

请通过网上投稿系统投稿 网址:http://www.aes.org.cn

磁性HAP/Fe₃0₄材料去除水土环境中Cd的效果研究

尹文华, 刘迎春, 王杰, 王圣森, 王小治, 尹微琴

引用本文:

尹文华, 刘迎春, 王杰, 王圣森, 王小治, 尹微琴. 磁性HAP/Fe₃O₄材料去除水土环境中Cd的效果研究[J]. 农业环境科学学报, 2022, 41(7): 1537–1543.

在线阅读 View online: https://doi.org/10.11654/jaes.2021-1371

您可能感兴趣的其他文章

Articles you may be interested in

铁碳复合材料活化过氧化氢吸附-氧化萘的机理

董欣竹, 钱林波, 龙颖, 魏子斐, 张文影, 梁聪, 陈梦舫 农业环境科学学报. 2022, 41(6): 1348-1356 https://doi.org/10.11654/jaes.2022-0253

纳米Fe₃O₄/生物炭活化过硫酸盐降解盐酸四环素

刘翠英,郑今今,宋丽莹,曾涛,樊建凌 农业环境科学学报. 2022, 41(5): 1058-018-1 https://doi.org/10.11654/jaes.2021-1086

高铁酸钾/高锰酸钾改性生物炭对Cd²⁺的吸附研究

蒋子旸,徐敏,伍钧 农业环境科学学报.2021,40(4):876-883 https://doi.org/10.11654/jaes.2020-1123

 $1-\text{site}/2-pK_a$ 表面络合模型预测土壤中Cd²⁺的吸附及生物有效性

郁何敏, 李焱, 石振清, 王玉军 农业环境科学学报. 2022, 41(6): 1211-1220 https://doi.org/10.11654/jaes.2022-0290

Mn-Co-Ce/γ-Al₂O₃臭氧催化氧化奶牛养殖废水及其机理

陈舒棋, 宋卫锋, 丘通强, 黄恒新, 杨佐毅, 仇一帆, 白晓燕 农业环境科学学报. 2022, 41(4): 868-877 https://doi.org/10.11654/jaes.2021-1159

关注微信公众号,获得更多资讯信息

农业环境科学学报 Journal of Agro-Environment Science

磁性HAP/Fe₃O₄材料去除水土环境中Cd的效果研究

尹文华, 刘迎春, 王杰, 王圣森, 王小治, 尹微琴*

(扬州大学环境科学与工程学院, 江苏 扬州 225127)

摘 要:为探究磁性羟基磷灰石/四氧化三铁(HAP/Fe₃O₄)纳米材料对水土环境中Cd的去除效果,以米糠为原料,采用水热法制备 纳米材料,通过水中吸附实验和土壤培养实验对Cd去除效果进行研究。结果表明:pH为8时,HAP/Fe₃O₄对Cd的吸附更符合伪二阶 动力学模型,吸附过程以化学吸附为主。溶液为酸性时,HAP/Fe₃O₄对Cd²⁺的吸附机制可能为表面吸附和生成沉淀,溶液为中碱性 时,对Cd²⁺的去除以表面吸附以及离子交换为主。此外,HAP/Fe₃O₄在5次循环后吸附能力仍保持在较高水平,说明其作为吸附剂具 有较高的可重复利用性。在土壤实验中,土壤pH随培养时间的延长和HAP/Fe₃O₄投加量的增加,总体呈上升趋势。与对照组相比, HAP/Fe₃O₄添加量为0.5%的处理显著降低了土壤CaCl₂提取态Cd含量,降幅为62%;浸出实验证明HAP/Fe₃O₄增强了土壤中重金属 的滞留能力。HAP/Fe₃O₄纳米材料作为一种原料价格低廉且环境友好的吸附剂在处理水污染和修复土壤方面应用前景广阔。 关键词:米糠;羟基磷灰石(HAP);Fe₃O₄;Cd;纳米材料

中图分类号:TQ424;X505 文献标志码:A 文章编号:1672-2043(2022)07-1537-07 doi:10.11654/jaes.2021-1371

Effects of removing cadmium from soil and water using magnetic hydroxyapatite/triiron tetroxide material

YIN Wenhua, LIU Yingchun, WANG Jie, WANG Shengsen, WANG Xiaozhi, YIN Weiqin*

(College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China)

Abstract: This study investigated the effect of removing cadmium from soil and solution environments using magnetic hydroxyapatite/ triiron tetroxide (HAP/Fe₃O₄) nanomaterials. Rice bran was used to prepare nanomaterials using the hydrothermal method, and the cadmium removal capacity was studied through water adsorption and soil culture experiments. The results showed that the adsorption data were more consistent with the pseudo-second-order kinetic model when the pH was 8 and the adsorption process was dominated by chemisorption. The adsorption mechanisms could be surface adsorption and precipitation formation when the solution was acidic, whereas when the solution was neutral and alkaline, the removal of Cd^{2+} was mainly due to surface adsorption and ion exchange. Furthermore, the adsorption capacity of HAP/Fe₃O₄ remained relatively high after five cycles, which implied that it possessed high reusability as an adsorbent. In the soil experiment, the pH of the soil increased with the extension of incubation time and increase in material dosage. Compared with the control group, the treatment supplemented with 0.5% HAP/Fe₃O₄ significantly reduced the content of extracted Cd in the soil by 62%. Leaching experiments showed that HAP/Fe₃O₄ enhanced the retention capacity of heavy metals in soil. As low-cost raw materials and environmentally friendly adsorbents, HAP/Fe₃O₄ nanomaterials have broad application prospects in water pollution treatment and soil remediation.

Keywords: rice bran; hydroxyapatite(HAP); Fe₃O₄; cadmium; nano-material

收稿日期:2021-11-25 录用日期:2022-02-09

*通信作者:尹微琴 E-mail:wgyin@yzu.edu.cn

作者简介:尹文华(1997—),江苏宜兴人,硕士研究生,主要研究方向为农业水土环境。E-mail:843383779@qq.com

基金项目:国家重点研发计划项目(2021YFD1700800);江苏省六大人才高峰创新团队项目(2018-TD-JNHB-012);江苏省333高层次人才培养工 程项目(BRA2020300)

Project supported: The National Key Research and Development Program of China (2021YFD1700800); Six-Talent Peaks Innovative Team Project of Jiangsu Province(2018-TD-JNHB-012); 333 High-level Talents Fostering Project of Jiangsu Province(BRA2020300)

随着社会经济的快速发展,环境中重金属污染日 益严重。镉(Cd)是环境中常见的重金属之一,会通 过食物链对人体造成永久、持续且不可逆转的伤 害^[1-2],因此,开发高效、经济的Cd去除技术势在必行。

吸附法被认为是治理废水重金属污染的首选方法^[3]。在众多吸附剂中,磁性纳米材料结合了磁性材料和纳米材料的优势,为高效去除水中重金属离子提供了新的方向,其中,四氧化三铁(Fe₃O₄)纳米材料具有体积小、稳定性强等特点^[4-5],近年来被广泛研究。李静等^[6]合成的纳米Fe₃O₄负载酸改性椰壳炭,对Cd²⁺的最大吸附量达25.79 mg·g⁻¹,为未改性椰壳炭的2.23倍。另外磁性核的存在可以实现磁性纳米颗粒快速分离回收,展现出良好的重复利用性。

不仅水体重金属污染严重,土壤重金属污染问题 也不容小觑^[7-8]。在众多土壤修复方法中,使用钝化 剂形成高度不溶的重金属化合物的原位修复是一种 常用的方法^[9-12]。研究表明,黏土矿物吸附重金属的 能力很强,羟基磷灰石[HAP,Ca₁₀(PO₄)₆(OH)₂]是自然 界中天然存在的矿物质,具有水溶性低^[13]、稳定性 好^[14]、吸附能力强^[15]等优点,具备较强的吸附和载体 作用,因此更具有合成羟基磷灰石(HAP)类复合材料 的优势。纯HAP高制备成本限制了其大规模应用, 近年来,许多科学家倾向于使用低成本的材料而不是 昂贵的化学试剂制备HAP,如李超群等^[14]用贻贝壳制 备了HAP多孔微球。作为农业大国,我国每年向环 境中排放大量农业废弃物^[16],这不仅造成生物质资源 的严重浪费,而且加剧了环境污染。米糠是稻谷加工 的主要副产物,富含大量植酸^[17],是一种理想的钙源。

目前的报道多将 Fe₃O₄和 HAP 用于单一水体或 土壤污染修复,而对水土环境重金属的治理研究比较 缺乏,因此,本研究以米糠为原料制备 HAP,并掺入 Fe₃O₄作为磁性核,将合成的 HAP/Fe₃O₄材料应用于水 土环境治理。探究该材料对水体中 Cd²⁺的去除机理, 同时分析 HAP/Fe₃O₄对污染土壤中 Cd²⁺的钝化效果和 对 Cd²⁺稳定性的影响。

1 材料与方法

1.1 实验试剂

六水合氯化铁(FeCl₃·6H₂O,99%),七水硫酸亚 铁(FeSO₄·7H₂O,≥99%),氨水(NH₃·H₂O,25%~28%), 盐酸(HCl,37%),尿素(CH₄N₂O,99%),无水氯化钙 (CaCl₂,96%),氢氧化钠(NaOH,96%),四水硝酸镉 [Cd(NO₃)₂·4H₂O,99%],硝酸钠(NaNO₃,≥99%),乙醇

农业环境科学学报 第41卷第7期

(CH₃CH₂OH,99.7%)均为分析纯化学试剂,购自国药 控股有限公司。米糠购自扬州农贸市场。

1.2 材料制备

1.2.1 Fe₃O₄的制备

将2.70gFeCl₃•6H₂O和1.39gFeSO₄•7H₂O按Fe³⁺ 和Fe²⁺摩尔比为2:1溶于100mL去离子水中,快速加入 20mL浓氨水,升温至60℃超声30min,用磁铁收集 悬液中黑色颗粒,转入高压反应釜中于150℃反应4 h^[18],反应产物用去离子水和无水乙醇洗涤3次,60℃ 真空干燥12h后研磨,得到黑色Fe₃O₄纳米颗粒备用。 1.2.2 HAP的制备

在 250 mL 烧杯中称取 10 g 脱脂米糠和 80 g 0.1 mol·L⁻¹盐酸溶液,同时加入 0.5 g 尿素以防止蛋白质等物质浸出,超声 8 min,抽滤,对滤渣二次提取,合并两次提取的滤液,加入 1 g活性炭脱色 15 min,得到纯净植酸溶液^[19]。随后按 Ca和 P 原子比为 1.67 加入适量 CaCl₂,用 1 mol·L⁻¹ NaOH 调节 pH 为 10,静置 1 h,去除上清液,转移至 100 mL 反应釜,升温至 190 ℃反应 10 h^[20],自然冷却至室温,收集沉淀用无水乙醇洗涤 3 次,真空干燥,研磨,得到 HAP 粉末备用。

1.2.3 HAP/Fe₃O₄的制备

HAP/Fe₃O₄与 HAP 的制备方法类似。在加入 CaCl₂的同时加入 7.10 g Fe₃O₄,用 1 mol·L⁻¹ NaOH 调 节 pH 为 10,氮气氛围下搅拌 30 min,生成沉淀后静 置,反应釜 190 ℃反应 10 h,收集反应后的沉淀,无水 乙醇洗涤干燥,得到 HAP/Fe₃O₄。

1.3 表征方法

用多晶X射线衍射仪(D8-ADVANCE)分析材料 反应前后的结构变化;扫描电子显微镜(S-4800II,日本)观察材料的表面形貌;采用美国 Micromeritics ASAP 2460进行 Brunauer-Emmett-Teller测试,测定 材料氮气吸附-脱附等温线和比表面积;HAP/Fe₃O₄吸 附 Cd²⁺后滤液中 Cd²⁺浓度用电感耦合等离子体质谱 仪(ICP-MS)测定。

1.4 材料对溶液Cd的吸附

本研究进行了吸附动力学实验以及 pH影响实验。所有吸附实验均在室温 25 ℃下进行,材料投加量为1g·L⁻¹。吸附动力学反应时间为10、15、30、60、120、180、240、360 min,溶液 pH为8。为探究 pH对吸附量的影响,用1 mol·L⁻¹ HCl和1 mol·L⁻¹ NaOH将污染液 pH分别调至3、4、5、6、7、8。为探究吸附剂的可重复利用性,将反应后的吸附剂从溶液中分离,浸泡在0.75 mol·L⁻¹的 HNO₃溶液中,振荡 12 h,吸附剂真

空干燥后用于下一个循环吸附实验。

1.5 材料对土壤Cd的钝化固定

实验所用土壤取自江苏省扬州大学农学院稻麦 轮作试验田,质地为砂壤,pH为7.51。将Cd污染液 与土壤充分混合,老化60d后,得到pH为8.1、Cd全 量为4.12 mg·kg⁻¹的污染土。按照HAP/Fe₃O₄与污染 土的质量比为0.3%、0.5%、1.0%的比例添加材料,另 设不添加HAP/Fe₃O₄的对照,混合均匀后,土壤湿润 至最大持水量的70%,每个处理3个平行,室温培养 3、7、12、20、30、42d后自然风干,进行后续实验。

CaCl₂浸提法测定土壤可提取态 Cd含量^[21]。用 BCR连续提取法^[22]测定污染土中各形态 Cd的含量。 土壤浸出实验包括 pH为6.0的标准实验、pH为4.0的 短期酸雨实验和 pH为2.8的长期酸雨实验,该评估方 法是由日本地质环境保护中心(GEPC)提出的,已在 日本广泛使用^[23]。标准实验按1g土壤与10 mL去离 子水的比例混合,用0.1 mol·L⁻¹ H₂SO₄调节 pH为6.0, 160 r·min⁻¹振荡6 h;短期酸雨暴露实验将 pH 调节至 4.0,长期酸雨暴露实验将 pH 调节至2.8。

2 结果与讨论

2.1 材料表征结果与分析

材料的XRD表征结果如图1a。HAP/Fe₃O₄的衍

射峰与HAP(JCPDS 19-0432)和Fe₃O₄(PDF 22004)的 标准特征峰吻合,衍射角为27.21°、32.45°、40.22°分 别对应HAP的(002)、(112)、(310)晶面,衍射角为 54.12°、59.73°对应Fe₃O₄的(422)、(551)晶面,没有其 他杂峰出现,衍射峰窄而尖。图1b是氮气吸附-脱附 曲线,3个材料均属于Ⅲ型等温线,具有H3型迟滞回 线,证明材料中存在微孔和中孔,HAP和HAP/Fe₃O₄ 的BET比表面积分别为43.41 m²·g⁻¹和83.28 m²·g⁻¹, 孔体积分别为0.122 cm³·g⁻¹和0.143 cm³·g⁻¹。

扫描电镜(SEM)结构如图2。球状Fe₃O₄颗粒表 面光滑且大小均匀;纯HAP为棒状堆积结构;在 HAP/Fe₃O₄中,球状Fe₃O₄颗粒附着在棒状HAP表面, 粗糙程度增加,比表面积增加,进而提高了吸附能力。 2.2 水体Cd²⁺的吸附实验

2.2.1 吸附动力学实验

通过伪一阶和伪二阶动力学模型探究材料对溶 液中Cd²⁺的去除率,结果如图3所示,相关参数见表1。

HAP和HAP/Fe₃O₄的伪二阶动力学方程 R^2 均高于 伪一阶,说明伪二阶动力学模型能更准确地描述 HAP/ Fe₃O₄对 Cd²⁺的吸附过程,说明 HAP/Fe₃O₄对 Cd²⁺的吸 附以化学吸附为主。HAP/Fe₃O₄对 Cd²⁺吸附的初始速 率(146.96 mg·g⁻¹·min⁻¹)高于 HAP(67.94 mg·g⁻¹· min⁻¹)。反应刚开始时 HAP/Fe₃O₄有较多的活性位点,

图 2 Fe_3O_4 、HAP和HAP/Fe $_3O_4$ 的SEM图(×100 000倍) Figure 2 SEM images of Fe_3O_4 , HAP and HAP/Fe $_3O_4$ (×100 000 times)

www.aer.org.cn

并且初始Cd²⁺浓度较高,大量Cd²⁺吸附在HAP/Fe₃O₄上,随着时间的推移,吸附位点的消耗以及Cd²⁺的减少导致吸附速率逐渐下降。

2.2.2 内部扩散模型

内部扩散模型对吸附过程的分析结果如图4所示,所有拟合直线的截距均不为0,说明HAP/Fe₃O₄对Cd²⁺的吸附过程较为复杂,吸附过程可分为3个步骤: 第一步,层间表面吸附,溶液中Cd²⁺占据HAP/Fe₃O₄表面活性位点;第二步,Cd²⁺分散在吸附剂孔隙中,并伴随着一系列化学反应;第三步,达到吸附平衡。

2.2.3 pH影响实验

酸性条件下 HAP 易溶于水,溶解后的 PO³⁻可与 Cd²⁺结合生成 CdHPO₄、Cd₅(PO₄)₂(OH)₄、Cd₄H(PO₄)₃· 3H₂O 等磷酸镉化合物(图 5a),反应过程如下:

 $Ca_{10}(PO_{4})_{6}(OH)_{2}+H^{+} \rightarrow 10Ca^{2+}+6H_{2}PO_{4}^{-}+2H_{2}O$ $Cd^{2+}+H_{2}PO_{4}^{-}+H_{2}O \rightarrow CdHPO_{4}+H_{2}O+H^{+}$ $5Cd^{2+}+2H_{2}PO_{4}^{-}+4H_{2}O \rightarrow Cd_{5}(PO_{4})_{2}(OH)_{4}+8H^{+}$ $4C^{12+}+2H_{2}PO_{4}^{-}+2H_{2}O \rightarrow Cd_{5}(PO_{4})_{2}(OH)_{4}+8H^{+}$

 $4Cd^{2+}+3H_2PO_4^{-}+3H_2O\rightarrow Cd_4H(PO_4)_3\cdot 3H_2O+5H^+$

在中性和碱性条件下,HAP/Fe₃O₄对Cd²⁺的吸附 主要依赖于与HAP的离子交换,通过扩散过程取代 HAP中的Ca²⁺。

 $Ca_{21}(PO_4)_{14}+xCd^{2+}\rightarrow Ca_{21-x}Cd_x(PO_4)_{14}+xCa^{2+}$

Figure 3 Adsorption kinetic model curves(pH 8.0, 298 K)

图4 HAP/Fe₃O₄对 Cd²⁺的内部扩散模型

图 5 pH对Cd²⁺形态占比及对HAP/Fe₃O₄吸附性能的影响 Figure 5 Effects of pH on the morphology ratio of Cd²⁺ and adsorption capacity of HAP/Fe₃O₄

材料	伪一阶动力学 Pseudo-first-order kinetics			伪二阶动力学 Pseudo-second-order kinetics			h/
Material	$k_1 \times 10^{-3} / \text{min}^{-1}$	$Q_{ m e}/(m mg\cdot g^{-1})$	R^2	$k_2 \times 10^{-3} / (\text{mg} \cdot \text{g}^{-1} \cdot \text{min}^{-1})$	$Q_e/(\mathrm{mg} \cdot \mathrm{g}^{-1})$	R^2	$(mg \cdot g^{-1} \cdot min^{-1})$
HAP	2.31	212.07	0.960 7	1.52	211.41	0.995 2	67.94
HAP/Fe ₃ O ₄	1.20	243.10	0.973 2	2.41	247.78	0.993 2	146.96

表1 吸附动力学参数 Table 1 Adsorption kinetic parameters

注: Q_s 为平衡时材料的吸附量;h为伪一阶反应速率常数;h为伪二阶反应速率常数;h为材料的初始速率; R^2 为相关系数。

Note: Q_e represents the adsorption capacity of the material at equilibrium; k_1 represents pseudo-first-order reaction rate constant; k_2 represents pseudo-second-order reaction rate constant; h represents the initial rate of the material; R^2 represents the correlation coefficient.

随着初始 pH 的增加, HAP/Fe₃O₄对 Cd²⁺的吸附量 也逐渐增加, pH 为 8 时达到 242.24 mg·g⁻¹(图 5b)。在 较低 pH 范围内, 大量 H₃O⁺出现, 排斥力会阻碍 Cd²⁺接 近吸附位点;随 pH 升高, H₃O⁺数量减少, 与 Cd²⁺之间 的竞争作用减弱, 有利于 Cd²⁺吸附。

2.2.4 循环利用实验

连续5次循环利用后,HAP/Fe₃O₄对Cd²⁺的吸附量 仅降低了12.73%,达到210.92 mg·g⁻¹(图6)。吸附量 下降的原因可能是吸附剂上Cd²⁺的不完全解吸导致 吸附位点的损失以及在循环实验过程中吸附剂质量 的损失。通过与其他吸附剂的比较,进一步评价了 HAP/Fe₃O₄对Cd²⁺的去除性能,如表2所示。与大多数 吸附剂相比,HAP/Fe₃O₄有更强的去除水中Cd²⁺的能 力,因此,从环境友好性、可循环性和操作简便等方面 考虑,HAP/Fe₃O₄对去除Cd²⁺有良好的实际应用前景。

2.3 土壤Cd的固定实验

2.3.1 培养时间对土壤pH的影响

从图 7 可知,随着培养时间的延长,各处理的 pH 总体呈上升趋势,对照组 pH 从 8.11 增加到 8.22。LIN 等^[30]的研究表明,在 70% 田间持水量的土壤中铁氧化

材料 Material	рН	吸附量 $Q_e/(mg \cdot g^{-1})$	参考文献 Reference
HA/Fe ₃ O ₄	7.5	50.40	[24]
Nano-hydroxyapatite	6.5	64.10	[25]
$Fe_{3}O_{4}@SiO_{2}NH_{2}PAA$	5.0	100.81	[26]
Fe ₃ O ₄ /SiO ₂ -GO	8.0	128.20	[27]
GO/Fe ₃ O ₄	7.5	234.00	[28]
A-NMP	7.0	236.10	[29]
HAP/Fe ₃ O ₄	8.0	241.68	本研究

物可能发生了铁还原,释放的Fe²⁺水解消耗H⁺,导致 pH增加。HAP/Fe₃O₄的添加提高了土壤pH,一方面, HAP在土壤中释放出PO³⁻,PO³⁻进一步水解转化为 HPO²⁻和H₂PO⁴,释放出大量的OH⁻,另一方面,以米糠 为磷源制备的材料携带大量生物分子,其可能会活化 铁还原菌^[31],因此,随着HAP/Fe₃O₄添加量增加,土壤 pH也增加。

2.3.2 添加量对CaCl2提取态Cd的影响

如图 8 所示,随着 HAP/Fe₃O₄添加量的增加,土壤 中 CaCl₂提取态 Cd 含量逐渐降低。添加量为 0.5% 的 处理 CaCl₂提取态 Cd 含量显著低于对照组,从初始的 2.50 mg·kg⁻¹降低到 0.96 mg·kg⁻¹,降幅达 62%,但进一 步增加添加量后 CaCl₂提取态 Cd 含量未再显著降低。 CaCl₂提取态 Cd 含量的降低可能是因为与 HAP/Fe₃O₄ 丰富的羟基官能团发生络合反应,形成稳定的磷酸 盐 络合物从而固定了土壤活性 Cd,或与 CaSO₄和

不同小写字母表示处理间差异显著(P<0.05) Different lowercase letters indicate significant differences among treatment(P<0.05)

图 8 不同处理培养 42 d 后 CaCl2提取态 Cd 含量

Figure 8 Content of CaCl₂ extracted Cd after 42 d incubation with different treatments

www.aer.org.cn

Ca10(PO4)6(OH)2中的晶体 Ca进行了离子交换。 2.3.3 培养时间对各形态 Cd 含量占比的影响

弱酸可提取部分代表最容易被利用的形态,可还 原和可氧化部分代表具有潜在有效性的形态,而残渣 部分代表可利用性较差的形态。从图9可知,随着 HAP/Fe₃O₄添加量和培养时间的延长,土壤活性较低 的残渣态含量比例明显增加,活性较高的弱酸可提取 态含量比例降低,土壤重金属Cd钝化程度逐渐增高。 与对照组相比,添加量为1.0%的处理培养20d和42d 后残渣态含量比例从5.03%分别增加到9.56%、 15.72%,弱酸可提取态含量比例从51.21%分别降低 到45.67%、40.18%。有研究证明,磷酸盐类固定剂固 定重金属的主要机理是磷酸盐与二价重金属形成溶 解度很低的类似磷氯铅矿的矿物,这些矿物在环境中 相当稳定^[32]。

2.3.4 培养土壤中重金属的浸出性

如图10所示,随着HAP/Fe₃O₄投加量的增加,各

图9 培养20 d和42 d时不同处理Cd形态占比

Figure 9 Cd morphology after 20 d and 42 d incubation with different treatments

图 10 培养土壤浸出液中 Cd 浓度 Figure 10 Cd concentration in the leaching solution of incubated soil

农业环境科学学报 第41卷第7期

浸出液中Cd的浓度均有不同程度的降低。长期酸雨 暴露的土壤浸出液Cd浓度从0.138 mg·L⁻¹降低到 0.029 mg·L⁻¹,降幅达78.99%,短期酸雨暴露的土壤从 0.068 mg·L⁻¹降低到0.024 mg·L⁻¹,降幅为64.71%。实 验结果说明HAP/Fe₃O₄可有效阻碍土壤重金属的淋 溶,保持土壤重金属在酸雨条件下的稳定性。

3 结论

(1)以米糠为原料采用水热法合成了羟基磷灰石/四氧化三铁(HAP/Fe₃O₄)纳米材料,制备过程简单,原料价格低廉,对重金属Cd有很强的去除能力。

(2)HAP/Fe₃O₄对 Cd²⁺的去除符合伪二阶动力学 模型,说明吸附过程以化学吸附为主。随着溶液 pH 的增加,HAP/Fe₃O₄对 Cd²⁺的吸附能力也逐渐增强,pH 为8时吸附量达到 242.24 mg·g⁻¹。

(3)HAP/Fe₃O₄添加量为0.5%的处理显著降低了 土壤 CaCl₂提取态 Cd 含量,降幅达 62%;添加 HAP/ Fe₃O₄可降低弱酸可提取态 Cd 含量,增加残渣态 Cd 含 量,Cd 与磷酸盐形成了稳定的矿物,土壤 Cd 钝化程度 变高。

(4)HAP/Fe₃O₄可以有效降低污染土壤浸出液中 Cd浓度,从而降低Cd²⁺淋溶到地下水的环境风险。

参考文献:

- [1] CUI H B, FAN Y C, FANG G D, et al. Leachability, availability and bioaccessibility of Cu and Cd in a contaminated soil treated with apatite, lime and charcoal: A five-year field experiment[J]. *Ecotoxicology* and Environmental Safety, 2016, 134:148-155.
- [2] ZHAO F J, MA Y B, ZHU Y G, et al. Soil contamination in China: Current status and mitigation strategies[J]. Environmental Science & Technology, 2015, 49(2):750–759.
- [3] 齐世鑫, 邓燕萍, 杨达, 等. 氧化石墨烯/Fe₃O₄纳米材料对柠檬酸废 水处理效果的研究[J]. 首都师范大学学报(自然科学版), 2020, 41
 (5):27-32. QI S X, DENG Y P, YANG D, et al. Study on the treatment of citric acid wastewater with graphene oxide/Fe₃O₄ nanomaterial [J]. Journal of Capital Normal University (Natural Science Edition), 2020, 41(5):27-32.
- [4] HU H, WANG Z, PAN L, et al. Ag-coated Fe₃O₄@SiO₂ three-ply composite microspheres: Synthesis, characterization, and application in detecting melamine with their surface-enhanced Raman scattering[J]. *Journal of Physical Chemistry C*, 2010, 114(17):7738-7742.
- [5] DU K F, YANG D, SUN Y, et al. Controlled fabrication of porous titania beads by a SolGel templating method[J]. *Industrial & Engineering Chemistry Research*, 2009, 48(2):755-762.
- [6] 李静, 邵孝候, 林锴, 等. 纳米 Fe₃O₄负载酸改性炭对水体中 Pb²⁺、 Cd²⁺的吸附[J]. 农业资源与环境学报, 2020, 37(2):241-251. LI J, SHAO X H, LIN K, et al. Effects of nano-Fe₃O₄ loaded acid-modified

biochar on Pb²⁺ and Cd²⁺ adsorption in water[J]. *Journal of Agricultural Resources and Environment*, 2020, 37(2):241–251.

- [7] GAO R, HU H, FU Q, et al. Remediation of Pb, Cd, and Cu contaminated soil by co-pyrolysis biochar derived from rape straw and orthophosphate: Speciation transformation, risk evaluation and mechanism inquiry[J]. Science of the Total Environment, 2020, 730:119–139.
- [8] HA J S. Fabrication and characterization of hydroxyapatite/mullite and tricalcium phosphate/Al₂O₃ composites containing 30 wt% of bioactive components[J]. *Journal of the Korean Ceramic Society*, 2015, 52 (5) : 374–379.
- [9] 王建乐,谢仕斌,涂国权,等. 多种材料对铅镉污染农田土壤原位修 复效果的研究[J]. 农业环境科学学报, 2019, 38(2): 325-332. WANG J L, XIE S B, TU G Q, et al. Comparison of several amendments for *in-situ* remediation of lead – and cadmium – contaminated farmland soil[J]. *Journal of Agro-Environment Science*, 2019, 38(2): 325-332.
- [10] BOLAN N, KUNHIKRISHNAN A, THANGARAJAN R, et al. Remediation of heavy metal(loid)s contaminated soils: To mobilize or to immobilize?[J]. Journal of Hazardous Materials, 2014, 266:141–166.
- [11] LIU G N, WANG J, XUE W, et al. Effect of the size of variable charge soil particles on cadmium accumulation and adsorption[J]. Journal of Soils and Sediments, 2017, 17(12):2810–2821.
- [12] TANG X J, LI X, LIU X M, et al. Effects of inorganic and organic amendments on the uptake of lead and trace elements by brassica chinensis grown in an acidic red soil[J]. *Chemosphere*, 2015, 119:177–183.
- [13] LV D, ZHOU X, ZHOU J, et al. Design and characterization of sulfidemodified nanoscale zerovalent iron for cadmium (II) removal from aqueous solutions[J]. Applied Surface Science, 2018, 442:114–123.
- [14] 李超群, 顾忠旗, 黄继, 等. 贻贝壳在不同方法下合成羟基磷灰石 多孔微球的性能研究[J]. 宁波大学学报(理工版), 2021, 34(5):18. LI C Q, GU Z Q, HUANG J, et al. Study on the synthesis and properties of porous hydroxyapatite microspheres from mussel shells with various methods[J]. Journal of Ningbo University (Natural Science & Engineering Edition), 2021, 34(5):1-8.
- [15] EHUARDO M J, JOSE M F, MARKUS P, et al. Availability and transfer to grain of As, Cd, Cu, Ni, Pb and Zn in a barley agri-system: Impact of biochar, organic and mineral fertilizers[J]. Agriculture, Ecosystems & Environment, 2016, 219:171-178.
- [16] 李荣华, 张院民, 张增强, 等. 农业废弃物核桃壳粉对 Cr(N)的吸附特征研究[J]. 农业环境科学学报, 2009, 28(8):1693-1700. LI R H, ZHANG Y M, ZHANG Z Q, et al. The characteristics of Cr(N) adsorbed by walnuts shell powder[J]. Journal of Agro-Environment Science, 2009, 28(8):1693-1700.
- [17] SUN T, XU Y M, SUN Y B, et al. Cd immobilization and soil quality under Fe-modified biochar in weakly alkaline soil[J]. *Chemosphere*, 2021, 280:130606.
- [18] WANG P, ZHU H X, LIU M M, et al. Stabilizing Pd on the surface of amine-functionalized hollow Fe₃O₄ spheres: A highly active and recyclable catalyst for Suzuki cross-coupling and hydrogenation reactions [J]. RSC Advances, 2014, 4(55):28922-28927.
- [19] 李长乐, 方冬冬, 师园园, 等. 稻谷加工副产品米糠的综合利用现 状分析[J]. 粮食加工, 2017, 42(3): 27-30. LI C L, FANG D D,

SHI Y Y, et al. Analysis on the comprehensive utilization status of rice bran by by-product[J]. *Grain Processing*, 2017, 42(3):27-30.

- [20] HOANG T T T L, UNOB F, SUVOKHIAW S, et al. One-pot synthesis of amorphous calcium phosphate/Fe₃O₄ composites and the application in the removal of cadmium[J]. *Journal of Environmental Chemical Engineering*, 2020, 8(2):103653.
- [21] BASHIR S, ZHU J, FU Q L, et al. Cadmium mobility, uptake and anti-oxidative response of water spinach (*Ipomoea aquatic*) under rice straw biochar, zeolite and rock phosphate as amendments[J]. *Chemo-sphere*, 2018, 194;579–587.
- [22] DAI Y H, LIANG Y, XU X Y, et al. An integrated approach for simultaneous immobilization of lead in both contaminated soil and groundwater: Laboratory test and numerical modeling[J]. *Journal of Hazardous Materials*, 2018, 342:107–113.
- [23] SUZUKI T, NAKAMURA A, NIINAE M, et al. Lead immobilization in artificially contaminated kaolinite using magnesium oxide-based materials: Immobilization mechanisms and long-term evaluation[J]. *Chemical Engineering Journal*, 2013, 232:380-387.
- [24] XUE S W, XIAO Y W, WANG G Q, et al. Adsorption of heavy metals in water by modifying Fe₃O₄ nanoparticles with oxidized humic acid [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 616:126333.
- [25] EROSA D M S, MEDINA S T I, MENDOZA N R, et al. Cadmium sorption on chitosan sorbents: Kinetic and equilibrium studies[J]. Hydrometallurgy, 2001, 61(3):157-167.
- [26] HARINATH Y, REDDY D, SHARMA L S, et al. Development of hyperbranched polymer encapsulated magnetic adsorbent (Fe₃O₄@SiO₂-NH₂-PAA) and its application for decontamination of heavy metal ions[J]. *Journal of Environmental Chemical Engineering*, 2017, 5(5): 4994-5001.
- [27] BAO S, YANG W, WANG Y, et al. One-pot synthesis of magnetic graphene oxide composites as an efficient and recoverable adsorbent for Cd(II) and Pb(II) removal from aqueous solution[J]. *Journal of Hazardous Materials*, 2020, 381:120914.
- [28] HUANG D, WU J Z, WANG L, et al. Novel insight into adsorption and co-adsorption of heavy metal ions and an organic pollutant by magnetic graphene nanomaterials in water[J]. *Chemical Engineering Journal*, 2019, 358:1399-1409.
- [29] XU M, HADI P, CHEN G H, et al. Removal of cadmium ions from wastewater using innovative electronic waste-derived material[J]. *Journal of Hazardous Materials*, 2014, 273(30):118-123.
- [30] LIN J J, HE Y, XU J M. Changing redox potential by controlling soil moisture and addition of inorganic oxidants to dissipate pentachlorophenol in different soils[J]. *Environmental Pollution*, 2012, 170:260–267.
- [31] LEE S M, LALDAWNGLIANA C, TIWARI D. Iron oxide nano-particles-immobilized-sand material in the treatment of Cu (II), Cd (II) and Pb (II) contaminated waste waters[J]. *Chemical Engineering Journal*, 2012, 195/196:103–111.
- [32] ZHAI W W, DAI Y X, ZHAO W L, et al. Simultaneous immobilization of the cadmium, lead and arsenic in paddy soils amended with titanium gypsum[J]. *Environmental Pollution*, 2020, 258:113790.

(责任编辑:李丹)

www.aer.org.cn