

中文核公期刊/CSCD

请通过网上投稿系统投稿 网址:http://www.aes.org.cn

不同土地利用类型氨挥发氮同位素自然丰度特征

白潇, 遆超普, 颜晓元, 李淼, 陶莉敏, 彭凌云, 周伟

引用本文:

白潇, 遆超普, 颜晓元, 李淼, 陶莉敏, 彭凌云, 周伟. 不同土地利用类型氨挥发氮同位素自然丰度特征[J]. 农业环境科学学报, 2022, 41(7): 1590-1597.

在线阅读 View online: https://doi.org/10.11654/jaes.2022-0016

您可能感兴趣的其他文章

Articles you may be interested in

清液肥对滴灌棉田NH₂挥发和N₂O排放的影响

王方斌,刘凯,殷星,廖欢,孙嘉璘,闵伟,侯振安 农业环境科学学报. 2020, 39(10): 2354-2362 https://doi.org/10.11654/jaes.2020-0067

温度对农田黑土氮初级转化速率的影响

郎漫, 李平, 魏玮 农业环境科学学报. 2021, 40(4): 815-822 https://doi.org/10.11654/jaes.2020-1133

添加生物炭对海南燥红壤N2O和CO2排放的影响

刘丽君,朱启林,李凯凯,李淼,孟磊,伍延正,汤水荣,何秋香 农业环境科学学报. 2021, 40(9): 2049-2056 https://doi.org/10.11654/jaes.2021-0187

不同施氮措施对枸杞园土壤NH3挥发和N3O排放的影响

卢九斤, 聂易丰, 魏娇娇, 盛海彦, 华明秀, 许米聪, 王永亮 农业环境科学学报. 2022, 41(1): 210-220 https://doi.org/10.11654/jaes.2021-0702

黄腐酸改性膨润土对氮素淋失和氮肥利用率的影响

孔柏舒, 焦树英, 李永强, 沈玉文, 李烨, 张子胥, 付春雨 农业环境科学学报. 2020, 39(10): 2371-2379 https://doi.org/10.11654/jaes.2020-0838

关注微信公众号,获得更多资讯信息

农业环境科学学报 Journal of Agro-Environment Science

白潇, 遆超普, 颜晓元, 等. 不同土地利用类型氨挥发同位素自然丰度特征[J]. 农业环境科学学报, 2022, 41(7): 1590-1597. BAI X, TI C P, YAN X Y, et al. Natural abundance of a volatile nitrogen isotope of ammonia under different land uses[J]. *Journal of Agro-Environment Science*, 2022, 41(7): 1590-1597.

不同土地利用类型氨挥发氮同位素自然丰度特征

白潇1,2,3, 遆超普1,3*, 颜晓元1,3, 李淼1,3, 陶莉敏1,3, 彭凌云1,3, 周伟1,3

(1.土壤与农业可持续发展国家重点实验室,中国科学院南京土壤研究所,南京 210008; 2.中国科学院大学,北京 100049; 3.中国科学院常熟农业生态实验站,江苏 常熟 215555)

摘 要:为了探讨不同土地利用类型下氨(NH₃)挥发氮同位素自然丰度特征,采集3种土地利用类型(果园、菜地和林地)土壤,在可控条件下采用海绵吸收法开展了为期15d的室内培养试验,测定了不同土地利用类型下土壤NH₃挥发全过程δ¹⁵N值及其变化规律。培养期间,3种土地利用类型下的土壤NH₄-N浓度均呈现先上升后下降的趋势;果园和菜地土壤NO₅-N浓度均呈现出持续增加的趋势;土壤pH均呈现先升高后下降再升高的趋势,峰值出现在施入尿素后的第1天。菜地和果园土壤δ¹⁵N-NH;值随培养时间延长持续升高,林地土壤δ¹⁵N-NH;值呈现先降低后升高的趋势。果园、菜地和林地土壤NH₃挥发过程δ¹⁵N-NH;值随培养时间延长持续升高,林地土壤δ¹⁵N-NH;值呈现先降低后升高的趋势。果园、菜地和林地土壤NH₃挥发过程δ¹⁵N-NH;值值水平表现为为-27.98%e~-13.29%e、-29.26%e~-18.52%e和-9.85%e~10.22%e。不同土地利用类型下土壤NH₃挥发过程δ¹⁵N-NH₃均值水平表现为菜地<果园<林地。土壤pH、土壤NH₄-N浓度和土壤NH₃挥发累积量是影响上述结果的重要因素。果园和菜地的土壤pH、果园土壤NH₄=N浓度以及菜地和林地的土壤NH₃挥发累积量对土壤NH₃挥发δ¹⁵N-NH₃值会导致土壤NH₃挥发对大气NH₃的贡献存在较大的变化,进一步指出使用不同的土壤NH₃挥发δ¹⁵N-NH₃值会导致溯源结果存在较大的差别。

关键词:土地利用;氨挥发;氮同位素自然丰度;影响因素;源解析 **中图分类号:**X144;X71 **文献标志码:**A **文章编号:**1672-2043(2022)07-1590-08 doi:10.11654/jaes.2022-0016

Natural abundance of a volatile nitrogen isotope of ammonia under different land uses

BAI Xiao^{1,2,3}, TI Chaopu^{1,3*}, YAN Xiaoyuan^{1,3}, LI Miao^{1,3}, TAO Limin^{1,3}, PENG Lingyun^{1,3}, ZHOU Wei^{1,3}

(1.State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; 2.University of Chinese Academy of Sciences, Beijing 100049, China; 3.Changshu Agro-ecological Experimental Station, Chinese Academy of Sciences, Changshu 215555, China)

Abstract: To explore the natural abundance of nitrogen isotopes volatilized from soil during ammonia (NH₃) production from different land uses, we conducted a 15-day incubation experiment using the sponge absorption method under controllable conditions using vineyard, vegetable, and forest soils. The $\delta^{15}N$ values were measured throughout the NH₃ volatilization process. The results showed that the NH₄⁺-N concentration in the three types of soil initially increased and then decreased. The NO₃⁻-N concentrations of vineyard and vegetable soils continuously increased from the first day onward. The soil pH values peaked on the first day after urea application, and all soil pH values initially increased, decreased, then increased again. The $\delta^{15}N$ -NH₄⁺ values of vegetable and vineyard soils increased during the incubation period, while the $\delta^{15}N$ -NH₄⁺ values of forest soil first decreased then increased. The $\delta^{15}N$ -NH₃ values of vineyard, vegetable, and forest soils ranged from -27.98‰~-13.29‰, -29.26‰~-18.52‰, and -9.85‰~10.22‰, respectively. The mean $\delta^{15}N$ -NH₃ value was the lowest in

收稿日期:2022-01-06 录用日期:2022-03-23

作者简介:白潇(1997—),男,四川成都人,硕士研究生,从事土壤氮循环研究。E-mail:baixiao@issas.ac.cn

^{*}通信作者: 遆超普 E-mail: cpti@issas.ac.cn

基金项目:国家自然科学基金项目(42177313,42061124001)

Project supported: The National Natural Science Foundation of China (42177313, 42061124001)

the vegetable soil, followed by the vineyard and forest soil. Further analysis shows that soil pH, NH_4^+ concentration, and cumulative NH_3 loss significantly influenced $\delta^{15}N-NH_3$ values. A source trace model showed that different $\delta^{15}N-NH_3$ values could result in large differences in the source contribution of NH_3 , revealing the importance of exploring source signatures under different soil conditions. **Keywords**; land use; ammonia volatilization; nitrogen natural isotopic abundance; impact factors; source identification

氨(NH₃)是活性氮的重要组成部分,对环境和人 类健康都具有重要的影响^[1-2]。尽管低浓度 NH₃对人 类健康无害,但高浓度的 NH₃可与大气中的酸性物质 发生中和反应,生成硫酸铵、亚硫酸铵、硝酸铵、氯化 铵等铵盐气溶胶^[3-4]。研究表明水溶性气溶胶粒子占 PM_{2.5}质量浓度的 50% 左右^[5-6]。大气中的 NH₃不但对 空气质量、人体健康和太阳辐射有重要的影响,而且 可以通过大气环流进行长距离传输,对其他地区的生 态环境存在潜在影响^[7-8]。另外,大气 NH₃又通过干湿 沉降方式返回至陆地与海洋生态系统,是氮沉降的主 要组分,过量的氮沉降可引起土壤酸化和水体富营养 化,影响陆地和海洋生态系统的生产力与稳定性^[9-11]。

我国是全球最大的NH₃排放国,其中农业源NH₃ 排放量为12.35 Tg(以N计),几乎是1978年NH₃排放 量的两倍^[12]。其中农业源NH₃排放贡献率为80%~ 90%,对大气NH₃的贡献较大^[13]。农田施氮导致的 NH₃挥发是重要的排放源之一,占农业源排放的 40%^[14]。而在农业源中,果蔬等种植方式引起的NH₃ 排放也呈现逐年增加的趋势^[12],随着经济的发展及饮 食结构的调整,果蔬等种植面积会逐渐增加^[15-16],因 而可能会导致更多的NH₃排放。

研究NH₃的来源是控污减排的重要前提和基础, 对于提出和制定环境污染的措施与政策具有极其重 要的科学意义。目前关于大气NH₃来源的研究方法 主要是排放清单法和模型模拟法。其中排放清单法 是根据详实的活动水平数据,选用适当的估算方法, 对某一地区不同排放源的各种排放量进行估算,以此 解析 NH3 排放特征、趋势并制定相关控制措施[17-18]。 NH3排放清单法在全球及区域尺度均有广泛报道。 基于该方法,WANG等^[18]估算了我国农田NH₃排放, 结果表明,26%的NH3排放来自蔬菜,21%来自玉米, 21%来自水稻,7%来自果园,6%来自小麦。但排放 清单法的排放系数以静态系数为主,时间分辨率较 低1121,且系数不同会导致结果存在很大的不确定 性119。由此又发展了多种 NH3排放估算模型,如使用 自上而下的统计分析方法结合自下而上的排放驱动 模型估算我国大气NH₃湿沉降通量的空间和季节变 化^[20]。模型模拟法虽然能获取高时空分辨率的结果,

但是需要大量地面观测数据的支撑和验证。

越来越多的研究开始关注使用氮稳定同位素技 术解析不同 NH₃排放源对大气 NH₃的贡献^[21-24]。有研 究指出,不同 NH₃排放源表现出不同的氮同位素自然 丰度特征(δ¹⁵N-NH₃排放源表现出不同的氮同位素自然 的δ¹⁵N-NH₃值变化为-48~3‰,肥料和畜禽粪便排放 的 NH₃的δ¹⁵N-NH₃值为-56~-4‰。这些δ¹⁵N-NH₃值 远低于自然 NH₃挥发源和其他排放源^[25]。因此,可以 利用δ¹⁵N-NH₃值的差异进行大气 NH₃溯源^[26]。

尽管同位素溯源可以有效解析大气 NH₃各个来 源的贡献,但其前提是需要明确各个排放源的δ¹⁵N特 征值。然而,土壤释放NH₃是一个复杂的过程,不仅 受物理、化学和微生物等作用共同影响,而且还取决 于土壤性质和施氮水平等外界因素的影响[27-28],这些 因素都可能会直接或者间接地影响 NH₃挥发的δ¹⁵N 值。例如,施肥水平越高,农田土壤NH₃挥发的δ¹⁵N-NH3值越低^[27];不同肥料配比水平也会对土壤NH3挥 发造成影响,从而影响土壤NH₃挥发的δ¹⁵N-NH₃值, 增施钾肥会显著增加土壤 NH₃挥发,而降低挥发的 δ¹⁵N-NH₃值^[29]。CEJUDO等^[30]指出土壤 pH较高时,¹⁴N 由于自身质量较轻而更易于挥发出来,导致挥发的 δ¹⁵N-NH₃值较低。另外,氮稳定同位素的物理性质 (如分子间弱相互作用力、扩散速率和在相变界面上 的传导率等)会因其质量的不同导致物质反应前后在 同位素自然丰度上有明显差异,因而发生同位素分馏 效应,使δ¹⁵N-NH3值变化较大[31-32]。WELLS等[32]向草 地生态系统中施入氮肥后,发现3种施肥土壤NH3挥 发过程的δ¹⁵N值均随时间推移呈现出贫化趋势。

目前并没有开展关于我国果蔬林土壤NH₃挥发过 程中δ¹⁵N-NH₃值的研究,这部分数据的缺乏,会导致 同位素溯源结果存在一定的不确定性。因此,本研究 选取果蔬林土壤为研究对象,拟明确果蔬林土壤NH₃ 挥发δ¹⁵N值的特征并揭示其变化规律及影响因素。

1 材料与方法

1.1 供试土壤

本研究选取了3种不同土地利用类型土壤为研 究对象,其中果园土壤和菜地土壤采自江苏常熟农田 生态系统国家野外科学观测站(31°32′N,120°41′E), 竹林土壤来自江苏南京紫金山(32°16′N,118°53′E)。 果园土壤自2005年以来一直用于葡萄种植,菜地土壤 自2009年一直用于蔬菜种植,林地则为人工种植多年 生毛竹林。3种土地利用类型的土壤施N量分别为 590 kg·hm⁻²(包含240 kg·hm⁻²有机氮肥和350 kg·hm⁻² 化学氮肥)、600 kg·hm⁻²(化学氮肥)和50 kg·hm⁻² 化学氮肥)。600 kg·hm⁻²(化学氮肥)和50 kg·hm⁻² 化学氮肥)。样品采集时,分别针对果园、菜地和林地选 取地形一致、施肥耕作措施和作物生长状况基本相同 的典型样地,采用五点取样法取同一地块的5个子样 点表层土壤(0~20 cm)混合组成1个样本,带回实验室 经自然风干后,去除肉眼可见的杂质(石块和植物根系 等),研磨并过2 mm筛后充分混匀,室温下储存备用。 供试土壤的基本理化性质见表1。

1.2 NH3挥发试验设计

在受控的实验室条件下进行 NH₃挥发试验。采 用海绵吸收法测定挥发过程中的 NH₃,该方法在 CHEN 等^[33]的基础上进行了改进:首先将直径 5.5 cm、 厚1 cm 的圆形海绵(圆形海绵均匀吸收5 mL 0.3 mol· L⁻¹ H₂SO₄吸收液,吸收液可完全吸收试验中土壤挥发 出的NH₃)置于培养瓶的颈部,收集瓶中土壤挥发出 的NH₃,然后在瓶盖正中凿出直径为1.4 cm的圆形小 孔,將直径1.4 cm的硬质橡胶圆管塞入瓶盖正中的圆 形小孔中,再将含有上述吸收液的海绵塞入硬质橡胶 圆管的孔中,以免在收集时发生空气交换,从而有外 部NH₃进入系统。试验设置对照(不施氮)和施63.36 mg尿素(相当于180 kg·hm⁻²N)两个处理,每个处理3 次重复。本研究中尿素的δ¹⁵N值为-3.6‰±0.1‰。具 体操作过程:(1)选取上述3种不同土地利用类型的土 壤,称量100g风干土加入500mL塑料培养瓶中(直径 为8.5 cm);(2)将尿素溶于去离子水施入施氮处理组, 同时用去离子水将每个培养的土壤含水量调节至80% 的含水孔隙空间(WFPS);(3)将带有硬质橡胶圆管的 瓶盖和塑料培养瓶盖紧,并将培养瓶放入(25±3)℃、 95%湿度的培养箱中,连续培养15d。

本次试验采用非破坏式采样,即一开始就将整个

农业环境科学学报 第41卷第7期

培养过程的取样次数考虑在内,并设置相应重复。培 养过程中分别于第1、2、3、4、5、6、7天和第15天对培 养后的土壤和海绵进行采样。每个采样间隔均将土 壤搅拌均匀。每次采样后,用50 mL1 mol·L⁻¹的 KCl 溶液 200 r·min⁻¹浸提 2.5 h收集海绵中吸收的 NH₃,用 Whatman 42(2.5 μm)定量滤纸过滤,用 Skalar San ++ 流动分析仪(Breda,荷兰)测定滤液的 NH₄-N浓度。

1.3 土壤理化性质测定

土壤含水量采用恒温箱烘干法测定;土壤质地采 用激光衍射粒度分析法分析;阳离子交换量(CEC)使 用EDTA-乙酸铵盐交换法测定;土壤总氮、总碳使用 CNS元素分析仪(ZX_2011)测定;用玻璃电极(FE20, Mettler-Toledo)在1:2.5(V_{\pm} : V_{\pm})的悬浮液中测量土 壤 pH值。试验过程中每次采样结束后,取5g供试土 壤加入到50 mL 2 mol·L⁻¹ KCl溶液中,于25 °C、200 r· min⁻¹条件下振荡1 h,用 Whatman 42(2.5 μ m)定量滤 纸过滤后用Skalar San ++连续流动分析仪测定土壤中 的NH₄-N和NO₃-N浓度。

1.4 NH₃挥发过程δ¹⁵N的测定

本次试验使用 LIU 等¹³⁴的方法分析了试验中被 海绵收集的 NH₃以及土壤溶液中 NH₄-N 的 δ^{15} N 值。 该方法为化学转化法,其主要过程是将 NH₄氧化为 NO₂,然后在强酸条件下被羟胺(NH₂OH)定量转化为 N₂O,再用同位素比质谱仪(Isoprime 100, Isoprime)分 析产生的 N₂O。同位素比值与大气 N₂的比值按以下 公式表示:

 $\delta^{15}N - NH_x =$

$$\frac{\binom{1^5 N/^{14} N}{(1^5 N/^{14} N)_{\text{standard}}} \times 1 \ 000\%}{(1^5 N/^{14} N)_{\text{standard}}} \times 1 \ 000\%$$

本研究选择国际参考δ¹⁵N-NH[‡]标准USGS-25 (-30.4‰)、USGS-26(53.7‰)和IAEA-N-1(0.4‰)作 为同位素标准值进行质量控制。

1.5 数据处理与分析

试验数据以平均值±标准差表示。所有数据经 Excel 2016整理后,用SPSS 26.0进行统计分析。采用 单因素方差分析(ANOVA)检验各处理之间的统计显

Table 1 Physical-chemical properties of tested soil										
土地利用 类型 Land use type	土壤 类型 Soil type	总氮 Total nitrogen/%	总碳 Total carbon/%	рН	铵态氮 NH₄−N/ (mg•kg ⁻¹)	硝态氮 NO₃-N/ (mg•kg ⁻¹)	阳离子交换 量 CEC/ (cmol·kg ⁻¹)	黏粒 Clay/%	粉粒 Silt/%	砂粒 Sand/%
果园	乌栅土	0.20±<0.01	1.66±0.02	6.37±0.02	6.69±0.45	45.30±0.75	20.58±0.20	31.04±0.28	58.06±0.75	10.9±0.74
菜地	乌栅土	0.19 ± 0.01	1.62±<0.01	6.99±0.01	3.66±0.34	316.00±2.24	22.78±0.19	36.74±1.19	56.02±0.40	7.58±0.61
林地	黄棕壤	0.16±0.01	1.88±0.02	5.52 ± 0.86	5.18±0.41	4.17±0.06	20.44±0.11	38.14±0.62	49.34±1.14	13.7±0.61

著性差异,采用非线性曲线拟合分析方法研究土壤 NH[‡]-N浓度、土壤 pH及 NH₃挥发累积量和土壤 NH₃ 挥发δ¹⁵N-NH₃值之间的关系。

2 结果与分析

2.1 土壤理化性质变化规律

整个试验过程中,土壤NH4-N浓度均呈现先急 剧上升之后下降的趋势(图1)。果园、菜地和林地土 壤NH4-N浓度均在第2天达到峰值,分别为(183.01± 18.73)、(130.12±4.90)mg·kg⁻¹和(166.03±6.93)mg· kg⁻¹。果园和菜地土壤NH4-N浓度达到峰值后急剧下 降,到试验的第15天时,其NH4-N浓度分别为(2.71± 0.08)mg·kg⁻¹和(2.01±0.13)mg·kg⁻¹;林地土壤NH4-N浓度达到峰值后下降较为缓慢,到试验的第15天 时,其NH4-N浓度为(65.23±6.96)mg·kg⁻¹。林地土 壤的NH4-N浓度显著高于果园和菜地土壤(P<0.05), 果园和菜地的NH4-N浓度无显著差异(P=0.60)。

土壤 NO₃-N浓度变化如图 2 所示。菜地和果园 土壤 NO₃-N浓度持续上升;林地土壤 NO₃-N浓度上 升较为缓慢,于试验的第 15 天变幅较大。试验的第 15 天,菜地、果园和林地土壤 NO₃-N浓度分别为 (437.73±4.95)、(289.89±4.72)mg·kg⁻¹和(40.09±1.83) mg·kg⁻¹。土壤 NO₃-N浓度均值水平表现为菜地>果园> 林地,三者均有显著差异(*P*<0.05)。

土壤 pH 变化规律如图 3 所示,试验过程中,3 种 土壤 pH 均在施入尿素后的第1天达到峰值,果园、菜 地和林地的 pH 分别为 7.11±0.08、7.38±0.02 和 6.42± 0.02。3 种土壤的 pH 均随着时间延长缓慢降低,在试 验第7天时达到最低,到试验第15天时 pH 又升高。 试验第15天,果园、菜地和林地的 pH 分别为 5.77±

图2 施用尿素后培养期内土壤 NO3-N浓度的变化规律

Figure 2 Changes of soil NO₃-N concentration after urea application during the incubation period

图 3 施用尿素后培养期内土壤 pH 的变化规律 Figure 3 Changes of soil pH after urea application during the incubation period

0.02、6.96±0.01和5.52±0.08。培养过程中土壤pH均 值水平总体表现为菜地>果园>林地,且3种土壤之间 均有显著差异(P<0.05)。

2.2 土壤铵态氮同位素自然丰度值变化规律

菜地和果园土壤δ¹⁵N-NH⁴值随培养时间延长持 续升高;而林地土壤δ¹⁵N-NH⁴值随培养时间延长先升 高再降低而后又升高,在培养的第7天达到最低(图 4)。试验第1天,果园、菜地和林地土壤δ¹⁵N-NH⁴值 分别为2.91‰±0.03‰、1.41‰±0.05‰和-9.20‰± 0.07‰,第15天时分别为55.60‰±5.62‰、46.32‰± 1.27‰和27.14‰±3.00‰,变化范围分别为2.91‰~ 55.60‰、1.41‰~46.32‰和-22.78‰~27.14‰。果园 土壤和菜地土壤δ¹⁵N-NH⁴均值无显著差异,但均显著 高于林地土壤δ¹⁵N-NH⁴均值(P<0.05)。

2.3 土壤 NH₃挥发及其同位素 δ¹⁵N 的特征

3 种土壤的 NH₃挥发累积量随着培养时间的推 移逐渐增加(图5)。试验第15天时,果园、菜地和林

1593

www.aer.org.cn

Figure 5 Changes of the cumulative amount of soil NH₃ volatilization after urea application during the incubation period

地土壤的NH₃挥发累积量(以N计)分别为(2.63±0.43)、(4.63±0.26)mg和(1.49±0.16)mg。在整个培养周期内,培养过程中土壤的NH₃挥发累积量均值总体表现为菜地>果园>林地,且3种土壤之间均具有显著差异(*P*<0.05)。

不同土地利用类型土壤 NH₃挥发过程中同位素 $\delta^{15}N$ 值的特征不同(图6)。随着土壤 NH₃挥发的进行, 3种土壤 NH₃挥发 $\delta^{15}N-NH_3$ 值先降低,之后随培养时 间推移缓慢升高。在整个试验过程中,果园、菜地和 林地土壤的 NH₃挥发 $\delta^{15}N-NH_3$ 值变化范围为-27.98‰~-13.29‰、-29.26‰~-18.52‰ 和-9.85‰~ 10.22‰,其均值分别为-19.31‰±6.14‰、-24.58‰± 3.31‰ 和0.98‰±9.25‰。土壤 NH₃挥发 $\delta^{15}N-NH_3$ 均 值总体表现为林地>果园>菜地,且3种土壤之间均具 有显著差异(P<0.05)。

2.4 土壤理化性质与土壤NH₃挥发δ¹⁵N-NH₃值的关系 进一步分析发现,土壤NH₄-N浓度、土壤pH和

中文核川期刊

图 6 施用尿素后培养期内土壤 NH₃挥发 δ¹⁵N 值的变化规律 Figure 6 Changes of δ¹⁵N value of soil NH₃ volatilization after urea application during the incubation period

NH₃挥发累积量与土壤NH₃挥发 $\delta^{15}N-NH_3$ 值有一定的关系(表2)。随着土壤NH₄-N浓度增加,果园土壤的 $\delta^{15}N-NH_3$ 出现贫化的趋势;随着pH升高,果园和菜地土壤的 $\delta^{15}N-NH_3$ 降低;菜地和林地土壤的NH₃挥发累积量与 $\delta^{15}N-NH_3$ 值也呈负相关关系。

表2 影响土壤NH3挥发δ¹⁵N-NH3的因素

Table 2 Factors affecting $\delta^{15}N$ -NH₃ value of soil NH₃ volatilization

因素 Factor	土地利用类型 Land use type	关系式 Equation	R^2	Р
土壤	果园	$y=0.10x^2-2.10x-15.41$	0.78	0.05
NH4-N 冰声座	菜地	—	_	_
	林地	—	_	
土壤pH	果园	$y=20.25x^2-256.37x+786.26$	0.78	0.02
	菜地	$y=68.64x^2-963.94x+3356.50$	0.88	0.02
	林地	—	—	_
NH ₃ 挥发	果园	—	—	—
累积量	菜地	$y=1.78x^2-10.72x-11.90$	0.98	< 0.01
	林地	$y=26.59x^2-56.04x+23.09$	0.81	0.02

注:关系式中的x为对应土地利用类型中因素的值,y为对应土地 利用类型的δ¹⁵N-NH₃值。

Note: x is the value of the factors in the corresponding land-use type, and y is the $\delta^{15}N-NH_3$ value of the corresponding land-use type.

3 讨论

3.1 不同土地利用 NH₃挥发的δ¹⁵N-NH₃特征

通过排放源δ¹⁵N-NH₃值的差异结合同位素溯源 模型获取不同排放源的贡献,是当前大气NH₃溯源的 新手段^[27],但是大气NH₃排放源δ¹⁵N-NH₃值的研究数 据缺乏,尤其是对于果蔬林的土壤NH₃挥发全过程 δ¹⁵N-NH₃变化规律的研究较少,这部分数据的缺失会 直接影响源解析结果的精确性。本研究结果显示,与 其他土地利用类型的结果相比,果园、葡萄园和人工 林地 NH₃挥发过程的 $\delta^{15}N-NH_3$ 有很大差别。如表3 所示,本研究结果中林地 $\delta^{15}N-NH_3$ 值相对于草地、水 稻和小麦轮作系统以及玉米等土壤都处于较高水平; 而果园的 $\delta^{15}N-NH_3$ 值介于 TI 等^[22,27]对水稻土的研究 结果和 WELLS 等^[32]对草地的研究结果之间。WELLS 等^[32]的研究中肥料类型分别为尿素和家畜尿液;TI 等^[27]施肥水平分别为 0、20、180、360 kg·hm⁻²尿素(以 N计)。本研究菜地的 $\delta^{15}N-NH_3$ 值高于 CHANG 等^[21] 的研究结果,与 WELLS 等^[32]研究的草地 $\delta^{15}N-NH_3$ 值 比较接近(表3)。CHANG 等^[21]的研究是直接向 1 L土 壤加入 100 g尿素。林地土壤由于培养前 3 d NH₃挥发 量极少(图 5),可能会受测试试剂和测试技术影响,导 致其 1~3 d的 $\delta^{15}N-NH_3$ 值为正(图 6)。

3.2 果蔬林土壤 NH₃挥发δ¹⁵N-NH₃值的影响因素

土壤类型、施肥条件都是影响土壤 NH₃挥发 $\delta^{15}N-NH_3$ 值的重要因素^[21-23,32]。通过土壤 NH₃挥发 $\delta^{15}N-NH_3$ 值与其相关因素之间的关系分析(表 2),可 发现本研究中果蔬林土壤 NH₃挥发过程受多种因素 的影响,从而直接或间接地影响 $\delta^{15}N-NH_3$ 值的变化。 土壤 NH₃挥发过程是一个物理、化学和生物共同作用 的过程^[18],具有一定的时间变化规律,一般集中在施 肥后的 15 d内,并且挥发峰值通常出现在 2~4 d。相 比于 ¹⁵N,¹⁴N 更轻,因此更易挥发,这一特点会导致整 个农田氮肥 NH₃挥发过程存在分馏效应,使得挥发出 的 NH₃的 $\delta^{15}N$ 值存在较大差别^[36]。TI等^[22]通过长期野 外试验和室内培养试验,指出稻麦轮作土壤 $\delta^{15}N-NH_3$ 值和 NH₃挥发速率具有极显著的指数负相关关系,揭 示了土壤 NH₃挥发累积量对 $\delta^{15}N-NH_3$ 值的影响。本

表3 个同土地利用奕型土壤 NH3 挥友δ ^ω N-NH3 值
Table 3 $\delta^{15}N\text{-}NH_3$ value of soil NH_3 volatilization from different
land use types

iuna abo typob							
土地利用类型 Land use type	$\delta^{15}N\text{-}NH_3/\% o$	来源 Source	施肥水平(以N计) Fertilization level				
林地	0.98±9.25	本试验	180 kg•hm ⁻²				
果园	-19.31±6.14	本试验	180 kg•hm ⁻²				
菜地	-24.58±3.37	本试验	180 kg•hm ⁻²				
小麦田	-8.5	[22]	300 kg • hm ⁻² 尿素				
水稻田	-16.88	[22]	180 kg • hm ⁻² 尿素				
草地	-22.58±2.00	[32]	600 kg • hm ⁻² 尿液				
草地	-27.00 ± 2.00	[32]	80 kg•hm ⁻² 尿液				
水稻田	-34.80 ± 4.80	[27]	180 kg • hm ⁻² 尿素				
草地	-36.00 ± 2.00	[32]	80 kg·hm ⁻² 尿素				
玉米田	-48.00~-36.30	[35]	135 kg·hm ⁻² 尿素				
菜地	-50.00±1.80	[21]	100 g尿素				

研究中也发现果园、菜地和林地中土壤NH₃挥发累积 量会影响土壤δ¹⁵N-NH₃值,二者之间呈现极显著二 项式关系。

土壤 pH通过影响土壤 NH3挥发潜力和土壤 NH3 挥发量而影响土壤 NH₃挥发δ¹⁵N-NH₃值,其原理是 $δ^{15}N-NH_3$ 值受NH₃挥发量的影响,而土壤pH影响土 壤NH₃挥发,因此土壤pH是土壤δ¹⁵N-NH₃值的重要 影响因素^[37]。TI等^[27]研究发现土壤NH₃挥发δ¹⁵N-NH₃ 值和 pH 呈现极显著负相关,即土壤 pH 越高, δ^{15} N-NH₃值越低,这与本试验的结果一致(表2),菜地的土 壤 pH 最高, NH3挥发累积量最高且伴随着最低的 $δ^{15}N-NH_3$ 值;林地土壤 pH 较低,因此挥发出的 NH₃较 少,相应地其δ¹⁵N-NH₃值就偏高。此外,在土壤氮循 环过程中,δ¹⁵N-NH₃值也会受到其他转化途径的影 响,例如:硝化过程会产生一定的分馏,分馏系数介 于-12‰~29‰之间;同化过程会使生物体更加倾向 干预先使用¹⁴N,导致残留下来的氮同位素值变为正 值,最终使得¹⁵N富集而δ¹⁵N-NH₃值为正值。因此存 在氮转化差异的土壤的δ¹⁵N-NH₃值可能会有一定的 差别[38]。

3.3 δ¹⁵N-NH3值对大气NH3溯源的影响

利用农田排放源δ¹⁵N-NH₃值与其他排放源的 δ¹⁵N-NH₃值差异,可以进行大气NH₃的溯源。由于不 同土地利用类型土壤δ¹⁵N-NH₃值存在一定的差别, 所以使用固定的农田土壤δ¹⁵N-NH₃值而不考虑土地 利用类型等因素,会导致溯源结果的不确定性。本研 究中假定以下两种情形:第一种情形是设定大气中 NH_3 的 $\delta^{15}N-NH_3$ 值为-20‰,其主要来源于动物养殖、 人类废弃物、火电厂和汽车尾气排放,相应的NH3的 δ¹⁵N-NH3值分别取-28% ~38% ~-6% 和-12% ^[25],根 据本研究结果,农田NH₃挥发源的δ¹⁵N-NH₃值取 -26‰;而第二种情形假定其他来源数值不变,而农 田NH₃挥发的δ¹⁵N-NH₃值为-34.8‰。利用 IsoSource 源解析模型(IsoSource v.1.3.1, USEPA)分别对以上两 种情形进行大气NH₃的源解析,结果发现两种情形下 各种源对大气NH。的贡献差异较大。第一种情形中 农田NH3挥发所占的比例为14.4%,而第二种情形中 为20.2%,农田源的占比提高了40.3%。顾梦娜等[3] 也指出农业源δ¹⁵N-NH₃特征值的改变会造成农业源 贡献率发生20%的变化。因此精确的大气NH₃溯源 需要首先明确各个来源的δ¹⁵N-NH₃值。尽管本研究 指出了果园、菜地和林地土壤的δ¹⁵N-NH₃均值分别为-19.31‰±6.14‰、-24.58‰±3.31‰和0.98‰±9.25‰,

但本试验结果为室内控制条件下获取,其他条件,如 温度、水分和肥料类型等都可能影响δ¹⁵N-NH₃值,从 而导致模拟结果与野外原位观测结果有一定的差别。 因此,未来研究需要根据特定区域、特定土壤类型等 条件下的δ¹⁵N-NH₃值来进行大气NH₃的溯源,从而为

大气污染治理提供更详细的理论依据。

4 结论

(1)土壤NH₃挥发过程中,3种土壤NH₄-N浓度 和pH均呈现先急剧上升后下降的趋势;果园和菜地 土壤NO₃-N浓度均呈现出从第1天开始持续增加的 趋势。菜地和果园土壤δ¹⁵N-NH₄值随培养时间推移 持续升高,而林地土壤呈现先升高后降低再升高的趋 势。3种土壤的NH₃挥发累积量表现为菜地>果园> 林地,NH₃挥发δ¹⁵N-NH₄值则相反。

(2)观测期内,随着果园和菜地的土壤pH上升,土 壤NH₃挥发 δ^{15} N-NH₃值显著降低;果园土壤NH₄-N浓 度与土壤NH₃挥发 δ^{15} N-NH₃值呈现显著的负相关关 系;随着菜地和林地土壤NH₃挥发的累积,土壤NH₃ 挥发 δ^{15} N-NH₃值出现贫化趋势。

(3)使用源解析模型,并采用本试验中不同的同 位素值对大气 NH₃进行源解析,发现采用不同的 NH₃ 挥发δ¹⁵N-NH₃值会导致溯源结果存在较大差异,进 一步揭示了溯源解析中明确排放源δ¹⁵N-NH₃值的重 要性。

参考文献:

- GALLOWAY J N, TOWNSEND A R, ERISMAN J W, et al. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878):889–892.
- [2] GU B J, ZHANG L, VAN DINGENEN R, et al. Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM₂₅ air pollution[J]. Science, 2021, 374(6568):758-762.
- [3] WANG G H, ZHANG R Y, GOMEZ M E, et al. Persistent sulfate formation from London fog to Chinese haze[J]. Proceedings of the National Academy of Sciences, 2016, 113(48):13630–13635.
- [4] ZHAN X Y, ADALIBIEKE W, CUI X Q, et al. Improved estimates of ammonia emissions from global croplands[J]. *Environmental Science & Technology*, 2021, 55(2):1329–1338.
- [5] KANG C M, LEE H S, KANG B W, et al. Chemical characteristics of acidic gas pollutants and PM₂₅ species during hazy episodes in Seoul, South Korea[J]. Atmospheric Environment, 2004, 38(28):4749-4760.
- [6] YANG F, TAN J, ZHAO Q, et al. Characteristics of PM_{2.5} speciation in representative megacities and across China[J]. Atmospheric Chemistry and Physics, 2011, 11:5207–5219.
- [7] LESWORTH T, BAKER A R, JICKELLS T. Aerosol organic nitrogen

over the remote Atlantic Ocean[J]. *Atmospheric Environment*, 2010, 44 (15):1887-1893.

- [8] HE Y X, PAN Y P, GU M N, et al. Changes of ammonia concentrations in wintertime on the North China Plain from 2018 to 2020[J]. Atmospheric Research, 2021, 253:105490.
- [9] DENTENER F, DREVET J, LAMARQUE J F, et al. Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation [J]. Global Biogeochemical Cycles, 2006, 20(4): GB4003.
- [10] PHOENIX G K, HICKS W K, CINDERBY S, et al. Atmospheric nitrogen deposition in world biodiversity hotspots: The need for a greater global perspective in assessing N deposition impacts[J]. *Global Change Biology*, 2006, 12(3):470-476.
- [11] 吕雪梅,曾阳,田世丽,等.华北典型农田和畜禽场环境大气中活 性氮化学组成和浓度变化特征[J].中国生态农业学报(中英文), 2020, 28(7):1043-1050. LÜXM, ZENGY, TIANSL, et al. Atmospheric reactive nitrogen in typical croplands and intensive pig and poultry farms in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2020, 28(7):1043-1050.
- [12] MA S. High-resolution assessment of ammonia emissions in China: Inventories, driving forces and mitigation[J]. Atmospheric Environment, 2020, 229: 117458.
- [13] CHANG Y H, ZOU Z, ZHANG Y L, et al. Assessing contributions of agricultural and nonagricultural emissions to atmospheric ammonia in a Chinese megacity[J]. Environmental Science and Technology, 2019, 53(4):1822-1833.
- [14] KANG Y N, LIU M X, YU S, et al. High-resolution ammonia emissions inventories in China from 1980 to 2012[J]. Atmospheric Chemistry & Physics, 2016, 15(19):26959–26995.
- [15] 郭广正,张芬,沈远鹏,等.减氮配施硝化抑制剂对大白菜农学和 环境效应评价[J].农业环境科学学报,2020,39(10):2307-2315. GUO G Z, ZHANG F, SHEN Y P, et al. Comprehensive assessment of the agronomic and environmental effects of N application rate reduction combined with nitrification inhibitor on Chinese cabbage[J]. Journal of Agro-Environment Science, 2020, 39(10):2307-2315.
- [16] 杨莉莉, 王永合, 韩稳社, 等. 氮肥减量配施有机肥对苹果产量品 质及土壤生物学特性的影响[J]. 农业环境科学学报, 2021, 40(3): 631-639. YANG L L, WANG Y H, HAN W S, et al. Effects of reducing nitrogen fertilizer and applying organic fertilizer on apple yield and quality and soil biological characteristics[J]. Journal of Agro-Environment Science, 2021, 40(3):631-639.
- [17] ZHANG Q Q, PAN Y P, HE Y X, et al. Bias in ammonia emission inventory and implications on emission control of nitrogen oxides over North China Plain[J]. Atmospheric Environment, 2019, 214:116869.
- [18] WANG C, CHENG K, REN C, et al. An empirical model to estimate ammonia emission from cropland fertilization in China[J]. *Environmental Pollution*, 2021, 288:117982.
- [19] ZHAO Y, YUAN M C, HUANG X, et al. Quantification and evaluation of atmospheric ammonia emissions with different methods: A case study for the Yangtze River Delta region, China[J]. Atmospheric Chemistry and Physics, 2020, 20(7): 4275–4294.
- [20] ZHANG L, CHEN Y, ZHAO Y, et al. Agricultural ammonia emissions

in China: Reconciling bottom-up and top-down estimates[J]. Atmospheric Chemistry and Physics, 2018, 18(1):339-355.

- [21] CHANG Y H, LIU X J, DENG C R, et al. Source apportionment of atmospheric ammonia before, during, and after the 2014 APEC summit in Beijing using stable nitrogen isotope signatures[J]. Atmospheric Chemistry and Physics, 2016, 16:11635-11647.
- [22] TI C P, GAO B, LUO Y X, et al. Isotopic characterization of NH_x-N in deposition and major emission sources[J]. *Biogeochemistry*, 2018, 138 (1):85-102.
- [23] FELIX D J, ELLIOTT E M, GISH T, et al. Examining the transport of ammonia emissions across landscapes using nitrogen isotope ratios[J]. *Atmospheric Environment*, 2014, 95:563-570.
- [24] ROBINSON D. δ¹⁵N as an integrator of the nitrogen cycle[J]. Trends in Ecology & Evolution, 2001, 16(3):153–162.
- [25] ELLIOTT E M, YU Z, COLE A S, et al. Isotopic advances in understanding reactive nitrogen deposition and atmospheric processing[J]. *Science of the Total Environment*, 2019, 662:393-403.
- [26] CHALK P M, INÁCIO C T, CHEN D. An overview of contemporary advances in the usage of ¹⁵N natural abundance (δ¹⁵N) as a tracer of agro-ecosystem N cycle processes that impact the environment[J]. Agriculture Ecosystems & Environment, 2019, 283:106570.
- [27] TI C P, MA S T, PENG L Y, et al. Changes of δ¹⁵N values during the volatilization process after applying urea on soil[J]. *Environmental Pollution*, 2021, 270:116204.
- [28] WU D, ZHANG Y X, DONG G, et al. The importance of ammonia volatilization in estimating the efficacy of nitrification inhibitors to reduce N₂O emissions: A global meta-analysis[J]. *Environmental Pollution*, 2020, 271:116365.
- [29] 夏淑洁,刘闯,袁晓良,等.不同氮钾水平及氮形态差异对土壤氨 挥发和氧化亚氮排放的影响[J].农业环境科学学报,2020,39(5): 1122-1129. XIA S J, LIU C, YUAN X L, et al. Effects of different nitrogen and potassium levels and nitrogen forms on soil ammonia volatilization and nitrous oxide emissions[J]. Journal of Agro-Environment Science, 2020, 39(5):1122-1129.
- [30] CEJUDO E, SCHIFF S L. Nitrogen isotope fractionation factors $\left(\alpha\right)$

measured and estimated from the volatilisation of ammonia from water at pH 9.2 and pH 8.5[J]. *Isotopes in Environmental and Health Studies*, 2018, 54(6):642–655.

- [31] 顾梦娜,潘月鹏,何月欣,等.稳定同位素模型解析大气氨来源的 参数敏感性[J].环境科学,2020,41(7):3095-3101. GU M N, PAN Y P, HE Y X, et al. Source apportionment of atmospheric ammonia: Sensitivity test based on stable isotope analysis in R language[J]. *Environmental Science*, 2020, 41(7):3095-3101.
- [32] WELLS N S, BAISDEN W T, CLOUGH T J. Ammonia volatilisation is not the dominant factor in determining the soil nitrate isotopic composition of pasture systems[J]. Agriculture Ecosystems & Environment, 2015, 199:290–300.
- [33] CHEN C R, PHILLIPS I R, CONDRON L M, et al. Impacts of greenwaste biochar on ammonia volatilisation from bauxite processing residue sand[J]. *Plant & Soil*, 2013, 367(1/2):301-312.
- [34] LIU D W, FANG Y T, TU Y, et al. Chemical method for nitrogen isotopic analysis of ammonium at natural abundance[J]. *Analytical Chemistry*, 2014, 86(8):3787–3792.
- [35] FELIX D J, ELLIOTT E M, GISH T J, et al. Characterizing the isotopic composition of atmospheric ammonia emission sources using passive samplers and a combined oxidation-bacterial denitrifier approach
 [J]. Rapid Communications in Mass Spectrometry, 2013, 27 (20) : 2239-2246.
- [36] NIKOLENKO O, JURADO A, BORGES A V, et al. Isotopic composition of nitrogen species in groundwater under agricultural areas: A review[J]. Science of the Total Environment, 2018, 621:1415–1432.
- [37] 马芬,杨荣全,郭李萍.控制氮肥施用引起的活性氮气体排放:脲 酶/硝化抑制剂研究进展与展望[J].农业环境科学学报,2020,39 (4):908-922. MA F, YANG R Q, GUO L P. Decrease the emission of active nitrogen gases in nitrogen fertilizer application: Research progresses and perspectives of urease/nitrification inhibitors[J]. Journal of Agro-Environment Science, 2020, 39(4):908-922.
- [38] DENK T R A, MOHN J, DECOCK C, et al. The nitrogen cycle: A review of isotope effects and isotope modeling approaches[J]. Soil Biology and Biochemistry, 2017, 105:121-137.

(责任编辑:宋潇)