.16±0.26c
	N1 N2	3.71±0.31a 3.34±0.23b	4.12±0.34a 3.58±0.29b	0.84±0.08a 0.85±0.09a	0.92±0.06a 0.95±0.07a	4.55±0.3a 4.19±0.29b	5.04±0.38a 4.53±0.35b
2017—2018 N N	NO	3.12±0.12c	3.34±0.11c	$0.65 \pm 0.04 \mathrm{b}$	$0.84 \pm 0.04 \mathrm{b}$	3.77±0.12c	4.17±0.21c
	N1 N2	3.73±0.28a 3.39±0.19b	3.97±0.38a 3.53±0.34b	0.85±0.08a 0.82±0.10a	0.96±0.07a 0.94±0.11a	4.58±0.28a 4.21±0.32b	4.93±0.32a 4.57±0.37b

注:平均值±SD,同列不同字母表示差异达显著水平(P<0.05)。

Note: Average \pm standard deviation, different letters in the same column indicate significant difference (P < 0.05).

Figure 2 Dynamic change of precipitation and the soil WFPS in different treatments

Figure 3 Dynamic change of soil temperature in different soil layers

极显著正相关,这说明土壤温度是影响土壤呼吸的主要因子之一,可以通过影响土壤微生物活性以及根际活动的季节变化来影响CO₂排放^[21]。已有研究表明,可用不同方程较好地模拟土壤CO₂通量与地温的关

系^[22-25]。在本研究中用指数方程的模拟效果优于二次方程,这与宋秋来等的结论基本一致^[26],但并未发现不同土层拟合指数方程的*R*²值的显著差异,这应与地域气候、土壤质地以及种植模式等不同有关。农

表3 CO₂排放通量与各因素的相关性

Table 3 Pearson correlation coefficients between the CO₂ flux and soil variables

处理 Treatments	土壤温度/℃ Soil temperature	土壤充水孔隙度/% Water-filled pore space	土壤硝态氮/mg•kg ⁻¹ Soil nitrate nitrogen	土壤铵态氮/mg·kg ⁻¹ Soil ammonium nitrogen
FNO	0.703**	-0.048	-0.067	0.029
FN1	0.613**	-0.051	0.282*	0.263*
FN2	0.669**	-0.054	0.279*	0.267*
SN0	0.689**	-0.037	-0.079	0.032
SN1	0.659**	-0.045	0.285*	0.265*
SN2	0.669**	-0.048	0.281*	0.273*

注:*代表P<0.05,**代表P<0.01。

Note:* means P<0.05, **means P<0.01.

主 /	土壇への	北安温昌日	十禪汨	亩的七钽圳厶
7X 4	工場いり	2111加迪里一	上場/皿/	反 们 Л 住 10 口

Table 4 Soil CO₂ flux and soil temperature equation fitting

土层 Soil layer/cm	处理Treatments	二次方程 Quadratic equation	R^2	指数方程 Exponential equation	R^2
0	FN0	<i>y</i> =0.152 6 <i>x</i> ² +0.676 9 <i>x</i> +7.882 9	0.507	$y=8.779 \ 2e^{0.103 \ 7x}$	0.711
	FN1	<i>y</i> =0.100 3 <i>x</i> ² +2.218 4 <i>x</i> +5.739 1	0.384	$y=8.908 8e^{0.1079x}$	0.731
	FN2	<i>y</i> =0.136 7 <i>x</i> ² +1.44 <i>x</i> +6.018 9	0.453	$y=8.728 \ 2e^{0.107 \ 3x}$	0.709
	SN0	<i>y</i> =0.052 1 <i>x</i> ² +3.670 7 <i>x</i> +7.042 3	0.443	$y=12.05 \ 2e^{0.098 \ 9x}$	0.683
	SN1	$y=0.100 \ 3x^2+2.987x+10.321$	0.452	$y=14.543e^{0.0959x}$	0.711
	SN2	<i>y</i> =0.097 <i>x</i> ² +2.412 <i>x</i> +6.566 9	0.453	$y=9.006 5 e^{0.110 9x}$	0.733
10	FNO	<i>y</i> =0.134 <i>x</i> ² +1.536 7 <i>x</i> +4.688 5	0.538	$y=8.517 \ 3e^{0.109 \ 9x}$	0.745
	FN1	<i>y</i> =0.055 5 <i>x</i> ² +3.494 3 <i>x</i> +4.025 4	0.381	$y=9.460 \ 4e^{0.109 \ 5x}$	0.706
	FN2	<i>y</i> =0.06 <i>x</i> ² +3.773 5 <i>x</i> +1.037 3	0.441	$y=8.806 \ 2e^{0.114 \ 7x}$	0.709
	SN0	<i>y</i> =0.097 <i>x</i> ² +3.314 7 <i>x</i> +4.708 9	0.518	$y=11.22 8e^{0.1095x}$	0.737
	SN1	<i>y</i> =0.040 7 <i>x</i> ² +4.709 2 <i>x</i> +7.217 8	0.451	$y=14.98 5e^{0.099 9x}$	0.706
	SN2	<i>y</i> =0.039 3 <i>x</i> ² +4.104 <i>x</i> +3.030 8	0.457	$y=9.144 \ 1e^{0.116 \ 8x}$	0.731

田不同管理措施会改变土壤温度,影响农业生态系统 中作物、土壤微生物的活性及土壤中碳的代谢作用, 调节农田碳的生物化学过程进而影响土壤 CO₂排放。 土壤含水量变化对土壤微生物的影响在适宜水分情 况下相对较小,主要表现在土壤水分亏缺和过多情况 下,当降雨前的土壤含水量低时,降雨会使土壤微生 物产生 Birch效应^[27],使 CO₂通量瞬时增加;但土壤水 分含量过高时,水分会充满土壤孔隙,影响土壤通气 性。本研究土壤水分的变化主要受降雨影响,降雨常 伴随着较低的气温,且土壤水分饱和降低了土壤的通 气性,进而减少了 CO₂的产生和向大气中的排放,本 研究农田 CO₂排放通量与土壤 WFPS 呈负相关,但无 显著差异,这与杨书运等^[28]研究结果不一致。

除通过影响土壤温度、湿度等条件间接影响土壤 CO₂排放外^[29-30],秸秆覆盖在玉米生长后期,由于秸秆 本身分解释放一部分CO₂^[31-32],且长期秸秆覆盖措施 下会影响土壤理化性质^[33],增加土壤表层水稳性团聚 体含量,而水稳性团聚体与CO₂的排放呈显著的正相 关^[34]。因此,本试验中虽然地膜覆盖处理的土壤温度 略高于秸秆覆盖处理,但秸秆覆盖处理的CO₂累积排 放量比地膜覆盖处理显著增加了9.6%,这与Liu等^[35] 覆膜>秸秆覆盖>裸地的结果不一致,这可能与不同 农田的土壤物理性质、土壤养分条件、覆盖作物化学 性质以及测定周期等不同有关。因此,不同覆盖对农 田 CO₂排放机理较复杂,需结合不同的气候条件和土 地类型进行深入研究,探讨既稳产增产又减少温室气 体排放的合适的旱作覆盖措施。

在农田生态系统中,施肥是影响土壤CO₂排放的 主要因素^[30],施用氮肥显著促进了CO₂的排放,与不 施氮处理相比,试验施氮处理玉米生长季和全年CO₂ 累积排放量均显著增加,这与前人的研究结果一 致^[36]。Snyder等^[37]研究认为,施氮主要通过两个方式 影响土壤CO₂排放,一是直接为植物及微生物提供生 长所需的养分;二是通过影响土壤pH值,改变微生物

图4 不同施氮处理土壤硝态氮和铵态氮含量的动态变化

Figure 4 Dynamic change of soil nitrate and ammonium at treatments applied with different nitrogen fertilizers

的活性和土壤有机质的合成和分解,使CO₂排放发生 改变。施氮降低土壤C/N使微生物活动增强,从而促 使土壤中稳定性较高的有机质和玉米秸秆的活化降 解^[38]。李彬彬等^[39]通过向土壤中添加等量秸秆配以 不同数量氮素的室内培养研究发现,土壤起始C/N越 低CO2累积排放量越高。本研究区域农田土壤C/N较 低1401,施氮改变土壤碳氮组分,也为土壤微生物活动 提供氮源,使土壤微生物活动增强,增加了对土壤有 机质和部分玉米秸秆的分解。肥料类型、施用量以及 施用方式等施肥措施也是影响土壤温室气体排放的 重要因素。杨丹等研究发现,与常规施肥相比,各化 肥减量配施有机肥处理均促进了早稻田 CO₂的排 放[41]。在等氮量条件下,有机肥处理显著增加了华北 夏玉米农田土壤CO2的排放量。而氮肥与硝化抑制 剂配施后,土壤CO2释放量会降低11.0%~13.9%。张 俊丽等[20]研究表明,相同施氮量缓释氮肥较尿素能有 效降低土壤碳排放量。本研究相同施氮水平下, 控释 氮肥配施处理的CO2累积排放量也显著低于普通尿 素处理。表明与普通尿素分多次施入相比, 控释氮肥 配施一次性施肥技术,在保持或提高作物产量的前提 下^[15],能减少旱作农田CO2气体的排放,促进旱作区 的固碳减排。综合考虑缓控释肥可以简化施肥、降低 施肥劳动强度、提高肥料利用率的优点¹¹³,可将适量 的缓控释肥配施作为黄土旱塬农业生产中的一种重 要的氮肥管理措施。同时应探索不同缓释期的缓控 释肥料按照更佳的混合比例和一次性施用方法,以实 现经济和环境效益的双赢。

4 结论

(1)旱作春玉米农田CO₂排放随季节土壤温度变 化呈动态单峰变化;不同处理CO₂排放通量与0 cm 和 10 cm土壤温度均呈极显著正相关。

(2)施氮显著增加不同覆盖旱作农田 CO₂排放; 但与施 100% 普通尿素处理相比, 控释氮肥 1:2 配施 处理显著减少平均 CO₂排放通量和全年累积排放量, 表明控释氮肥配施有利于减少旱作覆盖春玉米农田 CO₂排放, 实现良好的环境效益, 可作为黄土旱塬旱 作农业生产中精简施肥和实现温室气体减排的一种 重要的氮肥管理措施。

参考文献:

[1] IPCC. Climate change 2014: Mitigation of climate change[M]. Cam-

bridge University Press, 2015.

 [2]张玉铭,胡春胜,张佳宝,等.农田土壤主要温室气体(CO₂、CH₄、 N₂O)的源/汇强度及其温室效应研究进展[J].中国生态农业学报, 2011,19(4):966-975.

ZHANG Yu-ming, HU Chun-sheng, ZHANG Jia-bao, et al. Research advances on source/sink intensities and greenhouse effects of CO₂, CH₄ and N₂O in agricultural soils[J]. *Chinese Journal of Eco-Agriculture*, 2011, 19(4):966–975.

- [3] 员学锋, 吴普特, 汪有科. 地膜覆盖保墒灌溉的土壤水、热以及作物效应研究[J]. 灌溉排水学报, 2006(1):25-29. YUAN Xue-feng, WU Pu-te, WANG You-ke. Study on the effect of irrigation under plastic preservation of soil moisture on soil and crop[J]. Journal of Irrigation and Drainage, 2006(1):25-29.
- [4] 李英臣, 侯翠翠, 李 勇, 等. 免耕和秸秆覆盖对农田土壤温室气体 排放的影响[J]. 生态环境学报, 2014, 23(6):1076-1083
 LI Ying-chen, HOU Cui-cui, LI Yong, et al. Effects of no-till and straw mulch on greenhouse gas emission from farmland: A review[J]. *Ecology and Environmental Sciences*, 2014, 23(6):1076-1083.
- [5] 徐祥玉, 张敏敏, 彭成林, 等. 稻草还田下非稻季持续淹水对稻季 CH4和CO2排放的影响[J]. 农业资源与环境学报, 2017, 34(2):145-152.
 - XU Xiang-yu, ZHANG Min-min, PENG Cheng-lin, et al. Effects of continuous flooding in no-rice growing season on CH₄ and CO₂ emissions of rice growing season with straw returning[J]. *Journal of Agricultural Resources and Environment*, 2017, 34(2):145–152.
- [6] Al-Kaisi M M, Yin X. Tillage and crop residue effects on soil carbon and carbon dioxide emission in corn soybean rotations[J]. *Journal of Environmental Quality*, 2005, 34(2):437-445.
- [7] Shao R, Deng L, Yang Q, et al. Nitrogen fertilization increase soil carbon dioxide efflux of winter wheat field: A case study in Northwest China[J]. Soil and Tillage Research, 2014, 143:164–171.
- [8] 李成芳, 曹凑贵, 汪金平, 等. 不同耕作方式下稻田土壤 CH₄和 CO₂ 的排放及碳收支估算[J]. 农业环境科学学报, 2009, 28(12): 2482-2488.

LI Cheng-fang, CAO Cou-gui, WANG Jin-ping, et al. CH₄ and CO₂ emissions from paddy soils and assessment of carbon budget in different tillage systems[J]. *Journal of Agro-Environment Science*, 2009, 28 (12):2482-2488.

- [9] Yan L, Chen S, Huang J, et al. Differential responses of auto- and heterotrophic soil respiration to water and nitrogen addition in a semiarid temperate steppe[J]. *Global Change Biology*, 2010, 16(8):2345–2357.
- [10] Liu J, Zhan A, Bu L, et al. Understanding dry matter and nitrogen accumulation for high-yielding film-mulched maize[J]. Agronomy Journal, 2014, 106:390-396.
- [11] 高洪军, 张卫建, 彭 畅, 等. 长期施肥下黑土玉米田土壤温室气体的排放特征[J]. 农业资源与环境学报, 2017, 34(5):422-430. GAO Hong-jun, ZHANG Wei-jian, PENG Chang, et al. Emission characteristics of greenhouse gases from maize field of black soil region under long-term fertilization[J]. Journal of Agricultural Resources and Environment, 2017, 34(5):422-430.
- [12] Yao P, Li X, Nan W, et al. Carbon dioxide fluxes in soil profiles as af-

fected by maize phenology and nitrogen fertilization in the semiarid Loess Plateau[J]. Agriculture, Ecosystems & Environment, 2017, 236: 120-133.

- [13] Guo J, Wang Y, Blaylock A D, et al. Mixture of controlled release and normal urea to optimize nitrogen management for high-yielding (>15 Mg·ha⁻¹) maize[J]. *Field Crops Research*, 2017, 204:23-30.
- [14] Zebarth B J, Snowdon E, Burton D L, et al. Controlled release fertilizer product effects on potato crop response and nitrous oxide emissions under rain-fed production on a medium-textured soil[J]. *Canadian Journal of Soil Science*, 2012, 92(5):759-769.
- [15] 朱永昶, 李玉娥, 秦晓波, 等. 控释肥和硝化抑制剂对华北春玉米 N₂O 排放的影响[J]. 农业环境科学学报, 2016, 35(7):1421-1428. ZHU Yong-chang, LI Yu-e, QIN Xiao-bo, et al. Effects of controlled release fertilizer and nitrification inhibitor additions on nitrous oxide emissions from spring maize field in Northern China[J]. Journal of Agro-Environment Science, 2016, 35(7):1421-1428.
- [16] Li X, Hua F, Ding G, et al. Partitioning soil respiration and assessing the carbon balance in a *Setaria italica* (L.) Beauv. cropland on the Loess Plateau, Northern China[J]. *Soil Biology & Biochemistry*, 2010, 42(2):337-346.
- [17] 蔡祖聪,徐 华,马 静. 稻田生态系统 CH4和 N2O 排放[M]. 合肥: 中国科学技术大学出版社, 2009. CAI Zu-cong, XU Hua, MA Jing. Methane and nitrous oxide emissions from rices-based ecosystems[M]. Hefei: Press of University of Science and Technology of China, 2009.
- [18] Dobbie K E, Smith K A. The effects of temperature, water-filled pore space and land use on N₂O emissions from an imperfectly drained gleysol[J]. *European Journal of Soil Science*, 2010, 52(4):667–673.
- [19] 秦 越,李彬彬,武兰芳.不同耕作措施下秸秆还田土壤CO2排放
 与溶解性有机碳的动态变化及其关系[J].农业环境科学学报,
 2014,33(7):1442-1449.
 QIN Yue, LI Bin-bin, WU Lan-fang. Dynamics and interrelationship

of CO₂ emissions and dissolved organic carbon in soils with crop residue retention under different tillage practices[J]. *Journal of Agro–Environment Science*, 2014, 33(7):1442–1449.

- [20] 张俊丽, 高明博, 温晓霞, 等. 不同施氮措施对旱作玉米地土壤酶 活性及 CO₂排放量的影响[J]. 生态学报, 2012, 32(19):6147-6154. ZHANG Jun-li, GAO Ming-bo, WEN Xiao-xia, et al. Effects of different fertilizers on soil enzyme activities and CO₂ emission in dryland of maize[J]. Acta Ecologica Sinica, 2012, 32(19):6147-6154.
- [21] Zhang J, Li Y, Chang S X, et al. Understory vegetation management affected greenhouse gas emissions and labile organic carbon pools in an intensively managed Chinese chestnut plantation[J]. *Plant and Soil*, 2014, 376(1/2); 363–375.
- [22] Zhang L, Chen Y, Zhao R, et al. Significance of temperature and soil water content on soil respiration in three desert ecosystems in Northwest China[J]. Journal of Arid Environments, 2010(74):1200-1211.
- [23] Jabro J D, Sainju U, Stevens W B, et al. Carbon dioxide flux as affected by tillage and irrigation in soil converted from perennial forages to annual crops[J]. *Journal of Environmental Management*, 2008, 88(4): 1478-1484.

- [24] Shen Y, Zhu L, Cheng H, et al. Effects of biochar application on CO₂ emissions from a cultivated soil under semiarid climate conditions in Northwest China[J]. Sustainability, 2017, 9(8):1482.
- [25] 张宪洲, 刘允芬, 钟华平, 等. 西藏高原农田生态系统土壤呼吸的 日变化和季节变化特征[J]. 资源科学, 2003, 25(5):103-107. ZHANG Xian-zhou, LIU Yun-fen, ZHONG Hua-ping, et al. Daily and seasonal variation of soil respiration of farmland in the Tibetan Plateau[J]. *Resources Science*, 2003, 25(5):103-107.
- [26] 宋秋来, 赵泽松, 龚振平, 等. 东北黑土区旱作农田土壤 CO₂排放 规律[J]. 农业工程学报, 2012, 28(23):200-207.
 SONG Qiu-lai, ZHAO Ze-song, GONG Zhen-ping, et al. CO₂ emission law of dry farmland soil in black soil region of Northeast China
 [J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(23):200-207.
- [27] Norton U, Mosier A R, Morgan J A, et al. Moisture pulses, trace gas emissions and soil C and N in cheatgrass and native grass-dominated sagebrush-steppe in Wyoming, USA[J]. *Soil Biology & Biochemistry*, 2008, 40(6):1421-1431.
- [28] 杨书运,严 平,马友华,等.施肥对冬小麦土壤温室气体排放的 影响[J]. 生态环境学报, 2010, 19(7):1642-1645.
 YANG Shu-yun, YAN Ping, MA You-hua, et al. Effects on emissions of soil greenhouse gas by fertilizing to winter wheat[J]. *Ecology and Environmental Sciences*, 2010, 19(7):1642-1645.
- [29] 卜玉山, 苗果园, 周乃健, 等. 地膜和秸秆覆盖土壤肥力效应分析 与比较[J]. 中国农业科学, 2006, 39(5):1069-1075.
 BU Yu-shan, MIAO Guo-yuan, ZHOU Nai-jian, et al. Analysis and comparison of the effects of plastic film mulching and straw mulching on soil fertility[J]. Scientia Agricultura Sinica, 2006, 39(5):1069-
- 1075.
 [30] Royer I, Angers D A, Chantigny M H, et al. Dissolved organic carbon in runoff and tile-drain water under corn and forage fertilized with hog manure[J]. *Journal of Environmental Quality*, 2007, 36(3):855– 863.
- [31] Venterea R T, Bavin T K, Griffis T J, et al. Impact of reduced tillage and cover cropping on the greenhouse gas budget of a maize/soybean rotation ecosystem[J]. Agriculture Ecosystems & Environment, 2009, 134(3):234-242.
- [32] Ussiri D A N, Lal R. Long-term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system from an alfisol in Ohio[J]. Soil & Tillage Research, 2009, 104(1):39– 47.

- [33] Kallenbach C M, Rolston D E, Horwath W R. Cover cropping affects soil N₂O and CO₂ emissions differently depending on type of irrigation [J]. Agriculture Ecosystems & Environment, 2010, 137(3/4):251-260.
- [34] Lenka N K, Lal R. Soil aggregation and greenhouse gas flux after 15 years of wheat straw and fertilizer management in a no-till system[J]. *Soil and Tillage Research*, 2013, 126:78-89.
- [35] Liu Y, Li S Q, Yang S J, et al. Diurnal and seasonal soil CO₂ flux patterns in spring maize fields on the Loess Plateau, China[J]. Acta Agriculturae Scandinavica, 2010, 60(3):245-255.
- [36] 李燕青, 唐继伟, 车升国, 等. 长期施用有机肥与化肥氮对华北夏
 玉米 N₂O和 CO₂ 排放的影响[J]. 中国农业科学, 2015, 48(21):
 4381-4389.

LI Yan-qing, TANG Ji-wei, CHE Sheng-guo, et al. Effect of organic and inorganic fertilizer on the emission of CO₂ and N₂O from the summer maize field in the North China Plain[J]. *Scientia Agricultura Sinica*, 2015, 48(21):4381-4389.

- [37] Snyder C S, Bruulsema T W, Jensen T L, et al. Review of greenhouse gas emissions from crop production systems and fertilizer management effects[J]. Agriculture Ecosystems & Environment, 2009, 133 (3/ 4):247-266.
- [38] Blagodatskaya E V, Blagodatsky S A, Anderson T H, et al. Contrasting effects of glucose, living roots and maize straw on microbial growth kinetics and substrate availability in soil[J]. *European Journal* of Soil Science, 2009, 60(2):186–197.
- [39] 李彬彬, 武兰芳. 土壤温室气体排放对 C/N 的响应[J]. 农业环境科 学学报, 2018, 37(9): 2067-2078.

LI Bin-bin, WU Lan-fang. Soil greenhouse gases emission in response to the C/N[J]. *Journal of Agro-Environment Science*, 2018, 37 (9):2067–2078.

- [40] 张彦军. 长期施肥对休闲季土壤呼吸温度敏感性的影响[J]. 中国农业科学, 2017, 50(16):3164-3174.
 ZHANG Yan-jun. Effect of long-term fertilization on temperature sensitivity of soil respiration during fallow season[J]. Scientia Agricultura Sinica, 2017, 50(16):3164-3174.
- [41] 杨 丹, 叶祝弘, 肖 珣, 等. 化肥减量配施有机肥对早稻田温室 气体排放的影响[J]. 农业环境科学学报, 2018, 37(11):2443-2450. YANG Dan, YE Zhu-hong, XIAO Xun, et al. Effects of chemical fertilizer reduction and organic fertilizer use on the greenhouse gas emissions of early rice fields[J]. Journal of Agro - Environment Science, 2018, 37(11):2443-2450.

农业环境科学学报 第38卷第10期