农业环境科学学报 Journal of Agro-Environment Science

王越,况福虹,马胜兰,等.秸秆粉碎和焚烧还田对石灰性紫色土耕层土壤孔隙和有机碳的影响[J].农业环境科学学报,2022,41 (3):526-536.

WANG Y, KUANG F H, MA S L, et al. Effects of shredded straw and burned straw returning to the field on soil porosity and organic carbon in cultivated layer of calcareous purple soil[J]. *Journal of Agro–Environment Science*, 2022, 41(3): 526–536.

王越1,2,况福虹1*,马胜兰1,王艳强1,李兰2,唐家良1,朱波1

(1.中国科学院、水利部成都山地灾害与环境研究所,成都 610041; 2.四川农业大学资源学院,成都 611130)

摘 要:为明确川中丘陵区长期不同秸秆还田方式对石灰性紫色土耕层土壤孔隙及有机碳的影响,利用田间原位监测和计算机 断层扫描技术,测定夏玉米-冬小麦轮作、秸秆不还田(RMW₀),夏玉米-冬小麦轮作、秸秆50%粉碎还田(RMW₅hed)和夏玉米-冬小 麦轮作、秸秆50%焚烧还田(RMW₅hed)处理耕层土壤有机碳浓度、储量及孔隙特征参数。结果表明:RMW₅hed和RMW₅hed)和夏玉米-冬小 麦轮作、秸秆50%焚烧还田(RMW₅hed)处理耕层土壤有机碳浓度、储量及孔隙特征参数。结果表明:RMW₅hed和RMW₅hed)和夏玉米-冬小 麦轮作、秸秆50%焚烧还田(RMW₅hed)处理耕层土壤有机碳浓度、储量及孔隙特征参数。结果表明:RMW₅hed和RMW₅hed)和夏玉米-冬小 壤大孔隙集中分布现象,使层间大孔隙分布更均匀,3个处理孔隙数量均以当量孔径100~500 µm 孔隙为主,RMW₅hed和RMW₅hed 化了耕层土壤不同当量孔径孔隙数量比和体积比,且以RMW₅hed更优。RMW₅hed有利于增加耕层土壤>1000 µm 孔径的孔隙数量, RMW₅hed,耕层土壤>1000 µm 孔径的孔隙平均直径趋小。RMW₅hed 和RMW₅hed 和RMW₅hed 和RMW₅hed 形状因子均较 RMW₀低,长期秸秆还田使耕层土壤孔隙向有利于保水保肥的方向转变,且RMW₅hed 保水保肥能力较 RMW₅hed 无行连续还田15 a后,只有 RMW₅hed 耕层土壤有机碳浓度增幅显著。综合比较两种还田方式在改善川中丘陵区石灰性紫色土耕 层土壤孔隙特征和固碳效果的差异表明,长期秸秆粉碎还田较焚烧还田更有利于改善耕层土壤孔隙特征,更能有效积累耕层土 壤有机碳,更有利于川中丘陵区农业绿色发展。

关键词:秸秆;粉碎还田;焚烧还田;土壤孔隙;土壤有机碳

中图分类号:S152.5;S153.6 文献标志码:A 文章编号:1672-2043(2022)03-0526-11 doi:10.11654/jaes.2021-0923

收稿日期:2021-08-16 录用日期:2021-11-22

作者简介:王越(1997—),女,四川广元人,硕士研究生,从事农业生态研究。E-mail:wy1053441527@163.com

*通信作者:況福虹 E-mail:kuangfuh@imde.ac.cn

基金项目:国家重点基础研究发展计划项目(2018YFD0200700)

Project supported: The National Basic Research Program of China (2018YFD0200700)

Effects of shredded straw and burned straw returning to the field on soil porosity and organic carbon in cultivated layer of calcareous purple soil

WANG Yue^{1,2}, KUANG Fuhong^{1*}, MA Shenglan¹, WANG Yangiang¹, LI Lan², TANG Jialiang¹, ZHU Bo¹

(1. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China; 2. College of Resources, Sichuan Agricultural University, Chengdu 611130, China)

Abstract: To clarify the effects of different long-term straw-returning methods on soil pores and organic carbon in the cultivated layer of calcareous purple soil in the hilly area of the central Sichuan Basin, in-situ monitoring and computed tomography were used to determine the organic carbon concentration and storage, and pore characteristics of soil in the cultivated layer of the following treatments: RMW₀ (summer maize-winter wheat rotation, without straw returned to the field), RMWshred (summer maize-winter wheat rotation, 50% straw shredded and returned to the field), and RMW_{bum} (summer maize-winter wheat-straw rotation, 50% straw burned and returned to the field). The results showed that the total porosity of cultivated layer soil was significantly increased by both the RMW_{sheed} and RMW_{burn} treatments, while the corresponding bulk densities were decreased. The macroporosity of cultivated layer soil in RMW_{burn} was 2.7 times higher than that of RMW_{sheed}. Compared with RMW₀, the RMW_{sheed} and RMW_{burn} treatments could effectively improve the centralized distribution of soil macropores and make the distribution of interlayer macropores more uniform. The quantities of pores in all three treatments were dominated by equivalent pore diameters of 100~500 µm. The RMW_{sheed} and RMW_{burn} treatments optimized the pore number ratio and volume ratio of different equivalent pore diameters in the cultivated layer of soil, with the RMW shred treatment having a superior effect. RMW_{burn} was beneficial for increasing the number of >1 000 µm equivalent pores in the cultivated layer of soil, while the average diameter of >1 000 µm pores in the cultivated layer of soil under the RMW_{shred} tended to be smaller. The mean throat cross-sectional area, mean throat cross-sectional shape factor and mean pore shape factor of RMW_{shred} and RMW_{burn} were lower than those of RMW₀. Long-term straw returning to the field caused the pore space of the cultivated soil to change in a direction favorable for water and fertilizer retention, and the water and fertilizer retention ability of RMW_{shred} was better than that of RMW_{burn}. After 15 years of continuous straw returning, the soil organic carbon concentration only increased significantly in the RMW_{sheed} treatment. Based on a comprehensive comparison of the differences between the two straw-returning treatments, in terms of improving pore characteristics and carbon sequestration in the cultivated soil layer in the hilly area of the central Sichuan Basin, long-term returning of shredded straw is more conducive to improving soil pore characteristics and more effective in accumulating soil organic carbon than long-term returning of burned straw, making it more sustainable option for the green development of agriculture in the hilly area of the central Sichuan Basin.

Keywords: straw; returning shredded; returning burned; soil pore; soil organic carbon

川中丘陵紫色土区是四川乃至长江上游最重要 也是最有潜力的农业生产区。石灰性紫色土的风化 成土作用和养分循环速度快,磷钾及部分微量元素含 量丰富,但有机质和全氮含量低,土层浅薄,结构水稳 性弱,土壤富含母质碎屑,容蓄水量少,渗透率低,其 下为透水性差的基岩,因而由地表径流和壤中流引起 的土壤坡面侵蚀严重¹¹,这些土壤特征不利于该区的 农业可持续发展。作物秸秆富含有机质、氮、磷、钾及 微量元素,还田后可有效补充土壤养分并增加土壤有 机碳储量,减少因化肥过量引起的土壤酸化、板结和 硝酸盐淋洗等问题,同时有利于促进土壤团粒结构形 成,增强土壤保水保肥性能,并提高作物产量[2-3]。因 此,秸秆还田是当地经济有效的减缓水土流失和促进 农业副产物循环利用的主要方式。

秸秆焚烧时的高温一定程度上有利于灭杀秸秆 和土壤中的病菌⁽⁴⁾,且该方法操作简单,适合川中丘 陵区机械化程度低且劳动力不足的情况,曾是区内农 户首选的秸秆还田方式。由于秸秆焚烧排放大量 温室气体及气溶胶颗粒,易引发雾霾,威胁交通安全 及人身健康16-71,四川省陆续出台了相关文件禁止秸 秆焚烧。随着小型机械在四川丘陵区农业应用上的 逐渐推广,秸秆粉碎还田更大比例的取代了焚烧还 田。然而,农户在选择秸秆还田方式时更看重操作便 捷程度和对农业生产本身的影响,并不会过多考虑还 田方式对土壤和环境的长期影响,因此区内秸秆禁烧 有屡禁不止和反弹的趋势^[8]。由于不同秸秆还田方 式下的秸秆处理方法不同,可能对土壤孔隙和有机碳 产生不同影响。土壤有机碳是土壤有机质水平的化 学度量,与土壤肥力水平有密切关系¹⁹。土壤孔隙尤 其是控制优先流的大孔隙特征直接影响水分及养分 在土壤中的运移特征,进而影响土壤保水保肥能力, 与土壤养分固持及抗侵蚀有密切关系[10-11],因此土壤 孔隙分布情况和变化与土壤有机碳浓度和储量存在 密切关系[12]。目前,国际上对大孔隙没有统一定义,

多依照孔隙功能^[13]、孔隙中的水状态^[14]、毛管势^[15]情况 等划分。CT扫描技术能在基本不扰动土壤原有结构 的基础上获取土壤大孔隙构成和分布特征,可以更真 实地描述土壤原有孔隙特征,因此广大学者也将CT 扫描能识别的孔隙定义为大孔隙^[16-18]。

为了解秸秆还田方式对川中丘陵紫色土地区旱 地耕层土壤孔隙和有机碳的影响,本研究从区域农业 绿色可持续发展和农业废弃物循环利用的角度出发, 针对石灰性紫色土有机质含量较低、土层浅薄、抗侵 蚀能力弱等问题,通过长期定位试验,结合CT扫描技 术,分析川中丘陵区秸秆粉碎还田及焚烧还田对耕层 土壤孔隙特征及有机碳的影响,旨在为当地秸秆循环 利用对土壤的影响方面的研究提供基础数据,为探明 适合川中丘陵紫色土地区农业绿色发展的秸秆还田 方式提供科学依据。

1 材料与方法

1.1 试验区概况

试验站(105°27′E,31°16′N)位于四川盆地中部 偏北的盐亭县林山乡,区内以中深丘陵地貌为主,地 势北高南低,海拔400~600 m,属亚热带季风气候,春 早夏热秋雨冬暖,2005—2020年平均降水量934 mm, 平均气温16.6℃,平均无霜期294 d。

1.2 试验设计

试验地为川中丘陵区耕种熟化旱地,于2005年 建成并设置处理,2006年开始进行长期定位观测,持 续至今。试验选择冬小麦-夏玉米轮作体系中秸秆 不还田(RMW₀)、秸秆粉碎还田(RMW_{shred})和秸秆焚 烧还田(RMW_{burn})3个处理进行研究,每个处理设置3 个平行,单个小区面积为5m×10m。供试土壤为石灰 性紫色土,长期定位试验开始前,对该样地背景和基本 理化性质进行调查和取样分析,样地耕层土壤平均容 重、土壤总孔隙度和 pH 值分别为(1.58±0.02) g·cm⁻³、 (40.27±0.91)%和8.38±0.17;耕层土壤砂粒、粉粒、黏 粒和洗失量分别为(24.49±4.01)%、(45.03±1.21)%、 (21.73±3.99)%和(8.76±0.88)%,有机质、全氮、全磷和 全钾含量分别为(10.31±1.30)、(0.71±0.13)、(0.70± 0.06)g·kg⁻¹和(22.48±0.75)g·kg⁻¹,碱解氮、有效磷和 速效钾含量分别为(52.61±9.24)、(2.82±1.33)mg·kg⁻¹ 和(83.37±22.62) mg·kg⁻¹。RMW_{shred}和RMW_{burn}处理秸 秆还田量为大田常规种植模式(区域内为冬小麦-夏 玉米轮作体系,施肥和农业管理措施与试验样地一致) 平均秸秆产量的50%。秸秆粉碎还田处理在当季作物 种植前,将前茬作物秸秆截成10~15 cm小段,均匀撒 在小区地表;秸秆焚烧还田处理将小区内作物秸秆就 地晾干焚烧,然后将焚烧产物在小区地表均匀扒散;对 所有小区旋耕整地,耕作深度为15~20 cm。

冬小麦于每年10月下旬播种,次年5月中旬收 获,种植前翻地,所有肥料用作基肥(与当地农户种植 习惯保持一致),小麦种植当日一次性撒施并播种,然 后翻耕覆盖肥料和种子,冬小麦季化肥氮(以N计)、 磷(以P₂O₅计)、钾(以K₂O计)水平分别为130、72 kg· hm⁻²和36 kg·hm⁻²;夏玉米于每年5月下旬播种,9月 中旬收获,种植前翻地,施肥分为两次,播种期穴施基 肥,拔节期撒施追肥,氮肥的基肥和追肥比例为3:2, 磷、钾肥在基肥期一次性施用,夏玉米季氮(化肥氮+ 秸秆氮,以N计)、磷(以P₂O₅计)、钾(以K₂O计)肥水 平分别为150、72 kg·hm⁻²和36 kg·hm⁻²。试验基肥均 使用碳酸氢铵(含N量17%),追肥使用尿素(含N量 46.7%),磷肥为过磷酸钙(含P₂O₅量12%),钾肥为氯 化钾(含K2O量60%)。冬小麦种植季使用前茬夏玉 米秸秆还田,秸秆粉碎还田输入氮量约(30.2±8.9)kg· hm⁻²,夏玉米种植季使用前茬冬小麦秸秆还田,秸秆 粉碎还田输入氮量约(9.0±2.0)kg·hm⁻²。

1.3 测定指标与方法

本研究从2006年开始取样,每年夏玉米收获前 用土钻按照反S型采集8~10钻耕作层土壤,混合为1 个土样,土样风干研磨过筛。有机碳浓度用重铬酸 钾-外加热法(2016年前)及元素分析仪(2016年至 今, Vario EL cube, 德国 Elementar)测定, 所有土壤 样品(含标样)上机前均用稀盐酸(盐酸和水体积比为 1:9)进行前处理19,以去除无机碳干扰。试验区内石 灰性紫色土总有机碳测定方法对比结果见表1,两种 方法数据结果在标准值2倍标准误差范围内,测试结 果具有可比性。本研究用2006年和2020年夏玉米收 获期土壤结果对比耕层土壤有机碳经过15a差异还 田后的整体变化。夏玉米收获前,用环刀法测定土 壤容重及总孔隙度,同时使用直径4 cm、高5 cm的 PVC 管采集原状土柱,利用计算机断层扫描技术 (Phoenix Nanotom S micro-CT scanner) 扫描原状土柱 测定土壤大孔隙特征参数,扫描参数设置如下:电压 100 kV, 电流 100 μA, 时间间隔 1 250 ms, 分辨率 25 μm,每个原状土柱采集2000幅扫描图像。

1.4 数据处理与统计分析

本研究使用CT-Program软件将扫描投影信号转换为灰度图像,利用岩心孔隙网络模型对灰度图像进

表1 不同方法测定土壤标准物质(ASA-10)有机碳含量结果对比

Table 1 Comparison of the results of different methods for determining the organic carbon content of soil standard samples (ASA-10)

项目Item	重铬酸钾-外加热法 Potassium dichromate external heating method	元素分析仪 Elemental analyser	ASA-10标准值 ASA-10 standard value
有机碳浓度 Organic carbon concentration/(g·kg ⁻¹)	9.90±0.07	10.04±0.09	—
有机质浓度 Organic matter concentration/(g·kg ⁻¹)	17.07±0.12	17.32±0.16	17±1

注:土壤标准物质只给出有机质标准值,因此将元素分析仪测定的有机碳浓度换算成有机质浓度进行比较,有机质浓度=有机碳浓度×1.724。 Note: The soil standard only gives the standard value of organic matter, so the organic carbon concentration measured by the elemental analyzer is converted to organic matter concentration, organic matter concentration = organic carbon concentration×1.724.

行增强、降噪及二值化处理(目标物质灰度值255标记,其余物质灰度值0标记),然后进行3D影像重建并提取大孔隙数量、体积、形态及连通性等特征参数。

本研究根据CT扫描仪的分辨率将>25 µm的孔隙 定义为大孔隙,基于孔隙等效直径的扫描结果,3个处 理识别出的孔隙直径均>100 µm,即当量孔径为25~ 100 µm的孔隙数量为0,因此将大孔隙划分为100~ 500、500~1000 µm和>1000 µm3个部分进行分析。

孔隙形态由孔隙形状因子、喉道形状因子及喉道 截面积共同表征。形状因子表征孔隙/喉道近圆度, 其值越大表示孔隙/喉道形状越接近圆形^[20],越有利 于水分和溶质在土壤中运移,相反则利于水分和养分 固持^[21]。喉道是孔隙与孔隙之间相对狭窄的部位,喉 道截面积越大越利于水分和溶质的运移。

孔隙连通性主要由孔隙配位数表征,指连接每一 个孔隙的喉道数量,通常以统计结果的平均值表示, 其值越大表示孔隙间的连通性越好,越利于气体扩散 及物质交换。

本研究中的相关公式如下:

不同处理不同当量孔径孔隙大孔隙度:

 $M_{ij} = \left(V_{ij} / V_i \right) \times M_i$

式中: M_{ii} 为不同处理不同当量孔径孔隙大孔隙 度,%; V_{ii} 为该处理该当量孔径孔隙体积, μm^3 ; V_i 为该 处理大孔隙体积, μm^3 ; M_i 表示该处理大孔隙度,%。

耕层土壤有机碳储量:

 $W = D \times S \times \rho \times C$

式中:W为耕层土壤有机碳储量,kg;D为土层厚度, m;S为试验小区面积, $m^2;\rho$ 为耕层土壤容重, $g\cdot cm^{-3};$ C为耕层土壤有机碳浓度, $g\cdot kg^{-1}$ 。

试验数据使用 Excel 2016 软件整理分析,使用 SPSS 20.0 软件进行单因素方差分析(One-way ANO-VA)和秩相关分析(Spearman 相关分析),并用最小显 著差异法(LSD)对结果进行多重比较,采用 Origin 2018软件绘图。

2 结果与分析

2.1 秸秆还田方式对耕层土壤孔隙的影响

2.1.1 秸秆还田方式对耕层土壤容重、总孔隙度和大 孔隙度的影响

长期秸秆还田有利于降低耕层土壤容重,提高土 壤总孔隙度(表2)。RMW_{shred}和RMW_{burn}耕层土壤容 重较RMW₀分别低11.7%和20.0%,土壤总孔隙度分 别高14.1%和24.5%。RMW_{shred}和RMW_{burn}耕层土壤 总孔隙度和土壤容重无显著差异,但二者大孔隙度表 现不同:RMW_{shred}和RMW_{burn}耕层土壤大孔隙度分别 是RMW₀的0.5倍和1.4倍,RMW_{burn}耕层土壤大孔隙 度是RMW_{shred}的2.7倍。RMW_{shred}耕层土壤总孔隙度 较RMW₀增加、大孔隙度降低,说明RMW_{shred}耕层土壤 总孔隙度增加主要依靠当量孔径<25 μm孔隙的增 加,即长期秸秆粉碎还田有利于促进耕层土壤当量孔 径<25 μm的孔隙发育。

2.1.2 秸秆还田方式对耕层土壤不同当量孔径孔隙数 量及大小的影响

长期秸秆粉碎还田和焚烧还田时,耕层土壤大孔 隙尤其是当量孔径为100~500 μm的大孔隙数量大幅 减少(图1a)。RMW_{shred}和RMW_{burn}大孔隙总数量较 RMW₀分别少49198个和49117个,100~500 μm孔隙 数量较RMW₀分别少51069个和49579个,但RMW₀

表2 秸秆还田方式对耕层土壤容重、总孔隙度和 大孔隙度的影响

Table 2 Effects of straw returning method on total porosity, bulk density and macroporosity in cultivated layer of soil

处理	容重	总孔隙度	大孔隙度
Treatment	Bulk density/(g·cm ⁻³)	Total porosity/%	Porosity/%
$\mathrm{R}\mathrm{M}\mathrm{W}_{0}$	1.45±0.06a	$45.3\pm0.98\mathrm{b}$	13.4
$RMW_{\rm shred}$	$1.28 \pm 0.07 \mathrm{b}$	51.7±0.97a	7.0
$RMW_{\rm burn}$	1.16±0.06b	56.4±2.20a	18.8

注:不同小写字母表示处理间差异显著(P<0.05)。

Note: Different lowercase letters indicate significant differences among treatments (P < 0.05).

和 RMW_{shred} 100~500 μm 孔隙的孔隙度均为 0.9%, RMW_{bum} 100~500 μm 孔隙的孔隙度为 0.6%,说明长期 秸秆粉碎还田使耕层土壤 100~500 μm 平均孔隙直径 增大,长期秸秆焚烧还田耕层土壤 100~500 μm 平均 孔隙直径较秸秆粉碎还田处理小。

RMW_{shred} 500~1 000 μm 孔隙数量是 RMW₀ 的 2.5 倍, RMW_{burn}500~1 000 μm 孔隙数量和 RMW₀相当, RMW_{shred} 500~1 000 μm 孔隙的孔隙度分别为 RMW₀和 RMW_{burn}的 3.3 倍和 2.6 倍, 说明长期秸秆粉碎还田条件 下, 耕层土壤 500~1 000 μm 孔隙数量增多、体积增大。

RMW_{shred}当量孔径>1000 μm孔隙数量和RMW₀相 当,RMW_{bum}>1000 μm孔隙数量是RMW₀的1.6倍, RMW₀、RMW_{shred}和RMW_{bum}>1000 μm孔隙的孔隙度分 别为11.6%、3.5%和17.2%(图1b),说明长期秸秆焚烧 还田有利于增加耕层土壤>1000 μm孔隙数量,秸秆 粉碎还田条件下耕层土壤>1000 μm平均孔隙直径 趋小。 农业环境科学学报 第41卷第3期

2.1.3 秸秆还田方式对耕层土壤孔隙配比及分布的 影响

原状土柱三维复原图和截面图可直观展示原状

图 2 不同处理耕层土壤大孔隙占比

土壤孔隙位置及孔隙分布状况(图3)。RMW。原状土 柱中有多处明显的大孔隙集中分布点, RMW hum 原状 土柱孔隙分布较 RMW。更均匀但仍能观察到大孔隙

图 3 不同处理原状土柱三维复原图及三维截面图

Figure 3 3D restoration and 3D cross-section of undisturbed soil column under different treatments

集中分布点, RMW shred 大孔隙均匀分布于土柱各个部 位。可见长期秸秆粉碎还田和焚烧还田均能有效改 善耕层土壤大孔隙集中分布的现象,但长期秸秆粉碎 还田改善效果更好。

2.1.4 秸秆还田方式对耕层土壤孔隙形态、连通性的影响

如表3所示,RMW_{shred}与RMW_{burn}的平均孔隙形状 因子较RMW。分别低0.11和0.06,平均喉道截面形状 因子均低 0.05, 平均喉道截面积分别低 0.09 µm²和 0.02 µm², 耕 层 土 壤 保 水 保 肥 能 力 为 RMW_{shred}> RMW_{burn}>RMW₀。平均配位数为RMW_{burn}>RMW₀> RMW_{shred},可见RMW_{shred}孔隙间连通性略差,RMW_{burn}耕 层土壤大孔隙更利于孔隙间的物质交换及气体扩散。

2.2 秸秆还田方式对耕层土壤有机碳的影响

不同处理耕层土壤有机碳浓度和储量变化如图 4所示,试验初期(2006年)各处理耕层土壤有机碳浓 度差异不显著,耕层土壤有机碳平均浓度为RMW_{burn} $(5.38 \text{ g} \cdot \text{kg}^{-1}) > \text{RMW}_0 (5.14 \text{ g} \cdot \text{kg}^{-1}) > \text{RMW}_{\text{shred}} (4.67 \text{ g} \cdot \text{kg}^{-1})$ kg⁻¹)。连续还田 15 a 后(2020年), RMW₀和 RMW_{burn} 之间耕层土壤有机碳浓度仍无显著差异,但二者均显 著低于RMW_{shred}。RMW₀、RMW_{shred}和RMW_{burn}耕层土 壤有机碳浓度较2006年分别增加16.3%、58.9%和

表3 不同处理耕层土壤孔隙形态及连通性参数

Table 3	Pore morphology and	d connectivity paramet	ers in cultivated layer o	of soil under	different treatments
---------	---------------------	------------------------	---------------------------	---------------	----------------------

处理	平均喉道截面积	平均喉道截面形状因子	平均孔隙形状因子	平均配位数
Treatment	Mean throat cross–sectional area/ μ m ²	Mean throat cross-sectional shape factor	Mean pore shape factor	Mean coordination number
$\mathbf{R}\mathbf{M}\mathbf{W}_{0}$	0.22	0.41	0.81	0.68
$RMW_{\rm shred}$	0.13	0.36	0.70	0.53
$\mathbf{RMW}_{\mathrm{burn}}$	0.20	0.36	0.75	1.10

不同大写字母表示相同年份处理间差异显著(P<0.05),不同小写字母表示相同处理年际间差异显著(P<0.05)

Different uppercase letters indicate the significant difference among treatments of the same year, and different lowercase letters indicate the significant difference between years of the same treatment (P < 0.05)

图4 秸秆还田方式对耕层土壤有机碳浓度及储量的影响

Figure 4 Effects of straw returning method on soil organic carbon concentration and storage in cultivated layer of soil

15.6%,只有RMW_{shred}增长幅度达到显著水平。2020 年耕层土壤有机碳浓度为RMW_{shred}(7.42g·kg⁻¹)> RMW_{burn}(6.22g·kg⁻¹)>RMW₀(5.97g·kg⁻¹)。

耕层土壤有机碳储量变化趋势与有机碳浓度变 化趋势略有不同。2006年耕层土壤有机碳储量为 RMW_{bum}(64.34 kg)>RMW₀(61.66 kg)>RMW_{shred}(54.46 kg),各处理间耕层土壤有机碳储量无显著差异。 2020年耕层土壤有机碳储量为RMW_{shred}(71.30 kg)> RMW₀(64.82 kg)>RMW_{bum}(53.98 kg),RMW_{shred}和 RMW₀耕层土壤有机碳储量无显著差异,但均显著高 于RMW_{burn}。RMW₀2020耕层土壤有机碳储量较2006 年增加5.1%,RMW_{shred}增加30.9%,RMW_{burn}减少了 16.1%。

2.3 土壤孔隙与有机碳的关系

有机碳与孔隙特征间的 Spearman 相关系数见 表4。土壤有机碳浓度与平均孔隙形状因子和平均 喉截道面积、大孔隙总数量之间存在极显著负相关关 系;不同当量孔径孔隙数量对有机碳浓度影响表现不 同,有机碳浓度与100~500 μm孔隙数量呈极显著负 相关关系,与500~1000 μm孔隙数量呈极显著正相 关关系,与>1000 μm孔隙数量无显著相关关系;平 均配位数与有机碳浓度无显著相关关系。耕层土壤 100~500 μm孔隙的大孔隙度与土壤容重呈极显著正 相关关系,与土壤总孔隙度呈极显著负相关关系。

3 讨论

3.1 秸秆还田方式对耕层土壤孔隙的影响

本研究结果表明,长期秸秆粉碎还田和焚烧还

农业环境科学学报 第41卷第3期

田条件下,耕层土壤孔隙趋于向更大孔隙发育,其 中100~500 µm 孔隙数量减少明显,这与耿玉辉^[2]、 DEXTER 等^[23]的试验结果一致。两种还田方式均显 著增加了耕层土壤总孔隙度、降低了土壤容重,这与 SASAL 等^[24]、WUEST^[25]、ZHANG 等^[26]的研究结果一 致。因为粉碎的秸秆在腐化和分解过程中,有利于促 进土壤颗粒细化[27],加强土壤微粒团聚作用,增加土 壤大粒径微团聚体数量,进而增加土壤孔隙度及有机 质含量,有机质增加能促进微生物活性,微生物菌丝 能加强土壤矿物颗粒黏结,促进土壤孔隙向更大孔隙 发育[28]。此外,有机质长链分子能够束缚矿物颗粒, 促进土壤团聚体发育^[29]。但是, NEARY 等^[30]的结果 与本试验相反,即秸秆焚烧增加土壤容重。这主要是 因为高温减少土壤胶结物[31],阻碍土壤微粒团聚,同 时秸秆焚烧富集的灰分堵塞部分孔隙降低了土壤孔 隙度,从而导致土壤容重增加;且秸秆燃烧产生挥发 性气体覆盖在土壤颗粒上,增强了土壤疏水性、坡面 径流及土壤侵蚀,破坏土壤结构^[32]。KENNARD等^[33] 发现火烧会引起土壤颗粒物的沉降从而导致土壤容 重增加。田国成¹³⁴的试验则表明秸秆焚烧对土壤容 重无显著影响。试验结果的差异可能是由于不同地 域与环境条件下秸秆焚烧的温度、强度、持续时间和 焚烧范围等差异造成。

张敏等^[35]发现高强度火烧会破坏土壤结构,中低 强度火烧对土壤微团聚体破坏程度较小。部分学者 的研究也显示轻度热作用可改善土壤结构,促进团粒 结构的形成,增加土壤总孔隙度^[36]。秸秆焚烧过程可 能产生少量具有大量有机大分子物质以及发达孔隙

		有机碳浓度 Organic carbon concentration	容重 Bulk density	总孔隙度 Total porosity
大孔隙数量	100~500 μm	-1.000**		
Number of macropores	500~1 000 μm	1.000**		
	>1 000 µm	0.500		
大孔隙度 Macroporosity	100~500 μm		1.000**	-1.000**
	500~1 000 μm		-0.500	0.500
	>1 000 µm		-0.500	0.500
大孔隙总数量Total numb	er of macropores(>100 μ m)	-1.000**		
平均孔隙形状因子 Average pore shape factor		-1.000**		
平均喉道截面形状因子 Mean throat section shape		-0.866		
平均喉截道面积 Average throat cross-sectional area		-1.000**		
平均配位数 Mean	coordination number	-0.500		

表4 土壤有机碳与孔隙特征相关性 Table 4 Correlation between soil organic carbon and pore characteristics

注:**表示指标间极显著相关(P<0.01)。

Note: ** indicates an extremely significant correlation between the indicators (P < 0.01).

结构的黑炭,有助于土壤形成大团聚体,增加土壤孔 隙度及降低容重^[37]。秸秆焚烧过程中,土壤温度短时 上升、水分骤减,易使土壤产生较大的裂隙状孔隙,这 也可能导致土壤孔隙度增加及容重降低^[22]。MATAIX 等^[38]发现火烧历史(距最近一次发生火烧的时间)越 短的土壤疏水性持续时间越长,且疏水性的增加会使 土壤湿润延迟,减缓孔隙中因水分侵入导致的气压积 累及能量释放,进而增加土壤团聚体稳定性^[39-40]。本 试验小区面积和秸秆量有限,单次秸秆焚烧持续时间 较短,火焰温度相对较低,焚烧对土壤结构破坏较小。 本研究条件下,秸秆每年5月和10月还田,但该区域 强降雨集中在6—9月,5月和10月发生强降雨的概 率较小,秸秆焚烧还田处理因疏水性增加而导致的土 壤团聚体稳定性增加可能部分抵消土壤因渗透率降 低引起的土壤侵蚀。

两种秸秆还田方式均能改善耕层土壤孔隙特征。 长期秸秆粉碎还田处理使耕层土壤孔隙特征更有利 于保持水分,但孔隙连通性略差;长期秸秆焚烧还田 处理由于存在较大裂隙,耕层土壤孔隙连通性较好, 有利于气体扩散及孔隙间物质交换,但可能不利于养 分固持。

3.2 秸秆粉碎还田和焚烧还田对土壤有机碳的影响

本研究表明,秸秆还田方式能显著影响耕层土壤 有机碳变化,秸秆粉碎还田显著提升了耕层土壤有机 碳浓度及储量,这与前人研究结果一致[41-42]。秸秆焚 烧还田耕层土壤有机碳储量降低,有机碳的浓度略有 增长,但增幅不显著,与前人结果略有不同[37,43]。秸 秆施入土壤后部分秸秆碳以微生物残体或代谢物形 式进入土壤各有机碳库[44-45],同时可为微生物活动提 供充足物质基础,促进土壤微生物对土壤原有机质的 分解[46-47],因此秸秆粉碎还田有利于增加耕层土壤有 机碳含量。秸秆焚烧产生的热辐射使秸秆中大部分 含碳物质在进入土壤前就被分解损失[48],同时造成真 菌、细菌、放线菌等土壤微生物死亡[49],显著降低土壤 微生物数量[50]并造成土壤酶失活[51],进而影响土壤有 机碳分解与循环,因此多数研究表明秸秆焚烧还田显 著降低耕层土壤有机碳含量。本研究中秸秆焚烧导 致耕层土壤有机碳储量下降和有机碳浓度升高。这 可能是因为耕层土壤有机碳浓度增量较小,而土壤容 重降低幅度较大,最终导致耕层土壤有机碳储量下 降。耕层土壤有机碳浓度上升则与还田年限、焚烧火 焰强度和温度、微生物恢复状况等因素有关。

研究表明,短期火烧后土壤有机碳浓度会减小,

长期火烧由于灰渣与土壤混合、木炭形成及生物矿化 速率降低,而使土壤有机质浓度有所增加^[52-53],轻度 燃烧有利于增加土壤有机质浓度,中高强度的燃烧则 会显著降低土壤有机质浓度^[54]。秸秆焚烧在杀死土 壤微生物的同时也创造了新的利于微生物繁殖的条 件,促进了残留微生物的繁殖及新微生物的发育,一 定程度上可以弥补因高温导致的微生物数量减少,具 体恢复情况则因焚烧强度、地表植被情况、气候等不 同而有差异,慢的可以长达数十年^[55],快的几个月便 能恢复到与焚烧前相当的水平^[50]。

长期秸秆粉碎还田有利于耕层土壤有机碳固存, 而长期秸秆焚烧还田不利于耕层土壤有机碳有效库 容增加,且焚烧方式、焚烧损失、火焰强度及燃烧持续 时间等因素对秸秆焚烧还田结果影响较大,实际还田 效果可能与试验结果相差较大。

3.3 土壤孔隙结构与有机碳的关系

本研究结果表明,有机碳浓度与大孔隙总数量呈 极显著负相关,与LIANG等^[56]、TOOSI等^[57]、张维俊 等^[12]的研究结果一致,与100~500 μm孔隙数量呈极 显著负相关关系,与500~1000 µm 孔隙数量呈极显 著正相关关系,与>1000μm孔隙数量无显著相关关 系,这可能与不同当量孔径孔隙中有机碳保护机制不 同有关。KNICKE 等^[58]发现活性有机碳被包裹在难降 解的多聚体和腐殖质大分子的网络结构中,而大多数 易分解有机物分布在大孔隙中[59],因此大分子包被作 用可能是大孔隙中土壤有机碳保护的机制之一。微 团聚体(<250 µm)中的孔隙较大团聚体(>250 µm)中 孔隙小,会限制微生物的通过,阻碍有机物与微生物 接触^[60],团聚体的分室作用可能是小孔隙中土壤有 机碳的保护机制。相同的保护机制在不同当量孔径 孔隙中表现也会不同, JASTROW 等阿发现大团聚体 能够固定更多的有机碳,小团聚体中有机碳少但更 长久稳定。

本研究结果显示,土壤有机碳浓度与平均孔隙形 状因子和平均喉截道面积呈极显著负相关,说明当大 孔隙特征有利于水分下渗及溶质运移时不利于有机 碳积累。但平均配位数与有机碳浓度无显著相关关 系,说明孔隙间的连通通道数量对有机碳浓度没有显 著影响。KRAVCHENKO等^[62]则发现与大气相连的 孔隙百分比与有机碳分解成正相关关系,即孔隙通气 性越好越有利于有机碳分解。这与本研究结果有一 定差异,可能是因为孔隙连通性除了受平均配位数直 接影响外还受土壤孔隙形态、大小的间接影响,三者

1<u>G</u> 534

农业环境科学学报 第41卷第3期

相互影响从而导致上述结果差异。

土壤中不同孔径的孔隙数量、孔隙形态以及孔隙 连通性等均会一定程度影响土壤中液体、气体及微生 物的运移和生境,对土壤中微生物种类、活性及功能 产生间接影响,同时影响微生物主导的有机碳分解与 固定过程^[63-66]。土壤有机碳分解与固定过程也会反 作用于土壤孔隙,调节土壤孔隙的数量、形态^[12]等。 本研究结果表明,土壤大孔隙数量越多、孔隙越大、通 气性越好,在一定程度上反而不利于土壤有机碳的积 累,而形状不规则的孔隙对液体流通阻碍较大,有利 于增加溶液在土壤中的停留时间,在一定程度上可能 更有利于土壤有机碳固持。

4 结论

(1)秸秆粉碎和焚烧还田均有利于增加耕层土壤 总孔隙度,同时一定程度上使耕层土壤孔隙形态不利 于溶液迁移,从而有利于提高土壤保水保肥能力。

(2)秸秆焚烧还田处理使耕层土壤大孔隙度和 水分运移通道增加,有利于水分下渗形成壤中流,但 耕层土壤连通性增强不利于有机碳积累,同时有机质 分解产生的CO₂等气体更易扩散到大气中造成负面 影响。

(3)秸秆粉碎还田使耕层土壤大孔隙度降低,阻 碍土壤优先流形成,使土壤水肥保蓄能力较焚烧处理 增强。同时粉碎还田使土壤大小孔隙配比合理且孔 隙间物质交换及气体扩散适度,有利于增加耕层土壤 有机碳积累。

(4)综合比较两种还田方式在保水保肥、抗蚀抗 旱及有机碳固存等方面的差异发现,秸秆粉碎还田更 有利于改善石灰性紫色土耕层土壤的孔隙特征,更适 合川中丘陵区农业资源循环利用和农业绿色发展。

致谢:感谢中国科学院盐亭紫色土农业生态试验站为本试验 提供试验场地及设备,感谢姚致远博士对数据分析给予的建 议,感谢张蓉在样品分析中提供的指导与帮助。

参考文献:

- 中国科学院成都分院土壤研究室.中国紫色土[M].北京:科学出版 社, 1991. Soil Research Office of Chengdu Branch, Chinese Academy of Sciences. Purple soils in China[M]. Beijing: Science Press, 1991.
- [2] 徐燕, 霍仕平, 邱诗春, 等. 玉米秸秆还田对土壤理化特性影响的研 究[J]. 中国农学通报, 2016, 32(23):87-92. XU Y, HUO S P, QIU S C, et al. Effects of maize straw turnover on soil physicochemical property[J]. *Chinese Agricultural Science Bulletin*, 2016, 32(23):87-92.
- [3] 虞轶俊, 马军伟, 陆若辉, 等. 有机肥对土壤特性及农产品产量和品

质影响研究进展[J]. 中国农学通报, 2020, 36(35):64-71. YUYJ, MAJW, LURH, et al. Effect of organic fertilizer on soil characteristics, yield and quality of agricultural products: Research progress[J]. *Chinese Agricultural Science Bulletin*, 2020, 36(35):64-71.

- [4] 董祥洲, 陈亚奎, 任立伟, 等. 微生物转化在秸秆还田中的应用进展
 [J]. 生物加工过程, 2020, 18(5):604-611. DONG X Z, CHEN Y K, REN L W, et al. Advances in the application of biotransformation in straw returning to field[J]. *Chinese Journal of Bioprocess Engineering*, 2020, 18(5):604-611.
- [5] 曹国良,张小曳,郑方成,等.中国大陆秸秆露天焚烧的量的估算 [J].资源科学,2006,28(1):9-13. CAOGL,ZHANGXY,ZHENG F C, et al. Estimating the quantity of crop residues burnt in open field in China[J]. *Resources Science*, 2006, 28(1):9-13.
- [6] 孙燕, 张备, 严文莲, 等. 南京及周边地区一次严重烟霾天气的分析 [J]. 高原气象, 2010, 29(3):794-800. SUN Y, ZHANG B, YAN W L, et al. Analysis of a heavy haze event in Nanjing and its surrounding areas[J]. *Plateau Meteorology*, 2010, 29(3):794-800.
- [7] 朱佳雷, 王体健, 邢莉, 等. 江苏省一次重霾污染天气的特征和机理 分析[J]. 中国环境科学, 2011, 31(12):1943-1950. ZHU J L, WANG T J, XING L, et al. Analysis on the characteristics and mechanism of a heary haze episode in Jiangsu Province[J]. *China Environmental Science*, 2011, 31(12):1943-1950.
- [8] 徐奔奔, 范萌, 陈良富, 等. 2013年—2017年主要农业区秸秆焚烧时空特征及影响因素分析[J]. 遥感学报, 2020, 24(10):1221-1232. XU B B, FAN M, CHEN L F, et al. Analysis of temporal and spatial characteristics and influencing factors of crop residue burning in major agricultural areas from 2013 to 2017[J]. National Remote Sensing Bulletin, 2020, 24(10):1221-1232.
- [9] 杨艳华, 苏瑶, 何振超, 等. 还田秸秆碳在土壤中的转化分配及对土 壤有机碳库影响的研究进展[J]. 应用生态学报, 2019, 30(2):668-676. YANG Y H, SU Y, HE Z C, et al. Transformation and distribution of straw-derived carbon in soil and the effects on soil organic carbon pool: A review[J]. Chinese Journal of Applied Ecology, 2019, 30 (2):668-676.
- [10] 程亚南, 刘建立, 张佳宝. 土壤孔隙结构定量化研究进展[J]. 土壤 通报, 2012, 43(4):988-994. CHENG Y N, LIU J L, ZHANG J B. Advance in the study on quantification of soil pore structure[J]. *Chinese Journal of Soil Science*, 2012, 43(4):988-994.
- [11] 陆斌, 张胜利, 李侃, 等. 秦岭火地塘林区土壤大孔隙分布特征及 对导水性能的影响[J]. 生态学报, 2014, 34(6):1512-1519. LU B, ZHANG S L, LI K, et al. Distribution of soil macropores and their influence on saturated hydraulic conductivity in the Huoditang forest region of the Qinling Mountains[J]. Acta Ecologica Sinica, 2014, 34(6): 1512-1519.
- [12] 张维俊, 李双异, 徐英德, 等. 土壤孔隙结构与土壤微环境和有机 碳周转关系的研究进展[J]. 水土保持学报, 2019, 33(4):1-9. ZHANG W J, LI S Y, XU Y D, et al. Advances in research on relationships between soil pore structure and soil miocroenvironment and organic carbon turnover[J]. *Journal of Soil and Water Conservation*, 2019, 33(4):1-9.
- [13] SKOPP J. Comment on "Micro, meso, and macroporosity of soil"[J]. Soil Science Society of America Journal, 1981, 45(6):1246.
- [14] RADULOVICH R, SOLORZANO E, SOLLINS P. Soil macropore size

distribution from water breakthrough curves[J]. Soil Science Society of America Journal, 1989, 53(2):556-559.

- [15] LUXMOORE R J. Micro-, meso-, and macroporosity of soil[J]. Soil Science Society of America Journal, 1981, 45(3):671-672.
- [16] WARMER G S, NIEBER J L, MOORE I D, et al. Characterizing macropores in soil by computed tomography[J]. Soil Science Society of America Journal, 1989, 53(3):653–660.
- [17] 冯杰, 郝振纯. CT 扫描确定土壤大孔隙分布[J]. 水科学进展, 2002, 13(5):611-617. FENG J, HAO Z C. Distribution of soil macropores characterized by CT[J]. Advances in Water Science, 2002, 13 (5):611-617.
- [18] 蔡太义,张佳宝,张丛志,等.基于显微CT研究施肥方式对砂姜黑 土大孔隙结构的影响[J].干旱区资源与环境,2017,31(12):143-149. CAITY, ZHANGJB, ZHANGCZ, et al. Effects of fertilization mode on macropore characteristics of the Shajiang black soil (vertisol) based on computed tomography(CT) images[J]. Journal of Arid Land Resources and Environment, 2017, 31(12):143-149.
- [19] 王巧环, 任玉芬, 孟龄, 等. 元素分析仪同时测定土壤中全氮和有 机碳[J]. 分析试验室, 2013, 32(10):41-45. WANG Q H, REN Y F, MENG L, et al. Simultaneous determination of total nitrogen and organic carbon in soil with an elemental analyzer[J]. Chinese Journal of Analysis Laboratory, 2013, 32(10):41-45.
- [20] 崔翔, 胡明鉴, 朱长歧, 等. 珊瑚砂三维孔隙微观特性研究[J]. 岩土 力学, 2020, 41(11):3632-3640, 3686. CUI X, HU M J, ZHU C Q, et al. Study on the microscopic characteristics of three-dimensional pores in coral sand[J]. *Rock and Soil Mechanics*, 2020, 41(11):3632-3640, 3686.
- [21] 杨永辉, 武继承, 毛永萍, 等. 利用计算机断层扫描技术研究土壤 改良措施下土壤孔隙[J]. 农业工程学报, 2013, 29(23):99-108. YANG Y H, WU J C, MAO Y P, et al. Using computed tomography scanning to study soil pores under different soil structure improvement measures[J]. *Transactions of the Chinese Society of Agricultural Engineering*, 2013, 29(23):99-108.
- [22] 耿玉辉. 秸秆培肥土壤对大孔隙流中养分淋失的影响[D]. 长春: 吉林大学, 2008:41-52. GENG Y H. Effect of soil cornstalk fertilization on nutrient leaching in soil macrospore flow[D]. Changchun: Jilin University, 2008:41-52.
- [23] DEXTER A R, CZVŻ E A, RICHARD G, et al. A user-friendly water retention function that takes account of the textural and structural pore spaces in soil[J]. *Geoderma*, 2008, 143(3/4):243-253.
- [24] SASAL M C, ANDRIULO A E, TABOADA M A. Soil porosity characteristics and water movement under zero tillage in silty soils in Argentinian Pampas[J]. Soil & Tillage Research, 2006, 87(1):9–18.
- [25] WUEST S B. Cultivated versus incorporated residue effects on waterstable aggregates[J]. Soil & Tillage Research, 2007, 96(1/2): 124– 130.
- [26] ZHANG G S, CHAN K Y, LI G D, et al. Effect of straw and plastic film management under contrasting tillage practices on the physical properties of an erodible loess soil[J]. *Soil & Tillage Research*, 2008, 98(2):113-119.
- [27] 邱立春, 孙跃龙, 王瑞丽, 等. 秸秆深还对土壤水分转移及产量的 影响[J]. 玉米科学, 2015, 23(6): 84-91. QIU L C, SUN Y L, WANG R L, et al. Influence of deep-buried maize stalks on soil mois-

ture transfer and maize yield[J]. Journal of Maize Sciences, 2015, 23 (6):84-91.

- [28] 余坤, 冯浩, 王增丽, 等. 氨化秸秆还田改善土壤结构增加冬小麦产量[J]. 农业工程学报, 2014, 30(15):165-173. YU K, FENG H, WANG Z L, et al. Ammoniated straw improving soil structure and winter wheat yield[J]. *Transactions of the Chinese Society of Agricultural Engineering*, 2014, 30(15):165-173.
- [29] SOANE B D. The role of organic matter in soil compactibility: A review of some practical aspects[J]. Soil & Tillage Research, 1990, 16 (1):179-201.
- [30] NEARY D G, KLOPATEK C C, DEBANO L F, et al. Fire effects on belowground sustainability: A review and synthesis[J]. Forest Ecology and Management, 1999, 122(1/2):51-71.
- [31] FEMÁNDEZ I, CABANEIRO A, CARBALLAS T. Organic matter changes immediately after a wildfire in an atlantic forest soil and comparison with laboratory soil heating[J]. Soil Biology & Biochemistry, 1997, 29(1):1-11.
- [32] DEBANO L F, LETEY J. Water-repellent soils[R]//University of California: Proceedings of the symposium on water-repellent soils held at the University of California, 1968.
- [33] KENNARD D K, GHOLZ H L. Effects of high and low-intensity fires on soil properties and plant growth in a Bolivian dry forest[J]. *Plant and Soil*, 2001, 234(1):119–129.
- [34] 田国成.小麦秸秆焚烧对土壤环境的影响[D]. 杨凌:西北农林科 技大学, 2015:13-15. TIAN G C. Effect of wheat straw burning on soil environment[D]. Yangling: Northwest A&F University, 2015:13-15.
- [35] 张敏, 胡海清, 马鸿伟. 林火对土壤结构的影响[J]. 自然灾害学报, 2002, 11(2):138-143. ZHANG M, HU H Q, MA H W. Effect of forest fire on soil structure[J]. *Journal of Natural Disasters*, 2002, 11 (2):138-143.
- [36] 项凤武.大兴安岭北部林火对森林土壤的性质及林木更新的影响 [J]. 吉林林学院学报, 1990, 6(1):1-20. XIANG F W. The influence on forest soil's nature and tree's recentation for forest fire in the Big Xingan Maient[J]. Journal of Jilin Forestry University, 1990, 6 (1):1-20.
- [37] 李明.不同秸秆焚烧量对土壤环境及下茬作物产量的影响研究 [D]. 杨凌:西北农林科技大学, 2013:3-13. LI M. Effects of different amount of crops straw burning on soil environment and grain yield [D]. Yangling:Northwest A&F University, 2013:3-13.
- [38] MATAIX S J, DOERR S H. Hydrophobicity and aggregate stability in calcareous topsoils from fire-affected pine forests in southeastern Spain[J]. Geoderma, 2004, 118(1):77-88.
- [39] CHENU C, BISSONNAIS Y L, ARROUAYS D. Organic matter influence on clay wettability and soil aggregate stability[J]. Soil Science Society of America Journal, 2000, 64(4):1479.
- [40] PICCOLO A, MBAGWU J S C. Role of hydrophobic components of soil organic matter in soil aggregate stability[J]. Soil Science Society of America Journal, 1999, 63(6):1801–1810.
- [41] 王学霞, 张磊, 梁丽娜, 等. 秸秆还田对麦玉系统土壤有机碳稳定性的影响[J]. 农业环境科学学报, 2020, 39(8):1774-1782.
 WANG X X, ZHANG L, LIANG L N, et al. Effects of straw returning on the stability of soil organic carbon in wheat-maize rotation systems

1GS 536

[J]. Journal of Agro-Environment Science, 2020, 39(8):1774-1782.

- [42] 赵惠丽,董金琎,师江澜,等. 秸秆还田模式对小麦-玉米轮作体系 土壤有机碳固存的影响[J]. 土壤, 2021, 58(1):213-224. ZHAO H L, DONG J J, SHI J L, et al. Effect of straw returning mode on soil organic carbon sequestration[J]. Acta Pedologica Sinica, 2021, 58(1): 213-224.
- [43] 黄兆琴. 秸秆燃烧对土壤有机质组成的影响[D]. 南京:南京农业 大学, 2009:36-39. HUANG Z Q. Changes of components of soil organic matter after straw burning[D]. Nanjing: Nanjing Agricultural University, 2009:36-39.
- [44] AN T T, SCHAEFFER S M, JIE Z, et al. Dynamics and distribution of ¹³C-labeled straw carbon by microorganisms as affected by soil fertility levels in the black soil region of northeast China[J]. *Biology and Fertility of Soils*, 2015, 51(5):605-613.
- [45] POLL C, MARHAN S, INGWERSEN J, et al. Dynamics of litter carbon turnover and microbial abundance in a rye detritusphere[J]. Soil Biology & Biochemistry, 2008, 40(6):1306-1321.
- [46] 王志明,朱培立,黄东迈,等. 秸秆碳的田间原位分解和微生物量 碳的周转特征[J]. 土壤学报, 2003, 40(3):446-453. WANG Z M, ZHU P L, HUANG D M, et al. Straw carbon decomposition *in situ* in field and charac- teristics of soil biomass carbon turnover[J]. Acta Pedologica Sinica, 2003, 40(3):446-453.
- [47] 尹云锋, 蔡祖聪. 利用 δ¹³C 方法研究添加玉米秸秆下红壤总有机 碳和重组有机碳的分解速率[J]. 土壤学报, 2007, 44(6):1022-1027. YIN Y F, CAI Z C. Decomposition rates of organic carbon in whole soil and heavy fraction of red soil incorporated with maize stalks using carbon-13 natural abundance[J]. Acta Pedologica Sinica, 2007, 44(6):1022-1027.
- [48] 隋雨含,赵兰坡,赵兴敏.玉米秸秆焚烧对土壤理化性质和腐殖质 组成的影响[J].水土保持学报,2015,29(4):316-320,326. SUI Y H, ZHAO L P, ZHAO X M. Effect of cron straw burning on soil physicochemical property and composition of humus[J]. Journal of Soil and Water Conservation, 2015, 29(4):316-320, 326.
- [49] 田国成, 孙路, 施明新, 等. 小麦秸秆焚烧对土壤有机质积累和微 生物活性的影响[J]. 植物营养与肥料学报, 2015, 21(4):1081-1087. TIAN G C, SUN L, SHI M X, et al. Effect of wheat straw burning on soil organic matter accumulation and microbial activity[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(4):1081-1087.
- [50] 田国成, 王钰, 孙路, 等. 秸秆焚烧对土壤有机质和氮磷钾含量的 影响[J]. 生态学报, 2016, 36(2):387-393. TIAN G C, WANG Y, SUN L, et al. Effects of wheat straw burning on content of soil organic matter, nitrogen, phosphorus, and potassium[J]. Acta Ecologica Sinica, 2016, 36(2):387-393.
- [51] 陈亮, 赵兰坡, 赵兴敏. 秸秆焚烧对不同耕层土壤酶活性、微生物 数量以及土壤理化性状的影响[J]. 水土保持学报, 2012, 26(4): 118-122. CHEN L, ZHAO L P, ZHAO X M. Effect of straw burning on soil enzyme activity, soil microbial quantity and physical and chemical properties of soil in different plough layer[J]. Journal of Soil and Water Conservation, 2012, 26(4):118-122.

- [52] CERTINI G. Effects of fire on properties of forest soils: A review[J]. Oecologia, 2005, 143(1):1-10.
- [53] NEFF J C, HARDEN J W, GLEIXNER G. Fire effects on soil organic matter content, composition, and nutrients in boreal interior Alaska[J]. *Canadian Journal of Forest Research*, 2005, 35(9):2178-2187.
- [54] 耿玉清,周荣伍,李涛,等.北京西山地区林火对土壤性质的影响
 [J].中国水土保持科学,2007,5(5):66-70. GENG Y Q, ZHOU R
 W, LI T, et al. Influences of forest fire on soil properties in Xishan area of Beijing[J]. Science of Soil and Water Conservation, 2007, 5(5): 66-70.
- [55] FRITZE H, TAINA P, JANNA P. Recovery of soil microbial biomass and activity from prescribed burning[J]. Canadian Journal of Forest Research, 1993, 23(7):1286.
- [56] LIANG A, ZHANG Y, ZHANG X, et al. Investigations of relationships among aggregate pore structure, microbial biomass, and soil organic carbon in a Mollisol using combined non-destructive measurements and phospholipid fatty acid analysis[J]. Soil and Tillage Research, 2019, 185:94-101.
- [57] TOOSI E R, KRAVCHENKO A N, GUBER A K, et al. Pore characteristics regulate priming and fate of carbon from plant residue[J]. Soil Biology & Biochemistry, 2017, 113:219–230.
- [58] KNICKER H. Stabilization of N-compounds in soil and organic-matter-rich sediments: What is the difference?[J]. Cheminform, 2005, 92 (26):167-195.
- [59] BAILEY V L, SMITH A P, TFAILY M, et al. Differences in soluble organic carbon chemistry in pore waters sampled from different pore size domains[J]. Soil Biology & Biochemistry, 2017, 107:133–143.
- [60] 刘中良, 宇万太. 土壤团聚体中有机碳研究进展[J]. 中国生态农业 学报, 2011, 19(2): 447-455. LIU Z L, YU W T. Review of researches on soil aggregate and soil organic carbon[J]. *Chinese Journal* of Eco-Agriculture, 2011, 19(2): 447-455.
- [61] JASTROW J D. Soil aggregate formation and the accrual of particulate and mineral-associated organic matter[J]. Soil Biology & Biochemistry, 1996, 28(4/5):665-676.
- [62] KRAVCHENKO A N, NEGASSA W C, GUBER A K, et al. Protection of soil carbon within macro-aggregates depends on intra-aggregate pore characteristics[J]. Scientific Reports, 2015, 5:16261.
- [63] STRONG D T, WEVER H D, MERCKX R, et al. Spatial location of carbon decomposition in the soil pore system[J]. European Journal of Soil Science, 2010, 55(4):739–750.
- [64] DUNGAIT J, HOPKINS D W, GREGORY A S, et al. Soil organic matter turnover is governed by accessibility not recalcitrance[J]. *Global Change Biology*, 2012, 18(6):1781-1796.
- [65] KRAVCHENKO A N, GUBER A K. Soil pores and their contributions to soil carbon processes[J]. *Geoderma*, 2016, 287(1):31–39.
- [66] OR D, SMETS B F, WRAITH J M, et al. Physical constraints affecting bacterial habitats and activity in unsaturated porous media: A review [J]. Advances in Water Resources, 2007, 30(6/7):1505–1527.