马丽娟,张慧敏,侯振安,等.长期咸水滴灌对土壤氨氧化微生物丰度和群落结构的影响[J].农业环境科学学报,2019,38(12):2797-2807. MA Li-juan, ZHANG Hui-min, HOU Zhen-an, et al. Effects of long-term saline water drip irrigation on the abundance and community structure of ammonia oxidizers[J]. *Journal of Agro-Environment Science*, 2019, 38(12):2797-2807.

长期咸水滴灌对土壤氨氧化微生物 丰度和群落结构的影响

马丽娟,张慧敏,侯振安,闵 伟*

(石河子大学农学院农业资源与环境系,新疆 石河子 832000)

摘 要:为探讨长期咸水滴灌对棉田土壤氨氧化细菌(AOA)和氨氧化古菌(AOB)的丰度和群落结构的影响,于2018年采集已经过10年咸水滴灌的棉田土壤,通过实时荧光定量PCR和高通量测序技术测定土壤AOA和AOB的丰度和群落结构。试验设3个灌溉水盐度水平:0.35、4.61 dS·m⁻¹和8.04 dS·m⁻¹(分别代表淡水、微咸水和咸水)。结果表明:微咸水、咸水灌溉显著降低土壤NO₃-N含量和潜在硝化势(PNR),但显著增加土壤盐分和NH:-N含量。不同处理AOA和AOB的*amoA*基因拷贝数分别为2.2×10⁶~3.6×10⁶copies·g⁻¹和1.9×10⁵~3.2×10⁵ copies·g⁻¹干土;微咸水、咸水处理AOA和AOB *amoA*基因拷贝数均显著低于淡水处理,且微咸水处理显著降低AOA/AOB。PNR与AOA丰度(P<0.001)和AOB丰度(P<0.001)均呈显著正相关关系。此外,不同灌溉水盐度下AOA群落操作分类单元(OTUs)的数量大于AOB,微咸水、咸水灌溉显著降低AOB群落的OTUs。与淡水处理相比,咸水、微咸水处理显著增加AOA群落的香农指数,咸水处理显著降低AOB群落的TUs。与淡水处理相比,咸水、微咸水处理显著增加AOA群落的香农指数,咸水处理和制制AOA群落的香农指数。AOA和AOB群落的优势类群分别为*Candidatus*Nitrosocaldus和*Nitrosospira*;咸水、微咸水处理抑制AOA群落的Betaproteobacteria生长,而咸水处理中*Candidatus*Nitrosocaldus显著高于淡水和微咸水处理。AOB群落中*Nitrosomonas*的相对丰度随着灌溉水盐度的增加而显著降低。LEfSe分析显示,AOA在咸水灌溉下仅有1个差异物种,而AOB在微咸水灌溉时有5个差异物种。冗余分析结果显示:AOA群落结构的改变与土壤NO₃-N、和PH显著相关。盐分是影响氨氧化微生物生长及群落结构的主导因素,AOA和AOB共同参与土壤硝化作用,淡水、微咸水灌溉条件下AOB可能是硝化作用主导微生物种群,而咸水灌溉条件下AOA可能是主导微生物种群。

关键词:咸水滴灌;氨氧化古菌;氨氧化细菌;硝化势;群落结构

中图分类号:S154.3 文献标志码:A 文章编号:1672-2043(2019)12-2797-11 doi:10.11654/jaes.2019-0604

Effects of long-term saline water drip irrigation on the abundance and community structure of ammonia oxidizers

MA Li-juan, ZHANG Hui-min, HOU Zhen-an, MIN Wei*

(Department of Resources and Environmental Sciences, Shihezi University, Shihezi 832000, China)

Abstract: Ammonia-oxidizing microorganisms are the main drivers of soil nitrification. However, little is known about the effects of saline water irrigation on the ammonia-oxidizing archaea(AOA) and ammonia-oxidizing bacteria(AOB) communities and their relative contribution to soil nitrification. Toward this end, a 10-year field experiment was conducted to evaluate the effects of long-term saline water irrigation on AOA and AOB in alluvial gray desert soil. The experimental design comprised three irrigation water salinity levels established at 0.35, 4.61, and 8.04 dS·m⁻¹, representing freshwater, brackish water, and saline water, respectively. Irrigation with brackish water and saline water reduced the soil NO₃⁻-N content and potential nitrification rate(PNR), while the soil salinity and NH₄⁺-N content increased mark-

*通信作者:闵 伟 E-mail:minwei555@126.com

收稿日期:2019-05-30 录用日期:2019-08-13

作者简介:马丽娟(1990-),女,河南临颍人,博士研究生,从事土壤生物与养分调控研究。E-mail:mlj651@sina.com

基金项目:国家自然科学基金项目(41661055)

Project supported : The National Natural Science Foundation of China (41661055)

农业环境科学学报 第38卷第12期

edly. The amoA gene copy numbers of AOA and AOB were in the range of 2.2×10⁶~3.6×10⁶ and 1.9×10⁵~3.2×10⁵ copies g⁻¹dry soil, respectively. Irrigation with brackish and saline water decreased the amoA gene copy numbers of AOA and AOB. The AOA/AOB ratios were 11.3 and 11.2 in the freshwater and saline water treatments, respectively, indicating that more brackish water irrigation decreased the AOA/AOB ratios. Moreover, the PNR was positively correlated with AOA and AOB abundance (P<0.001). The number of operational taxonomic units (OTUs) of AOA based on the amoA gene was larger than that of AOB under different irrigation water salinity treatments. Irrigation with brackish and saline water significantly decreased the OTUs of AOB. Compared with freshwater irrigation, irrigation with brackish and saline water significantly increased the Shannon diversity index of AOA, while saline water treatment significantly reduced the Shannon index of AOB. The dominant groups of the AOA and AOB communities were Candidatus Nitrosocaldus and Nitrosospira, respectively, Irrigation with saline and brackish water inhibited the growth of Betaproteobacteria in the AOA community, while the abundance of Candidatus Nitrosocaldus in irrigation with saline water was significantly higher than that under irrigation with freshwater and brackish water. The relative abundance of Nitrosomonas in the AOB community decreased significantly with increasing salinity of the irrigation water. Lefse analysis revealed only one differential species in AOA under irrigation with saline water, while five differential species were detected in AOB under irrigation with brackish water. Redundancy analysis showed that the variations in AOA community structure were closely associated with the changes in soil NO₃-N, pH, and salinity, whereas the AOB community structure was only significantly correlated with NO₃-N and pH. In conclusion, salinity was the dominant factor affecting the growth of ammonia-oxidizing microorganisms and community structure. AOB may be the dominant microbial population of nitrification with freshwater and brackish water irrigation, while AOA may be the dominant microbial population with saline water irrigation. These results can provide a scientific basis for further exploring the response mechanism of ammonia-oxidizing microorganisms and their roles in nitrogen transformation in the agricultural soils of arid areas.

Keywords: saline water drip irrigation; ammonia-oxidizing archaea; ammonia-oxidizing bacteria; nitrification rate; community structure

氮肥一般是作物生长的限制性因素,在盐渍化土 壤中合理施用氮肥可有效降低盐分对作物生长的危 害。硝化作用是土壤氮循环的重要环节,在氮素形态 转化和氮循环过程中起着至关重要的作用,直接影响 环境质量和氮肥的利用效率^[1]。氨氧化作用和亚硝 酸氧化作用是硝化作用的两个关键步骤,其中氨氧化 作用是硝化作用的限速步骤,主要是在氨氧化古菌 (AOA)和氨氧化细菌(AOB)的参与下完成^[2]。随着分 子生物学的不断发展,人们对于 AOA 和 AOB 的研究 不断深入。越来越多的学者关注不同环境条件对 AOA、AOB 丰度^[3]和群落结构组成的影响^[4],以及 AOA 和 AOB 对硝化作用的相对贡献等^[5]。

氨氧化微生物的生长受土壤环境的影响。其中 土壤盐分是影响氨氧化微生物生长和群落结构的重 要因素。有研究发现AOB和AOA的丰度与盐度呈负 相关^[6],盐分会抑制AOB的生长,对AOA丰度影响不 显著^[7]。但是也有研究发现高盐分可以促进AOA和 AOB的生长^[8]。Caffrey等^[9]研究也表明河口沉积物中 AOA丰度随着盐分的增加而增加,但盐分对AOB没 有影响。Mosier等^[10]研究发现AOB丰度随着土壤盐 度的增加而增加,在低盐度条件下AOA amoA的基因 丰度高于AOB基因。此外,有研究发现在盐碱地中 AOB amoA基因丰度比AOA amoA基因丰度高两个数 量级^[11]。以上研究结果表明盐分对氨氧化微生物丰 度的影响目前尚无定论。此外,盐分在影响AOA和AOB丰度的同时也影响其群落结构的改变。前人研究表明,在不同盐分环境中AOA的群落结构会发生改变,AOB的群落结构多样性和盐分梯度无相关关系^[12],而湿地土壤中盐分可显著改变AOA和AOB的群落结构^[13]。有研究表明AOB的多样性会随着盐分的增加而提高^[14],但是Dang等^[15]研究发现盐分会降低AOB的多样性。盐分是一个日益受到关注的环境因素,然而盐分对土壤氨氧化微生物丰度和群落结构影响的认识仍然存在争议。

新疆地处我国的西北部,属于干旱地区,淡水资 源短缺问题尤为严重。但是该地区咸水资源比较丰 富,在淡水资源短缺不断加剧的背景下,合理利用咸 水资源进行灌溉已经成为农业生产中缓解淡水资源 不足的较为经济、有效的手段。咸水灌溉一方面提供 了作物生长所需要的水分,缓解旱情;另一方面也将 盐分带入土壤,改变土壤的理化性质,进而影响土壤 养分转化和微生物生长。AOA和AOB共同参与土壤 硝化作用,然而,关于长期咸水灌溉对AOB和AOA群 落结构的影响及其对土壤硝化作用的贡献所知甚少。 因此,了解土壤氨氧化微生物群落结构多样性对咸水 灌溉引起的土壤盐分变化的响应具有重要意义。本 研究在已连续开展10年咸水滴灌试验的基础上,通 过荧光定量PCR方法测定AOA和AOB的丰度,采用 高通量测序分析 AOA 和 AOB 群落结构多样性。我们 假设经过长期咸水滴灌会改变 AOA 和 AOB 的群落结 构,降低 AOA 和 AOB 丰度并抑制硝化作用。因此,本 研究的目的是比较不同灌溉水盐度对氨氧化微生物 丰度和群落结构的影响,评价 AOA 和 AOB 对于硝化 作用的贡献,并探讨分析土壤理化性质与氨氧化微生 物丰度和群落结构间的关系。

1 材料和方法

1.1 试验区概况

试验区位于石河子大学农学院试验站(44°18′ N,86°02′E)内,平均海拔450.8 m。试验区属于典型 温带干旱大陆性气候,多年平均气温为6.5~7.2℃,无 霜期为168~171 d,年日照时数为2721~2818 h,年蒸 发量1660 mm,年平均降水量为210 mm。试验区土 壤类型为石灰性冲积土。0~30 cm 土层基础理化性 质(2009年试验开始前)如下:电导率(EC)为0.13 dS· m⁻¹,pH值7.9,速效磷25.9 mg·kg⁻¹,速效钾253 mg· kg⁻¹,全氮1.1 g·kg⁻¹,有机质16.8 g·kg⁻¹。供试作物为 棉花(*Gossypium hirsutum* L. cv Xinluzao No. 52),通常 在4月中旬种植,9月中旬收获。

1.2 试验设计

试验区在2009—2017年已经连续开展9年的不同盐度灌溉水滴灌田间试验。依据灌溉水盐度设置了3个处理,每个处理3次重复,共9个小区,每个试验小区面积25 m²,采用完全随机区组设计。3个处理的灌溉水盐度分别为0.35、4.61、8.04 dS·m⁻¹(分别用FW、BW和SW表示),试验中FW取自当地深层地下水,BW和SW处理灌溉水盐分是通过在淡水中加入等量的NaCl和CaCl₂(质量比1:1)配制而成。氮肥(尿素 N≥46.4%)施用量为N360 kg·hm⁻²,此氮肥用量为当地棉花大田生产推荐用量。2018年试验开始前3种灌溉水盐度处理土壤基本理化性见表1。

棉花种植采用覆膜栽培,一膜两管4行,行距配

置为(30+60+30) cm,播种密度22.2万株·hm⁻²。2018 年棉花于4月20日播种,为保证出苗,播种后滴淡水 45 mm。棉花生长期间灌水9次,6月中旬开始至8月 下旬结束,灌溉周期为7~10 d,每次灌水45~60 mm, 总灌溉量450 mm,磷肥(重过磷酸钙,P₂O₅>44.0%)施 用量为P₂O₅105 kg·hm⁻², 钾肥(硫酸钾,K₂O>51.0%) 施用量K₂O 60 kg·hm⁻²,全部作基肥在播种前一次性 施入。试验中氮肥全部作追肥,2018年氮肥分别在6 月27日(第二水)、7月4日(第三水)、7月12日(第四 水)、7月19日(第五水)和7月25日(第六水)通过滴 灌系统分五次随水施用。其他栽培管理措施参照当 地大田生产。

1.3 土壤样品采集与测定

2018年(试验第10年)在棉花蕾铃期,最后一次 施肥结束后第3d(7月28日)用直径2.5 cm 土钻在每 个小区的棉花行内,按S型线路随机采集3个耕层土 壤样品,采集深度为0~20 cm。每个小区3个重复,土 样混合均匀并去除其中的杂物、细根。将一部分土样 过2 mm筛后分成两部分,一部分用于测定土壤理化 性质和土壤潜在硝化势,一部分用于氨氧化微生物丰 度和多样性的检测。用于提取DNA的土壤样品保存 于-80℃条件下。

1.3.1 土壤理化性质和潜在硝化势测定

土壤含水量采用烘干法测定;土壤盐度和pH值 采用 MP521 Lab pH/ Conductivity Meter 型电导率仪 测定,测定盐度水土比为5:1^[16],测定pH值水土比为 2.5:1^[17];土壤NO₃-N和NH⁴-N使用2 mol·L⁻¹KCl浸 提后使用流动分析仪测定(Smart Chem140, Analytik Jena AG)^[18];土壤有机碳(SOC)使用K₂Cr₂O₇-H₂SO₄外 加热法测定^[16];土壤全氮(TN)使用半微量凯氏定氮 法测定^[16]。

土壤潜在硝化势测定采用Kurola等^[19]测定方法, 准确称取5g新鲜土壤样品于50mL离心管中振荡培 养24h后,使用2mol·L⁻¹KCl浸提并通过比色法测定

表1 2018年试验开始前3种灌溉水盐度处理土壤理化性质

Table 1 Physicochemical properties of the soils under three water salinity treatments prior to the beginning of the experiment in 2018

灌溉水盐度 Water salinity	土壤盐度 EC/dS・m ⁻¹	рН	土壤含水量 SWC/%	有机碳 SOC/g·kg ⁻¹	全氮 TN/g·kg ⁻¹	硝态氮 NO3-N/mg·kg ⁻¹	铵态氮 NH₄-N/mg•kg ⁻¹
FW	0.20	7.99	16.85	9.77	0.76	23.23	4.80
BW	0.56	7.81	17.69	9.44	0.70	20.42	5.15
SW	0.78	7.76	18.18	8.79	0.64	18.07	5.47

注:FW、BW、SW代表灌溉水的盐度(ECw分别为0.35、4.61、8.04 dS·m⁻¹)。下同。

Note:TW, BW, and SW stand for the irrigation water salinity (EC) of 0.35, 4.61, and 8.04 dS·m⁻¹, respectively. The same below.

2800

农业环境科学学报 第38卷第12期

土壤浸提液中 NO_2-N 的浓度,潜在硝化势(PNR)以 $\mu g(NO_2-N) \cdot g^{-1} \cdot h^{-1}$ (干土)表征。

土壤潜在硝化势计算公式如下:

 $PNR = (c \times V \times ts \times 1000)/m \times 24$

式中:c为从标曲上查得的显色液 NO₂-N 浓度, mg·mL⁻¹;V为显色液的体积, mL;ts为分取倍数, m为烘干样品质量;24为24 h。

1.3.2 DNA 提取

称取新鲜土壤样品 0.3 g,使用 Power Soil[™] DNA Isolation Kit(Mo Blo Laboratories, Inc, USA)试剂盒,按照操作说明书提取 DNA 样品,并将提取的土壤总 DNA 在-80℃下保存。

1.3.3 qPCR测定

使用实时荧光定量 PCR 仪检测目标基因丰度, *q*PCR 的反应体系为 20 µL,其中包括 10 µL 2× SYBR[®]Green *q*PCR Master Mix (Applied Biosystems, Foster City,CA,USA),前后引物各 1 µL,2 µL DNA模 板(约2 ng·µL⁻¹)和 6 µL ddH₂O。AOA *amoA* 基因扩 增引物是 Arch-amoAF (5' – STAATGGTCTGGCT-TAGACG – 3')和 Arch – amoAR (5' – GCGGCCATC-CATC TGTATGT–3')^[20]。AOB *amoA* 基因扩增引物是 amoA–1F(5–GGGG TTTCTACTGGTGGT)和 amoA–2R (5' – CCCCTCKGSAAAGCCTTCTTC–3')^[21]。PCR 反 应体系如下:95℃5 min,接着40个循环,95℃10 s, 55℃20 s,72℃30 s。

1.3.4 高通量测序

采用高通量测序技术测定 AOA 和 AOB 群落结构 组成。PCR 扩增引物与 qPCR 相同。PCR 扩增体系为 25 μ L,其中包括 2 μ L DNA 模板,前后引物各 1 μ L,5 μ L 5×PCR buffer, 2 μ L(2.5 mmol·L⁻¹) dNTP, 5 μ L 5× Q5High GC Enhancer buffer, 0.25 μ L(0.02U· μ L⁻¹)Q5 High – Fidelity DNA polymerase (NEB)和 8.75 μ L ddH₂O。反应体系如下:98 ℃ 5 min,接着 35 个循环, 98 ℃ 30 s, 55 ℃ 30 s, 72 ℃ 45 s,最后 72 ℃ 5 min。 PCR 产物使用 Agencourt AMPure Beads (Beckman Coulter, Indianapolis, IN)纯化,并用 PicoGreen dsDNA Assay kits (Invitrogen, Carlsbad, CA, USA)质量化,各样品等量混合后,在上海派森诺生物科技股份有限公司(上海,中国)使用 Illumina MiSeq平台进行高通量测序,每个处理重复3次。

1.4 数据分析

(1)

使用 SPSS 软件(Version SPSS 21.0)进行数据方 差分析和相关性分析,显著水平为0.05:各处理间差 异比较采用LSD法(P<0.05):高通量测序结果使用 UCHIME软件(Version 4.2),鉴定并去除嵌合体序列, 得到最终有效数据。使用QIIME软件(Version 1.8.0) 对序列在97%的相似度水平下进行聚类并获得OTUs 数,基于OTUs数得到不同分类水平上的物种丰度,再 利用R语言(Version 3.2.0)绘制成样品各分类学水平 下的群落结构图。使用Mothur(Version 1.30.1)软件 分析样品 α 多样性指数(ACE, Chao1, 辛普森指数, 香 农指数),分析时将样品所含序列数进行标准化并在 97%相似度水平下,对各样品α多样性指数值统计。 基于 Galaxy 平台进行 LEfSe 分析 [Line discriminant analysis(LDA) Effect Size], LDA 值>4。RDA 分析(Redundancy analysis)使用R语言Vegan包进行分析和作 图。

2 结果分析

2.1 咸水滴灌对土壤理化性质的影响

灌溉水盐度显著影响土壤理化性质(表2)。与FW 处理相比,BW和SW处理土壤盐分、含水量和NH4-N 含量显著增加,而pH值、SOC、TN、NO3-N含量显著 降低(P<0.05,下同)。BW和SW处理NO3-N含量较 FW处理降低13.5%和30.8%。相反,BW和SW处理 NH4-N含量较FW处理增加10.4%和15.2%。

2.2 咸水滴灌对土壤潜在硝化势的影响

BW和SW处理显著降低土壤潜在硝化势(PNR)

表2	不同灌溉水盐度处理土壤理化性质
----	-----------------

i differenti al properties de difected by different inigation nater sammer, neutrone	Table 2 Soil physicochemi	ical properties as affe	ected by different irrigation	n water salinity treatments
--	---------------------------	-------------------------	-------------------------------	-----------------------------

灌溉水盐度 Water salinity	土壤盐度 EC/dS・m ⁻¹	рН	土壤含水量 SWC/%	有机碳 SOC/g·kg ⁻¹	全氮 TN/g·kg ⁻¹	硝态氮 NO₃-N/mg·kg ⁻¹	铵态氮 NH₄−N/mg·kg ⁻¹
FW	0.21±0.006c	7.97±0.015a	$15.57 {\pm} 0.005 {\rm c}$	9.75±0.145a	0.73±0.006a	46.19±1.561a	$6.82 \pm 0.047 \mathrm{c}$
BW	$0.60 \pm 0.010 \mathrm{b}$	$7.77{\pm}0.010\mathrm{b}$	$19.09{\pm}0.001{\rm b}$	$9.39{\pm}0.083{\rm b}$	$0.68 \pm 0.016 \mathrm{b}$	$39.95 \pm 1.357 \mathrm{b}$	$7.53 \pm 0.106 \mathrm{b}$
SW	0.94±0.020a	$7.74{\pm}0.010{\rm c}$	21.04±0.003a	$8.75{\pm}0.023{\rm c}$	0.62±0.011c	$31.96 \pm 2.064 c$	7.86±0.092a

注:同一列不同小写字母表示不同处理间差异达显著水平(P<0.05)。下同。

Note: Different letters in the same column indicate significant differences (P<0.05) among treatments. The same below.

见图1,FW处理PNR分别较BW和SW处理高18.1%和37.3%。

2.3 AOA和AOB丰度及对土壤潜在硝化势的相对贡献

BW和SW处理显著降低土壤AOA和AOB丰度 (表3)。不同处理土壤AOA amoA基因丰度在2.18× 10⁶~3.57×10⁶ copies·g⁻¹(干土),AOB amoA基因丰度 在1.94×10⁵~3.15×10⁵ copies·g⁻¹(干土)。与FW处理 相比,BW和SW处理AOA和AOB丰度分别较FW处 理降低28.4%、39.0%和23.3%、38.4%。BW处理 AOA/AOB显著低于FW和SW处理,而SW和FW处理 之间无显著差异。

AOA 和 AOB 对 PNR 的相对贡献如图 2 所示。 AOA 丰度与 PNR 呈极显著正相关关系(*R*²=0.922 8,*P*<0.001)。相似地, AOB 丰度也与 PNR 呈极显著正相关 关系(*R*²=0.948 9, *P*<0.001)。说明 PNR 的变化与 AOA 和 AOB 丰度存在高度的相关性。

2.4 AOA和AOBα多样性

各处理 AOA 和 AOB 的 amoA 基因的测序数在 79 812~80 076(表4),覆盖度在 0.997 1~0.999 7。在 97% 的相似度水平下, AOA 和 AOB 序列分别可划分 为 661~664 和 130~140 OTUs。BW 和 SW 处理显著降 低 AOB 群落 OTUs,但对 AOA 无影响。ACE 和 Chao1

表3 不同灌溉水盐度处理 AOA 和 AOB 丰度 Table 3 Abundance of AOA and AOB as affected by different irrigation water salinity treatments

	inigation water st	unity troutmonts	
灌溉水盐度 Water salinity	AOA 丰度 AOA abundance/×10 ⁶ copies•g ⁻¹ dry soil	AOB 丰度 AOB abundance/×10 ⁵ copies•g ⁻¹ dry soil	AOA/AOB
FW	3.57±0.13a	3.15±0.10a	11.32±0.12a
BW	$2.55\pm0.11\mathrm{b}$	$2.42\pm0.13b$	$10.57 \pm 0.31 \mathrm{b}$
SW	2.18±0.13c	$1.94\pm0.32c$	11.21±0.32a

图 2 AOA(a)和AOB(a)丰度与土壤潜在硝化势的相关性 Figure 2 Correlations between AOA(a) and AOB(b) abundance and potential nitrification rate of soil

指数通常用来衡量群落中含OTU数目的指数,ACE 和Chao1指数越大,表明群落的丰富度越高。辛普森 和香农指数用于衡量物种多样性,受样品群落中物种 丰度和物种均匀度的影响,一般香农指数值越大,辛 普森指数值越小,说明样品的物种多样性越高。灌溉 水盐度对丰富度指数(ACE和Chao1)无显著影响。 与FW处理相比,BW和SW处理显著增加AOA香农 指数,且辛普森指数显著降低。SW处理显著降低 AOB香农指数,且显著增加辛普森指数。BW处理对 AOB多样性指数无显著影响。

2.5 土壤理化性质与 AOA、AOB 的丰度、多样性指数、 潜在硝化势之间相关性分析

土壤理化性质与 AOA、AOB 的丰度,多样性指数,土壤潜在硝化势之间相关关系见表5。土壤潜在硝化势,AOA、AOB 丰度,AOA 群落辛普森指数与pH、NO3-N、SOC、TN呈显著正相关,但是和EC、SWC、NH4-N呈显著负相关。AOA 的香农指数与EC、SWC、NH4-N呈显著正相关,而与pH、NO3-N、SOC、TN呈显

2802

农业环境科学学报 第38卷第12期

表4	不同灌溉水盐度处理	AOA 和 AOB	α 多样性
----	-----------	-----------	-------

Table 4 α diversity properties of AOA and AOB as affected by different irrigation water salinity treatments

氨氧化微生物 Ammonia oxidizer	灌溉水盐度 Water salinity	序列数 Sequence Tags	操作分类单元 OTUs	ACE 指数 ACE index	Chao1指数 Chao1 index	辛普森指数 Simpson index	香农指数 Shannon index	覆盖度 Coverage
氨氧化古菌群落	FW	79 812±175a	664±1.53a	668.55±2.91a	670.89±5.05a	0.42±0.01a	2.57±0.04c	0.999 7±0.001a
AOA community	BW	79 999±263a	662±3.00a	666.01±3.94a	668.11±5.88a	$0.36 \pm 0.01 \mathrm{b}$	$2.82 \pm 0.03 \mathrm{b}$	0.999 7±0.001a
	SW	79 895±218a	661±1.15a	665.72±1.99a	666.63±2.83a	0.31±0.11c	2.97±0.05a	0.999 7±0.001a
氨氧化细菌群落	FW	79 985±134a	140±2.65a	166.53±11.16a	168.58±8.29a	$0.17 \pm 0.01 \mathrm{b}$	2.36±0.01a	0.997 1±0.001a
AOB community	BW	79 844±94a	$130 \pm 4.04 \mathrm{b}$	161.38±8.32a	164.68±12.93a	$0.18 \pm 0.01 \mathrm{b}$	2.42±0.02a	0.997 1±0.001a
	SW	80 076±162a	132±1.15b	157.72±13.44a	155.02±15.13a	0.22±0.01a	$2.18\pm0.08\mathrm{b}$	0.997 3±0.001a

表5 土壤理化性质与潜在硝化势, AOA、AOB 丰度, 多样性指数间相关性分析

Table 5 Correlations among soil physicochemical properties, potential nitrification rates, AOA and AOB abundance and diversity under

different water salinity treatments								
		EC	pH	SWC	NO ₃ -N	NH_4^+-N	SOC	TN
潜在硝化势I	PNR	-0.993**	0.930**	-0.979**	0.935**	-0.962**	0.935**	0.965**
氨氧化古菌群落	丰度	-0.930**	0.965**	-0.963**	0.863**	-0.959**	0.849**	0.904**
AOA community	Simpson	-0.985*	0.940**	-0.984**	0.955**	-0.982**	0.949**	0.963**
	Shannon	0.970**	-0.946**	0.978**	-0.930**	0.980**	-0.927**	-0.954**
	ACE	-0.413	0.492	-0.451	0.526	-0.472	0.475	0.476
	Chao1	-0.400	0.442	-0.436	0.540	-0.426	0.511	0.430
氨氧化细菌群落	丰度	-0.965**	0.922**	-0.968**	0.912**	-0.962**	0.908**	0.924**
AOB community	Simpson	0.850**	-0.608	0.731*	-0.802**	0.692*	-0.879**	-0.859**
	Shannon	-0.672*	0.364	0.549	0.691*	-0.530	0.769*	0.692*
	ACE	-0.379	0.367	-0.368	0.338	-0.412	0.401	0.468
	Chao1	-0.485	0.402	-0.452	0.405	-0.482	0.479	0.610

注:**表示在0.01水平上显著相关,*表示在0.05水平上显著相关。

Note: Significant correlations are highlighted with asterisks *P < 0.05; **P < 0.01.

著负相关。AOB的辛普森指数与EC、SWC、NH4-N呈显著正相关,而与NO3-N、SOC、TN呈显著负相关。 AOB的香农指数与NO3-N、SOC、TN呈显著正相关, 而仅与EC呈显著负相关。

2.6 AOA 和 AOB 群落结构

高通量测序结果显示,纲水平上,AOA 群落由 Candidatus Nitrosocaldus、Candidatus Nitrososphaera、 Betaproteobacteria、Marine archaeal group 1、Unknown 组成(图 3a)。除Unknown, Candidatus Nitrosocaldus (0.6%~1%)相对丰度较高。Candidatus Nitrosocaldus 属于自养和需氧氨氧化古菌,常出现在中性或微碱性 陆地地热环境中。不同灌溉水盐度对 AOA 群落影响 不一致,例如,Betaproteobacteria 和 Marine archaeal group 1 对灌溉水盐度较为敏感,BW和SW处理中Betaproteobacteria 相对丰度显著低于FW处理, m Marine archaeal group 1显著高于FW处理;SW处理Candidatus Nitrosocaldus显著高于FW和BW处理。 AOB 属水平上群落主要由 Nitrosospira、Nitrosomonas、Nitrosovibrio和 Unknown组成(图 3b), Nitrosospira(52.9%~59.4%)相对丰度较高。Nitrosospira属 于氨氧化细菌中的一类,参与氨氧化过程对亚硝酸盐 的亲和力较高,可高效利用底物。Nitrosomonas随着 灌溉水盐度的增加相对丰度显著降低,SW处理中没 有检测到 Nitrosomonas的存在。BW处理中 Nitrosospira相对丰度显著低于FW和SW处理。

2.7 AOA和AOB群落LEfSe分析

使用LEfSe(LDA>4.0, P<0.05)进行不同处理间 群落比较分析,得到不同灌溉水盐度条件下氨氧化微 生物群落显著差异种群(图4)。AOA仅有1个差异物 种(图4a),出现在SW处理,说明AOA种群相对稳定, 高盐度灌溉水刺激 Candidatus Nitrosocaldus 生长, AOB共有5个显著差异物种(图4b),5个差异种群均 来自BW处理,说明中等盐度灌溉水可刺激Bacteria, Proteobacteria、Nitrosomonadaceae、Betaproteobacteria、 Nitrosomonadales的生长。

讨论

100.0

99.8

99.6

99.4

99.2

99.0

0.8

0.4

FW

相对 丰度 Relative abundance/%

3

2.8 AOA、AOB与土壤理化性质间RDA分析

利用 RDA 分析 AOA 和 AOB 群落结构与土壤理

化性质的关系,AOA 群落结构与土壤理化性质间的

关系见图 5a,轴1的解释度为 54.8%,轴2的解释度为

26.9%。AOA 群落结构与NO3-N(解释度 59.1%, P=

0.002)、pH值(解释度23.2%, P=0.032)、土壤盐分(解

释度 10.4%, P=0.042) 存在显著相关关系。对于

AOB, 轴1解释度为57.5%, 轴2解释度为31.2%(图

5b)。AOB 群落结构仅与NO3-N(解释度 33.3%, P=

0.04)、pH值(解释度47.7%, P=0.012)呈显著相关关

淡水资源短缺是限制农业可持续发展的重要因素,合理利用咸水灌溉已成为缓解于旱区淡水资源不

SW

足的重要手段。然而,长期咸水灌溉会导致盐分在土

系,与其他土壤理化性质无显著相关关系。

3.1 咸水滴灌对土壤理化性质的影响

BW

处理Treatments

壤中的积累,影响土壤理化性质和养分的循环转化, 特别是氮素转化的关键过程^[22]。本研究结果表明微 咸水、咸水灌溉使土壤盐分、含水量、NH4-N含量显著 增加,而pH值、有机质、NO5-N含量显著降低。土壤 含水量增加是因为盐水灌溉土壤蒸散率降低^[23]。pH 值降低可能是因为土壤中氯离子的积累,导致土壤 pH值下降^[24]。有机质的降低是因为盐渍土壤中植物 生物量减少导致有机物输入量下降^[25]。另外,微咸 水、咸水处理,土壤NH4-N含量增加,而NO5-N含量 呈现相反的趋势,可能是土壤盐度的增加抑制了土壤 的硝化作用^[26]。

3.2 咸水滴灌对土壤潜在硝化势和AOA、AOB丰度的 影响

土壤潜在硝化势可直接反映土壤硝化活性。本研究结果表明长期微咸水和咸水灌溉显著抑制土壤潜在硝化势。这与He等^[27]研究相似,其研究结果显示土壤潜在硝化势随土壤盐度的增加而显著降低。然而,也有研究表明适度盐分可提高土壤潜在硝化速

(a)

Marine archaeal group 1

🛛 Candidantus Nitrososphaera

Candidantus Nitrosocaldus

🖾 Betaproteobacteria

Unknown

图3 不同灌溉水盐度处理氨氧化微生物群落结构

Figure 3 Community structure of AOA and AOB as affected by different irrigation water salinity treatments

Figure 4 LEfSe analysis of AOA(a) and AOB(b) communities under different irrigation water salinity treatments

农业环境科学学报 第38卷第12期

Figure 5 Redundancy analysis(RDA) of correlations between soil physicochemical properties and the community structure of AOA(a) and AOB(b)

率,而高盐度抑制土壤潜在硝化速率^[28],这可能是因 为一些参与硝化作用的微生物具有一定的耐盐性,在 一定盐度范围内可促进硝化作用微生物的生长,提高 硝化速率^[29]。

AOA 和 AOB 是参与硝化作用的关键微生物,盐 分是影响其生长的重要因素[30],本研究发现随着灌溉 水盐度的增加, AOA 和 AOB 丰度均显著降低。Jin 等^[31]研究也发现,较高的盐分会抑制AOB生长。然而 也有研究发现盐分对 AOA 丰度无显著影响[32],或者 中等盐度可以刺激 AOA 生长^[33]。前人研究表明新疆 碱性土壤中 AOB 丰度高于 AOA, 是主导微生物类 型^[34]。但本研究表明 AOA 丰度高于 AOB, 可能是微 咸水和咸水灌溉后土壤盐分成为影响 AOA、AOB 生 长和活性的主导因素。Bernhard 等[35]也得到相似的 研究结果。但也有研究发现河口区AOB丰度高于 AOA^[36],甚至盐分越高 AOB 丰度高于 AOA 的幅度越 大^[37]。这些矛盾的结果可能是AOA和AOB属于两类 微生物群体,不同环境条件下,AOA和AOB对于盐分 的响应是不同的。另外自然环境复杂多变,可能是多 种因素综合作用下共同影响 AOA 和 AOB 活性[38]。

相关性分析表明, AOA和AOB丰度均与PNR、 NO₃-N浓度存在极显著正相关关系, 说明AOA和 AOB共同参与灌耕灰漠土中的硝化作用。本研究中 微咸水灌溉条件下AOA/AOB显著低于淡水灌溉, 而 咸水灌溉条件下AOA/AOB显著高于微咸水灌溉。说 明不同 AOA 和 AOB 的生长对于盐分的响应是不同 的。我们推测 AOB 可能是微咸水灌溉条件下硝化作 用的主导微生物种群,而 AOA 可能是咸水灌溉条件 下主导微生物种群。

3.3 咸水滴灌对土壤 AOA 和 AOB 群落组成及多样性的影响

咸水、微咸水灌溉改变了 AOA 和 AOB 的群落结 构。本研究表明AOA 群落多样性高于AOB,在含有 盐分的河口区和海岸区环境中也出现相似的结 果[27,39]。不同灌溉水盐度对AOA和AOB群落多样性 的影响是不一致的。对于 AOA 来说,随着灌溉水盐 度的增加,群落辛普森指数显著降低,而香农指数显 著增加。而对于AOB来说, 咸水灌溉显著增加AOB 群落辛普森指数,而降低香农指数。说明,在该环境 条件下AOA群落结构对于盐分的变化更为敏感。 Gao 等[40]研究也表明盐分越高 AOA 多样性越高,而 AOB 群落多样性在中等盐度时最高,在高盐度时最 低。也有研究发现在红树林沉积物中盐分与AOB群 落香农指数呈正相关关系,与辛普森指数呈负相关关 系,而AOA 群落多样性对盐分变化不敏感[41]。说明 不同土壤环境下盐分对AOA和AOB的群落结构影响 存在差异。

虽然灌溉水盐度对AOA 群落OTUs 无显著影响, 但是 AOA 群落对于不同灌溉水盐度的响应是不同 的。通常 AOA 的耐受性较强,对环境的改变不敏 感^[42]。本研究结果表明在纲水平上,除Unknown外, Candidatus Nitrosocaldus 是主要微生物种群, 咸水灌 溉显著增加 Candidatus Nitrosocaldus 相对丰度,说明 其对盐分具有较强的耐受性。另外也有可能是Candidatus Nitrosocaldus一些物种可将尿素直接作为生 长的能量来源[43],因此获得能量来源的途径较多,利 于其完成整个硝化作用。本研究中随着灌溉水盐度 的增加Marine archaeal group 1相对丰度显著增加,说 明盐分激发了AOA耐盐种群的生长。原因可能是 Marine archaeal group 1 主要在海洋环境中出现,对于 盐分具有较好的适应性[44]。在AOB属水平上, Nitrosospira 是优势微生物种群,且咸水灌溉 Nitrosospira 相 对丰度高于微咸水灌溉。另外, Nitrosomonas 相对丰 度随着灌溉水盐度的增加而显著降低,SW处理中没 有检测到 Nitrosomonas 的存在。这与前人研究一致, 即Nitrosospira在高盐环境富集,而Nitrosomonas在低 盐或者中盐环境中富集[45]。

LEfSe分析结果表明AOA 群落结构较为稳定,只 有咸水灌溉时刺激了 Candidatus Nitrosocaldus 生长。 而AOB 群落对于盐分的响应较为敏感,微咸水灌溉 出现5个显著高于其他处理的差异物种,这再一次印 证了我们推测的微咸水灌溉条件下 AOB 较为活跃, 是参与硝化作用的主导微生物种群,而咸水灌溉条件 下 AOA 可能是主导微生物种群。

3.4 土壤性质对AOA和AOB群落结构的影响

咸水灌溉抑制氨氧化微生物的生长,改变其群落 结构,然而土壤的环境条件复杂,AOA和AOB对潜在 硝化作用的贡献高度依赖于土壤初始环境[49],经过10 年咸水灌溉,土壤理化性质发生显著改变,环境因素 的改变也影响着氨氧化微生物群落的变化。RDA结 果表明,除盐分以外,NO3-N解释AOA 群落结构总变 异量的 59.1% (P=0.002), 解释 AOB 群落总变异的 33.3%(P=0.04),说明咸水、微咸水灌溉条件下,NO3-N 是影响 AOA 和 AOB 群落结构的主要因素之一。但是 也有研究表明,土壤NO3-N仅与AOB群落变化存在 显著相关关系[47]。这可能是由于土壤养分条件不同, 长期咸水灌溉土壤氮素水平显著低于淡水灌溉,AOA 一般在较苛刻的环境(低氮、强酸性和高温)中生长更 为活跃,表达功能活性更强[48]。此外,土壤pH是影响 AOA 和 AOB 群落变化的主要因素, pH 对 AOB 群落 (解释度47.7%, P=0.012)的影响要大于AOA(解释度 23.2%, P=0.032)。这可能是因为 AOA 细胞具渗透 膜,可维持细胞内pH接近中性^[49],而本研究中pH变

化范围较小,AOB群落对于pH变化响应比AOA更敏 感。然而,有学者研究表明一般碱性土壤中硝化作用 主导微生物类型是AOB,而与AOA关系不大^[50]。不 一致的结果说明盐分是影响农田土壤氨氧化微生物 生态位变化的主导因素。然而本试验还不能具体分 析出AOA和AOB分别对硝化作用的贡献率,这仍然 需要后续进行深入研究。

4 结论

长期微咸水、咸水灌溉显著增加土壤盐分、含水 量、NH4-N含量,降低pH值、NO3-N含量、有机碳和全 氮含量。咸水、微咸水灌溉显著降低土壤 PNR 和 AOA、AOB的 amoA 基因拷贝数。微咸水、咸水灌溉 改变了 AOA 和 AOB 的群落结构组成, AOA 群落的纲 水平上,以Candidatus Nitrosocaldus, Candidatus Nitrososphaera, Betaproteobacteria 和 Marine archaeal group 1为主导,且咸水灌溉显著增加Candidatus Nitrosocaldus的相对丰度。在AOB群落的属水平上,以Nitrosospira、Nitrosomonas 和 Nitrosovibrio 为主导。盐分是影 响硝化作用、氨氧化微生物生长及群落结构改变的主 导因素。除盐分外,土壤pH、NO3-N含量也是影响 AOA和AOB群落结构改变的主要环境因素。AOA和 AOB 丰度与土壤 PNR、NO5-N均呈显著正相关关系, 共同参与硝化过程,但二者对于盐分的响应不同,淡 水和微咸水灌溉条件下AOB可能是主导微生物种 群,而咸水灌溉条件下AOA是主导微生物种群。

参考文献:

- [1] 王 敬,程 谊,蔡祖聪,等.长期施肥对农田土壤氮素关键转化过程的影响[J].土壤学报,2016:53(2):292-304.
 WANG Jing, CHENG Yi, CAI Zu-cong, et al. Effects of long-term fertilization on key processes of soil nitrogen cycling in agricultural soil: A review[J]. Acta Pedologica Sinica, 2016, 53(2):292-304.
- [2]谢 月,梁 红,宋立全,等.东北沼泽湿地土壤中氨氧化微生物活性和丰度研究[J].农业环境科学学报,2018,37(3):546-551.
 XIE Yue, LIANG Hong, SONG Li-quan, et al. Activity and abundance
 - of ammonia-oxidizing bacteria and ammonia oxidizing archaea of marsh wetland soil in Northeast of China[J]. *Journal of Agro-Environment Science*, 2018, 37(3):546-551.
- [3] Szukics U, Grigulis K, Legay N, et al. Management versus site effects on the abundance of nitrifiers and denitrifiers in European mountain grasslands[J]. Science of the Total Environment, 2019, 648:745–753.
- [4] 孙雪微, 许修宏, 孟庆欣, 等. 牛粪堆肥中氨氧化细菌群落结构及其 与环境因子相关性研究[J]. 农业环境科学学报, 2017, 36(1):189-197.

SUN Xue-wei, XU Xiu-hong, MENG Qing-xin, et al. Research of am-

农业环境科学学报 第38卷第12期

monia oxidizing bacterial community structure and its correlation with environmental factors in cow manure composting[J]. *Journal of Agro-Environment Science*, 2017, 36(1):189–197.

- [5] Ouyang Y, Norton J M, Stark J M. Ammonium availability and temperature control contributions of ammonia oxidizing bacteria and archaea to nitrification in an agricultural soil[J]. Soil Biology and Biochemistry, 2017, 113:161–172.
- [6] Li X R, Xiao Y P, Ren W W, et al. Abundance and composition of ammonia-oxidizing bacteria and archaea in different types of soil in the Yangtze River estuary[J]. Journal of Zhejiang University Science B, 2012, 13(10):769-782.
- [7] Cui Y W, Zhang H Y, Ding J R, et al. The effects of salinity on nitrification using halophilic nitrifiers in a Sequencing Batch Reactor treating hypersaline wastewater[J]. *Scientific Reports*, 2016, 6:24825.
- [8] Wang Y F, Gu J D. Effects of allylthiourea, salinity, and pH on ammonia/ammonium-oxidizing prokaryotes in mangrove sediment incubated in laboratory microcosms[J]. *Applied Microbiology and Biotechnology*, 2014, 98(7):3257-3274.
- [9] Caffrey J M, Bano N, Kalanetra K, et al. Ammonia oxidation and ammonia-oxidizing bacteria and archaea from estuaries with differing histories of hypoxia[J]. *The ISME Journal*, 2007, 1(7):660.
- [10] Mosier A C, Francis C A. Relative abundance and diversity of ammonia-oxidizing archaea and bacteria in the San Francisco Bay estuary
 [J]. Environmental Microbiology, 2008, 10(11): 3002–3016.
- [11] Keshri J, Mishra A, Jha, B. Microbial population index and community structure in saline-alkaline soil using gene targeted metagenomics [J]. Microbiological Research, 2013, 168:165-173.
- [12] Beman J M, Francis C A. Diversity of ammonia-oxidizing archaea and bacteria in the sediments of a hypernutrified subtropical estuary: Bahia del Tobari, Mexico[J]. Applied Environmental Microbiolgy, 2006, 72(12):7767-7777.
- [13] He Y, Hu W, Ma D, et al. Abundance and diversity of ammonia-oxidizing archaea and bacteria in the rhizosphere soil of three plants in the Ebinur Lake wetland[J]. *Canadian Journal of Microbiology*, 2017, 63(7):573-582.
- [14] Cao H, Hong Y, Li M, et al. Community shift of ammonia-oxidizing bacteria along an anthropogenic pollution gradient from the Pearl River Delta to the south China Sea[J]. Applied Microbiology and Biotechnology, 2012, 94(1):247-259.
- [15] Dang H, Li J, Chen R, et al. Diversity, abundance, and spatial distribution of sediment ammonia-oxidizing Betaproteobacteria in response to environmental gradients and coastal eutrophication in Jiaozhou Bay, China[J]. Applied Microbiology and Biotechnology, 2010, 76 (14):4691-4702.
- [16] 鲍士旦. 土壤农化分析[M]. 三版. 北京:中国农业出版社, 2011: 23-24, 31-33, 46-48.

BAO Shi-dan. Soil agrochemical analysis[M]. 3th Edition. Beijing: China Agriculture Press, 2011:23-24, 31-33, 46-48.

[17] 王慎强, 余位培. 影响碱化土壤 pH 测定的主要因素[J]. 土壤通报, 1994, 25(6):252-255.

WANG Shen-qiang, YU Wei-pei. The main factors affecting pH de-

termination of alkalized soil[J]. Chinese Journal of Soil Science, 1994, 25(6):252-255.

- [18]朱靖蓉,王 成,肖 英,等.振荡浸提时间对不同保存方式土壤 NO₃-N和NH²-N含量测定值的影响[J].新疆农业科学,2014,51 (4):761-767.
 - ZHU Jing-rong, WANG Cheng, XIAO Ying, et al. Effect of oscillations and extraction time on measurement of content of NO₃-N and NH₄^{*}-N in soil held by different saving methods[J]. *Xinjiang Agricultural Sciences*, 2014, 51(4):761-767.
- [19] Kurola J, Salkinoja-Salonen M, Aarnio T, et al. Activity, diversity and population size of ammonia-oxidising bacteria in oil-contaminated landfarming soil[J]. FEMS Microbiology Letters, 2005, 250(1):33-38.
- [20] Hu H W, Zhang L M, Dai Y, et al. pH-dependent distribution of soil ammonia oxidizers across a large geographical scale as revealed by high-throughput pyrosequencing[J]. *Journal of Soils and Sediments*, 2013, 13(8):1439-1449.
- [21] Ebie Y, Noda N, Miura H, et al. Comparative analysis of genetic diversity and expression of *amoA* in wastewater treatment processes[J]. *Applied Microbiology and Biotechnology*, 2004, 64(5):740–744.
- [22] Ma T, Zeng W, Li Q, et al. Effects of water, salt and nitrogen stress on sunflower (*Helianthus annuus* L.) at different growth stages[J]. *Journal of Soil Science and Plant Nutrition*, 2016, 16(4):1024–1037.
- [23] Malash N M, Flowers T J, Rsgsb R. Effect of irrigation methods, management and salinity of irrigation water on tomato yield, soil moisture and salinity distribution[J]. *Irrigation Science*, 2008, 26(4):313-323.
- [24] 范庆锋,张玉龙,陈 重,等.保护地土壤盐分积累及其离子组成 对土壤 pH 值的影响[J].干旱地区农业研究,2009,27(1):16-20. FAN Qing-feng, ZHANG Yu-long, CHEN Chong, et al. Effects of soil salinity accumulating and ion constitution on pH in the soil of protected field[J]. Agricultural Research in the Arid Areas, 2009, 27(1):16-20.
- [25] Rietz D N, Haynes R J. Effects of irrigation-induced salinity and sodicity on soil microbial activity[J]. Soil Biology and Biochemistry, 2003, 35(6):845-854.
- [26] Bernhard A E, Bollmann A. Estuarine nitrifiers: New players, patterns and processes[J]. *Estuarine, Coastal and Shelf Science*, 2010, 88(1): 1–11.
- [27] He H, Zhen Y, Mi T, et al. Ammonia-oxidizing Archaea and Bacteria differentially contribute to ammonia oxidation in sediments from adjacent waters of Rushan Bay, China[J]. *Frontiers in Microbiology*, 2018, 9:116.
- [28] Bernhard A E, Tucker J, Giblin A E, et al. Functionally distinct communities of ammonia-oxidizing bacteria along an estuarine salinity gradient[J]. *Environmental Microbiology*, 2007, 9(6):1439-1447.
- [29] Duan M, House J, Liu Y, et al. Contrasting responses of gross and net nitrogen transformations to salinity in a reclaimed boreal forest soil[J]. *Biology and Fertility of Soils*, 2018, 54(3):385–395.
- [30] Min W, Guo H J, Zhang W, et al. Irrigation water salinity and N fertilization: Effects on ammonia oxidizer abundance, enzyme activity and cotton growth in a drip irrigated cotton field[J]. *Journal of Integrative Agriculture*, 2016, 15(5):1121–1131.

2019年12月 马丽娟,等:长期咸水滴灌对土壤氨氧化微生物丰度和群落结构的影响

- [31] Jin T, Zhang T, Ye L, et al. Diversity and quantity of ammonia-oxidizing Archaea and Bacteria in sediment of the Pearl River Estuary[J]. *China Applied Microbiology and Biotechnology*, 2011, 90(3):1137– 1145.
- [32] Wang H, Gilbert J A, Zhu Y, et al. Salinity is a key factor driving the nitrogen cycling in the mangrove sediment[J]. Science of the Total Environment, 2018, 63:1342–1349.
- [33] Zhang Y, Chen L, Dai T, et al. The influence of salinity on the abundance, transcriptional activity, and diversity of AOA and AOB in an estuarine sediment: A microcosm study[J]. Applied Microbiology and Biotechnology, 2015, 99(22):9825–9833.
- [34] 李晨华, 贾仲君, 唐立松, 等. 不同施肥模式对绿洲农田土壤微生物群落丰度与酶活性的影响[J]. 土壤学报, 2012, 49(3):567-574. LI Chen-hua, JIA Zhong-jun, TANG Li-song, et al. Effect of model of fertilization on microbial abundance and enzyme activity in oasis farmland soil[J]. Acta Pedologica Sinica, 2012, 49(3):567-574.
- [35] Bernhard A E, Landry Z C, Blevins A, et al. Abundance of ammoniaoxidizing archaea and bacteria along an estuarine salinity gradient in relation to potential nitrification rates[J]. *Applied Environmental Microbiology*, 2010, 76(4):1285–1289.
- [36] Magalhães C M, Machado A, Bordalo A A. Temporal variability in the abundance of ammonia-oxidizing bacteria vs archaea in sandy sediments of the Douro River estuary[J]. *Portugal Aquatic Microbial Ecolo*gy, 2009, 56(1):13-23.
- [37] Wankel S D, Mosier A C, Hansel C M, et al. Spatial variability in nitrification rates and ammonia-oxidizing microbial communities in the agriculturally impacted Elkhorn Slough estuary[J]. *California Applied Environmental Microbiology*, 2011, 77(1):269-280.
- [38] Santos J P, Mendes D, Monteiro M, et al. Salinity impact on ammonia oxidizers activity and *amoA* expression in estuarine sediments[J]. *Estuarine, Coastal and Shelf Science*, 2018, 211:177–187.
- [39] Cao H, Li M, Hong Y, et al. Diversity and abundance of Ammonia-oxidizing Archaea and Bacteria in polluted mangrove sediment[J]. Systematic and Applied Microbiology, 2011, 34(7):513-523.
- [40] Gao J, Hou L, Zheng Y, et al. Shifts in the community dynamics and activity of ammonia-oxidizing prokaryotes along the Yangtze estuarine salinity gradient[J]. Journal of Geophysical Research: Biogeosci-

ences, 2018, 123(11): 3458-3469.

- [41] Li M, Cao H, Hong Y, et al. Spatial distribution and abundances of Ammonia-oxidizing Archaea(AOA) and Ammonia-oxidizing Bacteria (AOB) in mangrove sediments[J]. Applied Microbiology and Biotechnology, 2011, 89(4):1243-1254.
- [42] Könneke M, Bernhard A E, José R, et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon[J]. Nature, 2005, 437 (7058) : 543.
- [43] Qin W, Jewell T N, Russell V V, et al. Candidatus nitrosocaldales[J]. Bergey's Manual of Systematics of Archaea and Bacteria, 2015:1–2.
- [44] Karner M B, DeLong E F, Karl D M. Archaeal dominance in the mesopelagic zone of the Pacific Ocean[J]. *Nature*, 2001, 409(6819):507.
- [45] Sahan E, Muyzer G. Diversity and spatio-temporal distribution of Ammonia-oxidizing Archaea and Bacteria in sediments of the Westerschelde estuary[J]. *FEMS Microbiology Ecology*, 2008, 64 (2) : 175– 186.
- [46] Tao R, Wakelin SA, Liang Y et al. Response of Ammonia-oxidizing Archaea and Bacteria in calcareous soil to mineral and organic fertilizer application and their relative contribution to nitrification[J]. Soil Biology and Biochemistry, 2017, 114:20–30.
- [47] Tago K, Okubo T, Shimomura Y, et al. Environmental factors shaping the community structure of Ammonia-oxidizing Bacteria and Archaea in sugarcane field soil[J]. *Microbes and Environments*, 2014: ME14137.
- [48] 宋亚珩, 王媛媛, 李占明, 等. 淹水水稻土中氨氧化古菌丰度和群落结构演替特征[J]. 农业环境科学学报, 2014, 33(5):999-1006. SONG Ya-heng, WANG Yuan-yuan, LI Zhan-ming, et al. Succession of abundance and community structure of Ammonia-oxidizing Archaea in paddy soil during flooding[J]. Journal of Agro-Environment Science, 2014, 33(5):999-1006.
- [49] Valentine D L. Opinion: Adaptations to energy stress dictate the ecology and evolution of the archaea[J]. *Nature Reviews Microbiology*, 2007, 5(4):316.
- [50] Shen J P, Zhang L M, Zhu Y G, et al. Abundance and composition of Ammonia-oxidizing Bacteria and Ammonia-oxidizing Archaea communities of an alkaline sandy loam[J]. *Environmental Microbiology*, 2008, 10(6):1601-1611.