

请通过网上投稿系统投稿 网址:http://www.aes.org.cn

烟-稻轮作不同施肥土壤N_0排放对水分的响应

赵伟东, 郭宝玲, 郑祥洲, 汤水荣, 孟磊, 张玉树

引用本文:

赵伟东,郭宝玲,郑祥洲,汤水荣,孟磊,张玉树.烟-稻轮作不同施肥土壤N₂O排放对水分的响应[J].农业环境科学学报, 2023, 42(7): 1655-1665.

在线阅读 View online: https://doi.org/10.11654/jaes.2022-1052

您可能感兴趣的其他文章

Articles you may be interested in

不同水分对半干旱地区砂壤土温室气体排放的短期影响

李平,魏玮,郎漫 农业环境科学学报.2021,40(5):1124-1132 https://doi.org/10.11654/jaes.2021-1377

水氮耦合对设施土壤N_O和NO排放的影响

吕金东,张丽媛,虞娜,邹洪涛,张玉玲,张玉龙 农业环境科学学报. 2021, 40(6): 1366-1376 https://doi.org/10.11654/jaes.2020-1217

有机无机肥配施对苹果园温室气体排放的影响

马艳婷,赵志远,冯天宇,SOMPOUVISETThongsouk,孔旭,翟丙年,赵政阳 农业环境科学学报.2021,40(9):2039-2048 https://doi.org/10.11654/jaes.2020-1477

清液肥对滴灌棉田NH3挥发和N2O排放的影响

王方斌,刘凯,殷星,廖欢,孙嘉璘,闵伟,侯振安 农业环境科学学报. 2020, 39(10): 2354-2362 https://doi.org/10.11654/jaes.2020-0067

双氰胺减少铵态氮肥施用后潮土N₂O排放的机制

马兰,李晓波,马舒坦 农业环境科学学报.2021,40(12):2801-2808 https://doi.org/10.11654/jaes.2021-0459

关注微信公众号,获得更多资讯信息

赵伟东, 郭宝玲, 郑祥洲, 等. 烟-稻轮作不同施肥土壤 N₂O 排放对水分的响应[J]. 农业环境科学学报, 2023, 42(7): 1655-1665. ZHAO W D, GUO B L, ZHENG X Z, et al. Effects of moisture content on N₂O emissions in different fertilized soils under tobacco-rice rotation[J]. *Journal of Agro-Environment Science*, 2023, 42(7): 1655-1665.

烟-稻轮作不同施肥土壤 N₂O 排放对水分的响应

赵伟东1,2,郭宝玲2,郑祥洲2*,汤水荣1*,孟磊1,张玉树2

(1.海南大学热带作物学院,海口 570228; 2.福建省农业科学院土壤肥料研究所/福建省植物营养与肥料重点实验室,福州 350013)

要:为研究水-旱轮作条件中土壤氧化亚氮(N2O)排放对不同施肥处理的响应,本文以亚热带地区长期不同施肥定位试验 摘 (烟-稻轮作)土壤为研究对象,设置60%持水量(WHC)+不施肥(UCK)、60%WHC+推荐施肥(UNPK)、60%WHC+高氮施肥 (UN_bPK)、60%WHC+推荐施肥配施秸秆(UNPKS)、淹水+不施肥(FCK)、淹水+推荐施肥(FNPK)、淹水+高氮施肥(FN_bPK)、淹水+ 推荐施肥配施秸秆(FNPKS)共8个处理,开展室内培养试验,测定土壤N2O排放及微生物相关功能基因丰度变化,探讨不同施肥 土壤N₂O 排放与相关功能基因丰度对水分的响应规律。结果表明:与CK 处理相比,其他施肥处理均显著降低土壤 pH, NPKS 显著 增加土壤有机质(SOM)和全氮(TN)含量;与NPK处理相比,N_bPK和NPKS均显著降低土壤碳氮比(C/N)。60%WHC和淹水条件各 施肥处理 N₂O 累积排放量分别为 0.56~1.44 mg·kg⁻¹和 14.89~20.70 mg·kg⁻¹。与 60% WHC 条件相比, 淹水显著促进各施肥处理 N₂O 排放。60%WHC条件下,与UNPK处理相比,UNPKS处理显著降低N2O排放。两种不同水分条件下,N2O累积排放量与铵态氮 (NH₄-N)含量均呈负相关,与硝态氮(NO₅-N)含量均呈正相关。相比于UCK处理,UNPK和UN_bPK显著提高AOA基因拷贝数, UNPK显著提高 AOB 基因拷贝数; UN_bPK 显著降低 nirK、nirS 和 nosZ 基因拷贝数, UNPKS 显著降低 nirS 基因拷贝数。相比于 FCK 处理,FNPK、FN_bPK、FNPKS均显著提高AOA和AOB基因拷贝数,均显著降低nirS的基因拷贝数。淹水各施肥处理AOA、AOB基 因拷贝数和(nirK+nirS)/nosZ比值分别为60%WHC各施肥处理的1.80~2.49倍、1.19~2.19倍和1.25~1.42倍、与60%WHC相比、淹 水促进硝化菌硝化作用和反硝化作用的强度,导致大量N2O排放;UNPKS处理的(nirK+nirS)/nosZ比值比UNPK低21%,相比于 UNPK处理,UNPKS处理降低土壤反硝化作用,减少N2O排放。研究表明,淹水条件增加了土壤N2O排放,但减弱了施肥对N2O排 放的影响;低水分条件下化学肥料配施秸秆可以显著减少N2O排放。

关键词:N2O排放;培养试验;长期施肥;微生物功能基因;水旱轮作

中图分类号:X144;S152.7 文献标志码:A 文章编号:1672-2043(2023)07-1655-11 doi:10.11654/jaes.2022-1052

Effects of moisture content on N₂O emissions in different fertilized soils under tobacco-rice rotation

ZHAO Weidong^{1,2}, GUO Baoling², ZHENG Xiangzhou^{2*}, TANG Shuirong^{1*}, MENG Lei¹, ZHANG Yushu²

(1.College of Tropical Crops, Hainan University, Haikou 570228, China; 2.Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences/Fujian Provincial Key Laboratory of Plant Nutrition and Fertilizer, Fuzhou 350013, China)

Abstract: Nitrous oxide(N_2O) emissions from soil with different fertilization treatments under flood-upland rotation are important for N_2O emissions regulation. In this study, soil samples from a long-term fertilization positioning experiment (tobacco-rice rotation) in a

收稿日期:2022-10-20 录用日期:2023-02-21

作者简介:赵伟东(1997—),男,陕西陇县人,硕士研究生,从事土壤碳氮循环与环境效应研究。E-mail:20090300210006@hainanu.edu.cn

^{*}通信作者:郑祥洲 E-mail:z85103@qq.com; 汤水荣 E-mail:tangshuirong@163.com

基金项目:国家自然科学基金项目(41907077,41807022);福建省属公益科研院所专项(2019R1025-3);海南大学高层次人才科研启动基金项目 (KYQD(ZR)858);海南省自然科学基金项目(2019RC064);福建省农业科学院科研项目(GJYS2019004)

Project supported : The National Natural Science Foundation of China (41907077, 41807022); The Basic Scientific Foundation of Public Service Research Institutes of Fujian Province, China (2019R1025-3); Hainan University High Level Talents Research Foundation Project (KYQD(ZR)858); The Natural Science Foundation of Hainan Province, China (2019RC064); Scientific Research Project of Fujian Academy of Agricultural Sciences (GJYS2019004)

subtropical region were collected for N2O emission study. The eight treatments in the incubation experiment were as follows: 60% water holding capacity (WHC) + no fertilization (UCK), 60%WHC + recommended fertilization (UNPK), 60%WHC + high nitrogen fertilization (UN_bPK), 60%WHC+recommended fertilization combined with straw (UNPKS), flooding+no fertilization (FCK), flooding+recommended fertilization (FNPK), flooding + high nitrogen fertilization (FNhPK) and flooding+recommended fertilization combined with straw (FNPKS). Soil N2O emissions and the abundance of related functional genes under different moisture content fertilization were investigated. The results were as follows: Compared with CK treatment, soil pH was significantly decreased by fertilization; soil organic matter (SOM) and total nitrogen(TN) contents were significantly increased by NPKS. Compared with NPK treatment, C/N ratio was significantly decreased by N_bPK and NPKS. The N₂O emissions of fertilization treatment under 60%WHC and flooding conditions were 0.56-1.44 mg·kg⁻¹ and 14.89-20.70 mg · kg⁻¹, respectively. Compared with the 60%WHC conditions, soil N₂O emission were significantly promoted under flooding conditions. Soil N2O emissions under UNPKS treatment were lower than those under UNPK treatment. The amount of N2O emission was negatively correlated with the soil NH₄⁺-N content and positively correlated with NO₃⁻-N content. Compared with the UCK treatment, the copy number of AOA genes was significantly improved under UNPK and UNhPK, and the copy number of AOB genes was significantly increased under UNPK. The copy numbers of nirK, nirS and nosZ genes were significantly reduced under UN_bPK, and the copy number of nirS genes was significantly reduced under UNPKS. Compared with FCK treatment, the gene copy numbers of AOA and AOB were significantly increased by FNPK, FN_bPK and FNPKS, accompanied by a decrease in the *nirS* gene copy number. The copy numbers of AOA and AOB genes and the ratio of (nirK+nirS)/nosZ in fertilization treatments under flooding were 1.80-2.49, 1.19-2.19 times and 1.25-1.42 times greater than that under 60% WHC. The ratio of (nirK+nirS)/nosZ under UNPKS treatment was 21% lower than that under UNPK treatment. Compared with UNPK treatment, soil denitrification intensity and N₂O emissions were reduced under UNPKS treatment. The results of this study indicated that flooding increased soil N2O emission, but reduced the effects of fertilization on N2O emission. Chemical fertilizers combined with straw application could significantly reduce N2O emission under low moisture conditions.

Keywords: N2O emission; culture experiment; long-term fertilization; microbial functional genes; flood-upland rotation

近年来,随着温室气体急剧增加,极端气候等一 系列重大全球性的生态环境问题愈发严重,引起人们 广泛关注^[1-2]。增温潜势最高的 N₂O 不仅能引起温室 效应,还会对臭氧层造成严重破坏,甚至威胁地球生 物健康^[3-4]。研究表明,农田土壤是N₂O的重要排放 源,每年农田的N₂O排放量占全球N₂O总排放量的 43% 以上[5-6]。同时,农田生态系统也具有巨大的固 碳减排潜力^[7]。因此,降低农田土壤N₂O排放对缓解 气候变化、提高氮肥利用率等具有极其重要的意义。 施肥作为农业生产中常见的农田管理措施之一,在提 升土壤肥力的同时也影响着农田N₂O排放,而在农田 生态系统中不同施肥种类和不同施肥量对 N₂O 排放 的影响存在较大差异[8-11]。普遍认为施入氮肥会促进 土壤 N₂O 的排放^[8,12-13]。通过合理的施肥管理不仅能 够培肥土壤,而且对缓解土壤N2O排放也具有积极意 义^[11,14]。施肥是补充土壤无机氮和影响 N₂O 排放的最 直接的驱动因子。农田土壤常年高氮投入导致土壤 氮过剩的问题已成为人们关注的焦点。研究发现,氮 肥的过量施用显著提高nirK和nosZ基因拷贝数[15-16], 引起 N₂O 排放量增加^[17]。然而, Yin 等^[18]的研究却表 明高氮投入降低nirS基因拷贝数。秸秆还田具有提 高土壤碳储量,增加土壤肥力^[19],降低土壤 N₂O 排放

的作用[14.20]。但裴淑玮等[21]的研究结果表明秸秆还田 显著增加了农田N₂O排放。由此可见,高氮投入和秸 秆还田对土壤 N₂O 排放的影响均未得到共识。土壤 水分是影响土壤 N₂O 排放的重要环境因素之一^[22]。 水分可以改变土壤微生物生存环境,进而影响N2O排 放。有研究报道,在低水分条件下,土壤N2O排放主 要由硝化作用主导,而在高水分条件下则是由反硝化 作用主导[23-26]。徐华等[27]认为水分通过改变土壤中 O2浓度、温度和底物浓度等条件,能在很大程度上改 变自养型细菌的组成,进而影响土壤 N2O 排放。而 Qin 等^[28]研究发现,增加土壤水分含量主要影响含 nirK和nosZ基因微生物的群落结构,从而调控N₂O 的排放。水分含量调控土壤微生物群落结构,进而 决定硝化作用和反硝化作用的相对强度及 N₂O 的排 放。因此,不同水分条件下土壤 N₂O 排放的微生物 机制尚未得到统一结论,还需结合土壤微生物群落 结构等进一步探索。

南方地区是我国主要的水稻生产基地,高温多雨 的气候条件造就了普遍的水旱轮作种植模式。烟-稻轮作是我国福建省水旱轮作的典型模式之一,为保 证两季作物的产量,通常投入大量化学肥料,从而容 易引起硝态氮淋溶和 N₂O 排放加剧等一系列生态环 境问题。通常情况下,氮过量会降低土壤pH,并且增加N₂O排放,而秸秆添加能缓解土壤酸化,增加土壤有机质含量,降低N₂O排放。轮作过程中的干湿交替导致两季土壤水分存在很大差异,这不仅会改变土壤微生物群落结构,而且对N₂O排放也具有很大影响。不同水分条件下,N₂O排放对不同肥料投入的响应还需进一步验证。基于此,本试验以水-旱轮作长期定位试验土壤为研究对象,设置60%持水量(WHC)和淹水两个水分条件,用来模拟烟叶季和水稻季的田间水分状况,研究不同水分对长期定位不同施肥量土壤N₂O排放的影响,以期为亚热带地区稻田温室气体减排提供理论依据和技术支撑。

1 材料与方法

1.1 试验地概况

田间原位监测试验地建于2008年,位于中国福 建省三明市将乐县古镛镇张公村(26°44′53″N,117° 26′48″E)。该地属于亚热带季风气候,年平均气温 为18.9℃,年平均降水量为1667~1880mm,年均日 照约1736h;土壤母质为花岗岩,土壤腐殖质层15~ 30 cm。监测点处于山腰位置,坡度为8°。试验站点 设置时耕层土壤平均 pH 为 5.31, 有效磷 20.5 mg· kg⁻¹、有机质(SOM)25.85 g・kg⁻¹、全氮(TN)1.39 g・ kg⁻¹, 铵态氮(NH₄-N)和硝态氮(NO₃-N)含量分别为 7.12 mg·kg⁻¹和2.20 mg·kg⁻¹。每年2月或3月种植烟 草,7月种植水稻。样地设置4个处理,分别为不施肥 (CK),推荐施肥(NPK),高氮施肥(N_bPK),推荐施肥+ 水稻秸秆还田(NPKS),具体施肥量见表1。采用完全 随机区组设计,每个施肥处理设置3个重复地块(7 m×4m),地块用砖框隔开。2021年水稻季收获后采 用S型采样法多点采集表层土壤(0~15 cm),充分混 匀后分为两部分:一部分土壤于室温下风干并过2 mm筛,用于土壤理化性质的测定;另一部分土样于 4℃条件下低温储存,并在一周内进行培养试验。

1.2 试验设计

在4种长期不同施肥的基础上,设置60%WHC (U)和淹水(F)2个不同的水分条件,共8个处理,每 个处理称取30g土壤(干基)于250mL三角瓶中,加 入去离子水使水分含量达到50%WHC,25℃预培养1 周,使土壤微生物充分激活。预培养结束后,将尿素 溶液均匀施入到相应处理的土壤中,使得每个处理添 加的氮含量达到200mg·kg⁻¹,同时调节含水量,使每 个长期施肥处理土壤分别达到目标水分,每个处理设

表1 烟-稻轮作模式下不同施肥处理及施肥量

Table 1 Different fertilization rates in fertilization treatments

under tobacco-rice rotation modes

	施肥处理 Fertilization treatment	N/ (kg•hm ⁻²)	P ₂ O ₅ / (kg•hm ⁻²)	$\frac{K_2O}{(\text{kg} \cdot \text{hm}^{-2})}$	秸秆添加量 Amount of straw added/(kg•hm ⁻²)
烟季	СК	—	—	_	—
	NPK	127.5	99.0	377.2	—
	$N_h P K$	191.2	99.0	377.2	—
	NPKS	127.5	99.0	377.2	—
稻季	СК	—	—	—	—
	NPK	166.0	29.9	72.0	—
	$N_h P K$	249.1	29.9	72.0	—
	NPKS	166.0	29.9	72.0	3 600.0

注:N、P2O5、K2O分别表示田间年总施氮量、年总施磷量、年总施 钾量,3600kg·hm⁻²为水稻季种植结束添加水稻秸秆量。

Note: N, P₂O₃ and K₂O indicate the total annual nitrogen application, annual total phosphorus application and annual total potassium application in the field, respectively, and 3 600 kg \cdot hm⁻² is the amount of rice straw added at the end of the rice season.

置3个重复,用透气膜封口后于25℃条件下恒温培养。分别在培养后的第1、3、5、7、10、14、21、28、32天取样测定N₂O和无机氮浓度。

1.3 样品采集

取气时先将三角瓶连接带有软管和三通阀的橡胶塞,连接处已涂抹强力胶并晾干,保证装置气密性良好,利用配套的多孔抽真空装置,连续置换空气3次,每次不低于1min,再次放入25℃条件下恒温培养6h,然后用连接有三通阀的20mL针管进行取气,取气时缓慢推拉针管3次,使瓶内气体混合均匀后再进行取气。取气完毕后,向三角瓶中加入150mL1mol·L⁻¹KCl溶液,190r·min⁻¹振荡提取1h后过滤,得到的滤液用来测定NH↓-N、NO₅-N浓度。培养结束后,均匀分取最后一天土壤样品约10.00g,-80℃冷冻保存,于两周内进行荧光定量qPCR分析。

1.4 样品分析与测定

土壤pH值采用水土比为2.5:1的电位法测定;有 效磷含量用1 mol·L⁻¹ NH₄F溶液浸提、钼蓝比色法测 定;SOM采用重铬酸钾容量法-外加热法测定;TN采 用半微量开氏法测定,具体测定方法参考《土壤农业化 学分析方法》。水溶性有机碳(DOC)含量采用有机碳 氮分析仪(Shimadzu Corp,Kyoto,日本)测定;土壤最大 持水量的测定参照文献[29]中的方法;NH¹₄-N、NO₃-N 含量采用1 mol·L⁻¹KCl溶液浸提后使用SKALAR连 续流动分析仪(Skalar, Breda,荷兰)测定;N₂O 气体浓

www.aer.org.cn

度采用安捷伦气相色谱仪(7890A,美国)测定。

采用MOBIO公司的土壤快速提取试剂盒(Power-Soil[™] DNA Isolation Kits)进行 DNA 提取,提取步骤参 考试剂盒说明书,构建好的质粒经测序鉴定无误后用 超微量紫外分光光度计((NanoDrop2000, Thermo Fisher Scientific,美国)测定OD₂₆₀的值。用1%的琼脂 糖凝胶电泳检测提取DNA片段,DNA样品于-20℃条 件下保存备用。采用土壤中氨单加氧酶(AMO)基 因,亚硝酸还原酶nirK,nirS基因和氧化亚氮还原酶 nosZ基因拷贝数分别表示氨氧化古菌(AOA)、氨氧化 细菌(AOB)与nirK、nirS和nosZ反硝化菌,PCR扩增 所用引物和反应条件如表2所示。定量分析采用 SYBR GREEN I法,反应体系为20 µL,其中包括10 µL 2X ChamQ SYBR Color gPCR Master M, 10 µmol· L⁻¹正反向引物各 0.8 µL, 0.4 µL 50 X ROX Reference Dy,2 µL Template(DNA),6 µL 无菌水。并使用10⁻¹~ 10°浓度梯度的标准质粒作为模板进行荧光定量 PCR 扩增(ABI 7300 型荧光定量 PCR 仪, Applied Biosystems,美国),最后根据扩增曲线计算基因丰度。

1.5 数据处理与分析

N₂O排放通量的计算如公式(1)所示:

$$F = \rho \times \frac{\mathrm{d}c}{\mathrm{d}t} \times V \times \frac{273}{(273+T) \times m} \tag{1}$$

式中:F为N₂O排放通量, μ g·kg⁻¹·h⁻¹; ρ 为标准状态下 N₂O-N的密度;dc/dt为单位时间内培养瓶内气体浓度 增加量,10⁻⁶·h⁻¹或10⁻⁹·h⁻¹;V为培养瓶中气体的有效 空间体积,m³;m为培养瓶内的烘干土质量,kg;T为培 养温度,℃。

气体累积排放量通过相邻2次培养时间的平均 气体排放通量与时间相乘后加权累积计算,如公式 (2)所示:

$$C_{i+1} = \sum_{i=1}^{n} \left(\frac{F_{i+1} + F_i}{2} \right) \times 24 \times D$$
 (2)

农业环境科学学报 第42卷第7期

式中:*C_{i+1}为第i次和第i+1次采样*期间的气体累积排放量,mg·kg⁻¹;*F_i为第i次采样*时气体瞬时排放通量;*i*为采样次数;*D*为两次采样间隔时间,d。

数据为3次重复的平均值,采用Excel 2019进行数据分析,利用SPSS 27.0软件在Duncan(SSR)方法 下分析不同水肥处理各指标的差异显著性,利用Origin Pro 2022制图。

2 结果与分析

2.1 长期不同施肥对土壤理化性质的影响

如表3所示,与CK相比,各长期施肥处理均显著 降低土壤pH,但显著提高土壤有效磷和DOC含量。 各施肥处理下SOM含量为NPK>NPKS>N_hPK>CK (15.58~20.09g·kg⁻¹),相对于CK处理,NPK和NPKS 处理均显著增加SOM含量。土壤TN含量为NPKS> N_hPK>NPK>CK(1.05~1.26g·kg⁻¹),统计分析表明 NPKS处理下TN含量显著高于其他施肥处理。碳氮 比(C/N)为NPK>N_hPK>NPKS>CK(8.66~10.57),NPK 显著高于其他处理。与CK相比,长期不同施肥各处 理均显著降低土壤NO₃-N含量,N_hPK和NPKS均显 著提高土壤NH₄-N含量(P<0.05)。

2.2 土壤 NH4-N、NO3-N含量的动态变化

整个培养周期内,60%WHC下NH[‡]-N含量变化 范围为13.17~196.83 mg·kg⁻¹,各处理土壤NH[‡]-N动 态变化趋势基本一致(图1a),UNPK和UN_bPK处理于 培养第3天左右达到峰值,UCK和UNPKS处理于培 养第5天达到峰值,5d后均转变为下降趋势。培养 的7~28d时,UCK处理NH[‡]-N含量显著高于其他处 理。淹水条件下NH[‡]-N含量变化范围为0~138.85

表 2 荧光实时定量 PCR 扩增的引物和反应系	条件

Table 2 Amplification primers and reaction conditions for real-time quantitative PCR							
目标基因	引物	引物序列	定量PCR反应程序				
Target gene	Primers	Primer sequences	Quantitative PCR reaction procedures				
amoA-AOA	amoA-F_	STAATGGTCTGGCTTAGACG	95 °C 3 min, 95 °C 5 s, 58 °C 30 s, 72 °C 1 min, 40个循环				
	amoA-R	GCGGCCATCCATCTGTATGT					
amoA-AOB	amoA-1F_	GGGGTTTCTACTGGTGGT	95 °C 3 min, 95 °C 5 s, 58 °C 30 s, 72 °C 1 min, 40个循环				
	amoA-2R	CCCCTCKGSAAAGCCTTCTTC					
nirK	nirK-FlaCu_	ATCATGGTSCTGCCGCG	95 °C 3 min, 95 °C 5 s, 58 °C 30 s, 72 °C 1 min, 40个循环				
	nirK-R3Cu	GCCTCGATCAGRTTGTGGTT					
nirS	nirS-cd3AF	GTSAACGTSAAGGARACSGG	95 ℃ 3 min,95 ℃ 5 s,58 ℃ 30 s,72 ℃ 1 min,40个循环				
	nirS-R3cd	GASTTCGGRTGSGTCTTGA					
nosZ	nosZ-F	CGYTGTTCMTCGACAGCCAG	95 °C 3 min,95 °C 5 s,58 °C 30 s,72 °C 1 min,40个循环				
	nosZ-R	CAKRTGCAKSGCRTGGCAGAA					

Table 3 Soil properties of different treatments after long term experiment								
处理 Treatment	рН	有效磷 Available phosphorus/ (mg•kg ⁻¹)	可溶性有机碳 Soluble organic carbon/ (mg•kg ⁻¹)	有机质 Soil organic matter/(g·kg ⁻¹)	全氮 Total nitrogen/ (g•kg ⁻¹)	碳氮比 C/N	硝态氮 Nitrate nitrogen/ (mg•kg ⁻¹)	铵态氮 Ammonium nitrogen/ (mg·kg ⁻¹)
СК	5.24±0.26a	$4.43 \pm 0.08 \mathrm{b}$	$34.55{\pm}6.37\mathrm{b}$	$15.58 \pm 1.14 \mathrm{b}$	$1.05 \pm 0.09 \mathrm{b}$	$8.66{\pm}0.94{\rm b}$	23.93±2.50a	$3.65 \pm 1.29 \mathrm{b}$
NPK	$5.00{\pm}0.05{\rm b}$	28.38±2.89a	60.28±12.19a	20.09±1.85a	$1.11 \pm 0.09 \mathrm{b}$	10.57±0.88a	$17.14 \pm 1.42 b$	$3.57 \pm 0.84 \mathrm{b}$
$N_{\rm h}PK$	$4.94{\pm}0.06{\rm b}$	26.82±2.28a	54.07±8.95a	17.89±2.41ab	$1.13 \pm 0.09 \mathrm{b}$	$9.18 \pm 0.34 \mathrm{b}$	$17.61 \pm 3.85 \mathrm{b}$	6.36±2.63a
NPKS	4.98±0.04b	26.60±2.64a	52.79±13.50a	19.60±1.22a	1.26±0.13a	9.04±0.33b	16.46±2.41b	6.90±2.52a

表3 长期不同田间施肥处理土壤理化性质

注:同列不同小写字母表示处理间差异显著(P<0.05),表中数据为平均值±标准差。下同。

Note: Different lowercase letters in the same column indicate significant different among treatments at P < 0.05 levels, and the data in the table are represented with mean \pm standard deviation. The same below.

mg·kg⁻¹,各处理土壤NH⁴-N变化趋势高度趋同(图1b),除UNPKS第3天达到峰值外,其他处理皆于培养第5天达到峰值,5d后转变为下降趋势。14~32d,FCK处理NH⁴-N含量显著高于其他处理。氮肥添加会明显提高土壤NO⁵-N含量,大量的NH⁴-N由土壤硝化作用转化为NO⁵-N。整个培养周期内,60%WHC下NO⁵-N含量变化范围为9.92~267.17 mg·kg⁻¹,各处理土壤NO⁵-N动态变化趋势大致相同(图1c),除UNPK处理于第21天达到峰值外,其他处理NO⁵-N含量均

一直增加至培养结束。3~32 d,UCK处理NO₃-N含量 显著低于其他处理。淹水条件下NO₃-N含量变化范 围为4.65~162.60 mg·kg⁻¹,淹水各处理土壤NO₃-N变 化趋势高度相似(图1d),FCK和FNPK处理在第21天 达到峰值,而FN_bPK和FNPKS处理在第28天达到峰 值,第10天后整体变化幅度逐渐增大。10~32 d,FCK 处理NO₃-N含量显著低于其他处理。总体而言, 60%WHC下各施肥处理NH²-N和NO₃-N含量的变化 幅度均显著大于对应的淹水各施肥处理。

Figure 1 Dynamic changes of NH⁴₄-N and NO³₃-N content per fertilization treatment under two different moisture conditions

www.aer.org.cn

2.3 土壤 N₂O 排放通量和累积排放量

60%WHC条件下,N₂O排放通量(以N计)的变化 范围为0.05~5.13 μg·kg⁻¹·h⁻¹(图2a)。UCK处理在第 7天和第28天分别出现两次峰值,且第7天的N₂O排 放通量更高;UNPK和UN_bPK处理均在第28天出现峰 值,而UNPKS处理仅在第14天显示出微弱的峰值, 随后一直呈降低趋势,直至培养结束。淹水条件下, N₂O排放通量(以N计)的变化范围为0.03~73.61 μg· kg⁻¹·h⁻¹;各处理N₂O排放通量动态变化趋势基本一致 (图2b)。除FN_bPK处理在第10天达到峰值外,其他 处理皆于培养第14天达到峰值,随后一直处于下降 状态,直至培养结束;3~21 d,FNPKS处理略高于其他 处理。总体而言,整个培养过程中,淹水条件下各施 肥处理N₂O排放通量峰值均远高于60%WHC对应的 各施肥处理。

60%WHC条件下,至培养结束,各处理N₂O累积 排放量达到0.56~1.44 mg·kg⁻¹(图3a)。与UCK相比, UNPK、UN_PFK、UNPKS处理的N₂O累积排放量分别降

农业环境科学学报 第42卷第7期

低了 45%、38%、61%,均显著低于 UCK 处理; UNPKS 显著低于其他施肥处理。淹水条件下,至培养结束, 各处理 N₂O 累积排放量为 14.89~20.70 mg·kg⁻¹(图 3b)。与 FCK 相比, FNPK 和 FNPKS 处理 N₂O 累积排 放量分别提高了 10% 和 18%,而 FN_bPK 降低了 12%。 总体而言,淹水各施肥处理 N₂O 累积排放量大于 60% WHC 各施肥处理,淹水条件显著促进了各施肥 处理的 N₂O 排放。土壤 N₂O 排放和无机氮相关性分 析结果表明,在两种水分条件下,土壤 N₂O 累积排放 量均与 NH₄-N含量呈负相关,与 NO₃-N含量呈正相 关(*P*<0.01)(图4)。

2.4 微生物功能基因丰度

60%WHC培养结束后,不同施肥处理下土壤(干 土)的AOA和AOB基因拷贝数分别为8.06×10⁶~1.54× 10⁷ copies · g⁻¹和1.14×10⁷~1.75×10⁷ copies · g⁻¹(表4)。 与UCK相比,UNPK、UN_bPK、UNPKS处理的AOA基因 拷贝数分别提高48%、42%、25%,AOB基因拷贝数分 别提高17%、1%、35%。相比于UCK,UNPK、UN_bPK

图2 两种不同水分条件下各施肥处理 N₂O 排放动态变化

Figure 2 Dynamic changes of N₂O emissions per fertilization treatment under two different moisture conditions

处理显著提高 AOA 基因拷贝数, UNPKS处理显著提高 AOB 基因拷贝数。淹水条件培养结束后, 不同处理 AOA 和 AOB 基因拷贝数分别为1.45×10⁷~3.59×10⁷ copies • g⁻¹和 1.35×10⁷~3.00×10⁷ copies • g⁻¹(表4)。与FCK 相比, FNPK、FN_PK、FNPKS的 AOA 基因拷贝数分别提高 60%、13%、26%, AOB 基因拷贝数分别提高 55%、41%、49%。相比于FCK 处理, FNPK、FN_PK、FNPKS 均显著提高了 AOA 和 AOB 基因拷贝数; 与FNPK 相比, FN_bPK、FNPKS显著降低 AOA 基因拷贝数, FN_bPK 显著降低 AOB 基因拷贝数。总体而言, 淹水条件各施肥处理 AOA 和 AOB 基因拷贝数分别为 60%WHC 各处理的1.80~2.49倍和1.19~2.19倍。

60%WHC培养结束后,不同处理的nirK、nirS和 nosZ基因拷贝数分别为8.78×10⁶~1.23×10⁷、1.79×10⁷~ 3.42×10⁷、5.78×10⁷~7.90×10⁷ copies · g⁻¹(表4)。与 UCK相比,UN_bPK、UNPKS处理的nirK基因拷贝数分 别降低28%和10%,UNPK、UN_bPK、UNPKS的nirS基 因拷贝数分别降低19%、91%、71%;UNPK和UNPKS 处理的nosZ基因拷贝数分别提高9%和7%,而 UN_bPK处理降低24%。各处理中nosZ基因拷贝数均

显著高于nirK和nirS基因拷贝数,分别提高0.84~0.87 倍和 0.52~0.74 倍。与 UCK 相比, UN_bPK 处理均显著 降低nirK、nirS和nosZ基因拷贝数,说明氮肥过量施 入使得反硝化相关功能基因丰度减小;UNPKS的nirS 基因拷贝数显著低于UCK和UNPK处理,说明秸秆添 加显著减少nirS基因拷贝数:与此同时UCK、UNPK、 UNPKS处理的 nosZ基因拷贝数相对于 nirK和 nirS 均 具有较高水平。60%WHC下,氮过量施肥均显著降 低nirK、nirS和nosZ基因拷贝数,推荐施肥配施秸秆 处理显著降低nirS基因拷贝数。淹水下培养结束后, 不同处理 $nirK_nirS$ 和nosZ基因拷贝数分别为 $1.01\times$ 10⁷~1.18×10⁷、3.41×10⁷~5.43×10⁷、7.06×10⁷~8.65×10⁷ copies · g⁻¹(表4)。与FCK相比, FNPK、FN_bPK和FN-PKS处理的 nirK 基因拷贝数分别提高 15%、5% 和 1%, FNPK、FN_bPK、FNPKS处理的nirS基因拷贝数分 别降低 60%、52%、47%: FNPK 和 FN_bPK 的 nosZ 基因 拷贝数分别降低7%和7%,而FNPKS处理提高12%。 FCK处理的nirS基因拷贝数显著高于其他处理,说明 肥料投入和秸秆配施都显著降低nirS基因拷贝数。 总体而言,淹水条件下各施肥处理nirS基因拷贝数是

表4 不同;	水分条件下	各施肥处	理微生物	勿相关功	能基因=	丰度
--------	-------	------	------	------	------	----

Table 4 Abundance of microbial functional genes under different water conditions under different fertilization treatments

处理 treatment	AOA/ $(10^6 \operatorname{copies} \cdot g^{-1})$	AOB/ $(10^6 \text{ copies} \cdot g^{-1})$	nirK/ (10 ⁶ copies • g ⁻¹)	nirS/ (10 ⁶ copies • g ⁻¹)	nosZ/ (10 ⁶ copies • g ⁻¹)	(nirK+nirS)/nosZ
UCK	8.06±2.08b	11.35±2.33b	11.26±2.80a	34.16±7.58a	71.57±19.50a	0.64±0.04a
UNPK	15.36±7.14a	13.69±2.66ab	12.34±3.87a	28.69±5.65a	79.02±14.82a	$0.52 \pm 0.06 \mathrm{b}$
UN _h PK	13.86±7.23a	$11.51 \pm 4.50 \mathrm{b}$	8.78±2.93b	$17.89 \pm 9.35 \mathrm{b}$	$57.84 \pm 25.26 \mathrm{b}$	$0.46 \pm 0.03 \mathrm{bc}$
UNPKS	10.68±3.21ab	17.50±9.84a	10.24±2.57a	$20.00 \pm 7.11 \mathrm{b}$	77.06±19.29a	$0.41 \pm 0.05 c$
FCK	14.48±8.52c	13.52±2.87c	10.07±1.74a	54.33±7.24a	75.57±17.19a	0.87±0.12a
FNPK	35.86±10.86a	30.03±13.29a	11.80±3.40a	$34.05 \pm 13.03 \mathrm{b}$	71.03±21.72a	$0.65 \pm 0.06 \mathrm{b}$
$\mathrm{FN}_{\mathrm{h}}\mathrm{PK}$	$16.59 \pm 8.96 \mathrm{b}$	22.77±7.01b	10.65±6.36a	35.77±17.56b	70.56±19.79a	$0.65 \pm 0.16 \mathrm{b}$
FNPKS	$19.63 \pm 3.57 \mathrm{b}$	26.70±4.70ab	10.15±1.92a	$36.94 \pm 5.45 \mathrm{b}$	86.52±22.86a	$0.56 \pm 0.06 \mathrm{b}$

1662

60%WHC的1.19~2.00倍。

3 讨论

3.1 长期施肥处理对土壤理化性质的影响

施肥是提升土壤肥力的有效措施,而土壤理化性 质是评价土壤是否健康的重要指标^[30]。本研究结果 表明,长期不同施肥处理降低轮作土壤pH(表3),这 与方凯等³¹的研究一致,长期化肥和化肥配施秸秆处 理均降低土壤 pH。邹湘等^[32]的研究也表明,与不施 肥相比,长期NPK和NPKS施肥处理也显著降低土壤 pH。这可能是由于氮肥的施入,虽然可以暂时提高 土壤pH值,但土壤中NHI-N转化成亚硝态氮时,释 放大量的H⁺,长期氮肥投入造成土壤酸化,进而土壤 pH降低。化肥配施秸秆降低土壤 pH,可能由于秸秆 中含有微生物代谢所需的营养物质,微生物代谢过程 产生有机酸,导致土壤酸化^[33]。长期NPKS处理提高 SOM 和 TN 含量(表3),这与方凯等[31]和郝耀旭等[34]的 研究结果一致,化肥配施秸秆处理提升SOM和TN含 量。然而本研究中,长期NPK处理也显著增加了SOM 含量(表3),这可能是因为无机氮肥的施入在增加作 物产量的同时,也增加了作物凋落物、根茬残体和根分 泌物,在刺激土壤微生物生长的同时,促进了土壤腐殖 质的分解,故而 SOM 含量增加^[35]。但本研究结果显 示,长期NPK处理并未显著增加土壤TN含量,这就导 致长期NPKS处理C/N含量低于NPK处理。

长期不同施肥处理均降低土壤NO₃-N含量, N_bPK和NPKS处理提高NH₄-N含量(表3)。郝耀旭 等^[34]的研究显示,长期化肥和化肥配施秸秆处理显著 增加轮作土壤中NO₃-N含量,然而本研究却与之相 反,CK处理NO₃-N含量显著高于NPK、N_bPK、NPKS 处理,这可能是因为相比NH₄-N,微生物利用NO₃-N 需要消耗更多的能量^[36],且土壤中长期C源不足, 进一步导致微生物利用NO₃-N的能力降低,土壤中 的NO₃-N形成长期累积状态^[37]。

3.2 轮作系统土壤各施肥处理 N₂O 排放及相关功能 基因对水分的响应

土壤水分是调控土壤硝化和反硝化作用相对强 度与 N₂O 排放的重要因素^[38]。硝化作用通常偏好于 好氧环境,而反硝化作用更偏好于厌氧环境^[39-40]。本 研究表明,淹水显著降低各施肥处理土壤的硝化作用 强度,而且显著增加 N₂O 排放(图 1、图 2 和图 3)。这 与李平等^[41]的研究结果相似,即淹水显著抑制硝化作 用的进行,但显著增加 N₂O 的排放。本研究中,FCK、

FNPK、FN_bPK、FNPKS各处理NH[‡]-N和NO⁵₃-N含量变 化幅度均显著小于UCK、UNPK、UN,PK、UNPKS,说明 淹水显著降低硝化作用的强度;但培养第32天时 FCK、FNPK、FN_bPK、FNPKS处理土壤的AOA和AOB 基因拷贝数分别是UCK、UNPK、UN_bPK、UNPKS处理 土壤的1.80、2.34、2.49、1.84倍和1.19、2.19、1.98、1.53 倍,淹水各施肥土壤氨氧化微生物功能基因拷贝数远 大于60%WHC各施肥处理,这可能由于土壤中氨氧 化微生物具有耐低氧条件的特性, AOA 和 AOB 拷贝 数较大,但氨氧化微生物活性较低[42]。有研究指出, 当土壤水分大于60%WHC时,硝化作用的强度逐渐 降低,反硝化作用的强度随水分增加而增加[43]。土壤 水分含量主要通过影响含nirK和nosZ基因微生物的 群落结构,刺激部分小丰度微生物的生长,调控N2O 的排放强度[28]。但本研究第32天培养完毕时淹水处 理各施肥土壤nirS基因拷贝数显著高于60%WHC对 应的各施肥处理,这可能由于土壤C/N及其对施肥的 响应能力差异所导致。本研究中淹水各施肥土壤 (nirK+nirS)/nosZ比值显著大于60%WHC对应的各施 肥处理,淹水各施肥土壤透气性降低,O2向土壤中扩 散被表层淹水限制,从而促进了反硝化作用,增加了 土壤N2O排放[44-45]。

有研究表明,施用氮肥会增加土壤 N2O 排放[46-47], 秸秆添加降低土壤 N₂O 排放^[48-49]。但本研究结果显 示,UCK处理N₂O累积排放量均大于其他施肥处理, 这可能是因为长期不施肥改变了土壤质地,降低了土 壤透气性,随着土壤中少量的O2被消耗,形成反硝化 作用更喜好的厌氧环境,从而触发了反硝化作用的发 生,从(nirK+nirS)/nosZ比值角度也可看出,UCK处理 的(nirK+nirS)/nosZ比值虽然低于FCK,但显著高于 UNPK、UNhPK和UNPKS处理。淹水各施肥处理N2O 排放没有显著差异,这与汤宏等[50]和朱启林等[51]的研 究结果均不一致。淹水条件下 N₂O 的排放主要由反 硝化作用主导^[23]。本研究中培养第32天时FNPK、 FN_bPK、FNPKS处理的(nirK+nirS)/nosZ比值无显著差 异,这表明淹水时施肥处理反硝化作用强度无显著差 异,导致N2O排放量无显著差异。李彬彬等^[52]的研究 表明,土壤起始C/N越低,N₂O排放量越高。FCK处理 N₂O 排放量较高主要是 CK 处理土壤 C/N 较低所致。 60%WHC水分条件下,推荐施肥配施秸秆处理显著 降低N2O排放量,这与柴凯斌¹¹⁴的研究结果一致。可 能原因是:(1)秸秆还田增加了土壤中SOM含量,为 微生物提供了能量,可固定更多的无机氮[53-54];(2)秸 秆还田刺激土壤中的矿质氮微生物活性,进而减少硝 化和反硝化作用的底物^[55-56];(3)培养32d时,UNPKS 处理的(*nirK+nirS*)/*nosZ*比值显著低于其他处理,UN-PKS处理减弱土壤反硝化作用,减少N₂O的排放。综 上所述,淹水抑制了不同施肥的响应,且增加了土壤 N₂O的排放。

4 结论

(1)本研究发现,长期施肥降低土壤pH,推荐施 肥配施秸秆处理增加SOM和TN含量;相比于推荐 施肥,高氮施肥和推荐施肥配施秸秆处理降低土壤 C/N。

(2)与不施肥相比,60%WHC条件下,推荐施肥 提高AOA基因拷贝数,高氮施肥提高AOA基因拷贝 数,降低nirK、nirS和nosZ基因拷贝数,推荐施肥配施 秸秆提高AOB基因拷贝数,降低nirS基因拷贝数;淹 水条件下,3种施肥处理均提高AOA和AOB基因拷 贝数,均降低nirS的基因拷贝数。

(3)淹水条件剧烈增加 N₂O 排放,对温室气体减 排造成不利影响,而且抑制了不同施肥的响应,尤其 降低秸秆添加的减排效果。

(4)综合两种水分条件对不同定位长期施肥轮作 土壤 N₂O 排放的影响,水稻秸秆还田对烟-稻轮作系 统中烤烟季温室气体减排具有积极意义。

参考文献:

- [1] 王法, 张旦麒, 木志坚, 等. 长期不同施肥方式对紫色土稻-麦轮作 麦季 N₂O 排放的影响[J]. 西南大学学报(自然科学版), 2017, 39 (5):22-30. WANG F, ZHANG D Q, MU Z J, et al. Effect of longterm differentiated fertilization on N₂O emission from a rice-wheat rotated purple soil during wheat growing seasons[J]. Journal of Southwest University(Natural Science Edition), 2017, 39(5):22-30.
- [2] 熊丽萍, 吴家梅, 纪雄辉, 等.水旱轮作系统中土壤 CH4和 N₂O 排放研究进展[J]. 农业环境科学学报, 2020, 39(4):863-871. XIONG L P, WU J M, JI X H, et al. A review on soil CH4 and N₂O emissions from paddy-upland rotation systems[J]. Journal of Agro-Environment Science, 2020, 39(4):863-871.
- [3] IPCC Working Group I. Climate change 2013: The physical science basis: conclusions[J]. Bulletin Fur Angewandte Geologie, 2013, 18(2): 5-19.
- [4] 孙星,金海涛,徐林文,等.水肥对稻麦轮作农田N₂O排放影响及减 排的研究进展[J]. 安徽农业科学,2020,48(5):28-31. SUN X, JIN H T, XU L W, et al. Research progress on effects of water and fertilizer on N₂O emission and emission reduction in rice-wheat rotation farmland[J]. Journal of Anhui Agricultural Sciences, 2020, 48(5):28-31.
- [5] 张玉铭, 胡春胜, 张佳宝, 等. 农田土壤主要温室气体(CO2、CH4、

N₂O)的源/汇强度及其温室效应研究进展[J]. 中国生态农业学报, 2011, 19(4):966-975. ZHANG Y M, HU C S, ZHANG J B, et al. Research advances on source/sink intensities and greenhouse effects of CO₂, CH₄ and N₂O in agricultural soils[J]. *Chinese Journal of Eco-Agriculture*, 2011, 19(4):966-975.

- [6] CARLSON K M, GERBER J S, MUELLER N D, et al. Greenhouse gas emissions intensity of global croplands[J]. *Nature Climate Change*, 2016, 7(1):63–68.
- [7] 李金秋, 邵晓辉, 缑广林, 等. 水肥管理对热带地区双季稻田 CH4和 N₂O 排放的影响[J]. 环境科学, 2021, 42(7): 3458-3471. LI J Q, SHAO X H, GOU G L, et al. Effects of water and fertilization management on CH4 and N₂O emissions in double-rice paddy fields in tropical regions[J]. Environmental Science, 2021, 42(7): 3458-3471.
- [8] 郭腾飞,梁国庆,周卫,等. 施肥对稻田温室气体排放及土壤养分的 影响[J]. 植物营养与肥料学报, 2016, 22(2):337-345. GUO T F, LIANG G Q, ZHOU W, et al. Effect of fertilizer management on greenhouse gas emission and nutrient status in paddy soil[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(2):337-345.
- [9] 邢志强, 席瑞泽, 杨永强, 等. 不同水分条件下尿素与硫酸铵对碱性水稻土 N₂O 释放途径的影响[J]. 南方农业学报, 2019, 50(11): 2429-2435. XING Z Q, XI R Z, YANG Y Q, et al. Effects of urea and ammonium sulfate on N₂O release pathway in an alkaline paddy soil[J]. Journal of Southern Agriculture, 2019, 50(11):2429-2435.
- [10] 许宏伟,李娜, 冯永忠,等. 氮肥和秸秆还田方式对麦玉轮作土壤 N₂O 排放的影响[J]. 环境科学, 2020, 41(12):5668-5676. XU H W, LI N, FENG Y Z, et al. Effects of nitrogen fertilizer and straw returning methods on N₂O emissions in wheat-maize rotational soils[J]. *Environmental Science*, 2020, 41(12):5668-5676.
- [11] 董玉红, 欧阳竹, 李运生, 等. 不同施肥方式对农田土壤 CO₂和 N₂O 排放的影响[J]. 中国土壤与肥料, 2007(4):34-39. DONG Y H, OUYANG Z, LI Y S, et al. Influence of different fertilization on CO₂ and N₂O fluxes from agricultural soil[J]. Soil and Fertilizer Sciences in China, 2007(4):34-39.
- [12] 徐鹏, 蒋梦蝶, 邬磊, 等. 华中地区水旱轮作模式下水稻季施氮肥 对油菜季施氮肥土壤 N₂O 排放的影响[J]. 环境科学学报, 2018, 38 (2):798-804. XU P, JIANG M D, WU L, et al. Effects of nitrogen fertilization during rice growing season on N₂O emission from the subsequent rapeseed season in central China[J]. Acta Scientiae Circumstantiae, 2018, 38(2):798-804
- [13] 王旭燕, 张仁陟, 蔡立群, 等. 不同施氮处理下旱作农田土壤 CH₄、 N₂O 气体排放特征研究[J]. 环境科学学报, 2015, 35(11): 3655-3661. WANG X Y, ZHANG R Z, CAI L Q, et al. Emission characteristics of CH₄ and N₂O fluxes from dryland field under different nitrogen treatments[J]. Acta Scientiae Circumstantiae, 2015, 35(11): 3655-3661.
- [14] 柴凯斌. 秸秆还田对稻麦系统作物产量及温室气体排放的影响 [D]. 武汉:华中农业大学, 2018:36-39. CHAIK B. The effects of straw incorporation on crop yield and greenhouse gas emissions under rice-wheat cropping systems[M]. Wuhan: Huazhong Agricultural University, 2018:36-39.
- [15] 杨亚东, 宋润科, 马俊永, 等. 长期氮磷不同施用量对土壤细菌、硝

农业环境科学学报 第42卷第7期

化与反硝化微生物数量的影响[J]. 中国农业大学学报, 2018, 23 (9):81-88. YANG Y D, SONG R K, MA J Y, et al. Effects of long-term different N and P fertilization rates on the abundance of bacteria nitrifying and denitrifying microorganisms in soil[J]. Journal of China Agricultural University, 2018, 23(9):81-88.

- [16] YANG C, HAMEL C, GAN Y, et al. Incongruous variation of denitrifying bacterial communities as soil N level rises in Canadian canola fields[J]. Applied Soil Ecology, 2015, 89:93–101.
- [17] SHCHERBAK I, MILLAR N, ROBERTSON G P, et al. Global metaanalysis of the nonlinear response of soil nitrous oxide (N₂O) emissions to fertilizer nitrogen[J]. PNAS, 2014, 111(25):9199–9204.
- [18] YIN C, FAN F, SONG A, et al. Different denitrification potential of aquic brown soil in northeast China under inorganic and organic fertilization accompanied by distinct changes of *nirS* and *nirK* denitrifying bacterial community[J]. *European Journal of Soil Biology*, 2014, 65: 47-56.
- [19] WANG L, YUAN X, LIU C, et al. Soil C and N dynamics and hydrological processes in a maize-wheat rotation field subjected to different tillage and straw management practices[J]. Agriculture Ecosystems & Environment, 2019, 285:106616.
- [20] 邹建文. 稻麦轮作生态系统温室气体(CO₂、CH₄和 N₂O)排放研究 [D]. 南京:南京农业大学, 2005: 38-42. ZOU J W. A study on greenhouse gases (CO₂, CH₄ and N₂O) emissions from rice-winter wheat rotations in southeast China[D]. Nanjing: Nanjing Agricultural University, 2005: 38-42.
- [21] 裴淑玮,张圆圆,刘俊锋,等.华北平原玉米-小麦轮作农田 N₂O交换通量的研究[J].环境科学,2012,33(10):3641-3646. PEI S W, ZHANG Y Y, LIU J F, et al. N₂O exchange fluxes from wheat-maize crop rotation system in the North China Plain[J]. *Environmental Science*, 2012, 33(10):3641-3646.
- [22] HU N, WANG B, GU Z, et al. Effects of different straw returning modes on greenhouse gas emissions and crop yields in a rice-wheat rotation system[J]. Agriculture Ecosystems & Environment, 2016, 223: 115-122.
- [23] 王蕾, 董彦宏, 王连峰, 等. 不同水分含量下黑土氧化亚氮排放差 异[J]. 大连交通大学学报, 2021, 42(5):84-88. WANG L, DONG Y H, WANG L F, et al. Difference of nitrous oxide emission in black soil under different water content[J]. Journal of Dalian Jiaotong University, 2021, 42(5):84-88.
- [24] NGUYEN L T T, OSANAI Y, ANDERSON I C, et al. Flooding and prolonged drought have differential legacy impacts on soil nitrogen cycling, microbial communities and plant productivity[J]. *Plant and Soil*, 2018, 431(1/2);371–387.
- [25] 张世洁, 张刚, 王德建, 等. 秸秆还田配施氮肥对稻田增产及田面水氮动态变化的影响[J]. 土壤学报, 2020, 57 (2): 435-445. ZHANG S J, ZHANG G, WANG D J, et al. Effects of straw returning coupled with application of nitrogen fertilizer on rice yield and dynamics of nitrogen in surface water of paddy field[J]. Acta Pedologica Sinica, 2020, 57(2): 435-445.
- [26] 曹文超, 宋贺, 王娅静, 等. 农田土壤 N₂O 排放的关键过程及影响因素[J]. 植物营养与肥料学报, 2019, 25(10):1781-1798. CAO

W C, SONG H, WANG Y J, et al. Key production processes and influencing factors of nitrous oxide emissions from agricultural soils[J]. *Journal of Plant Nutrition and Fertilizers*, 2019, 25(10):1781–1798.

- [27] 徐华, 邢光喜, 蔡祖聪, 等. 土壤水分状况和质地对稻田 N₂O 排放 的影响[J]. 土壤学报, 2000, 37(4):499-505. XU H, XING G X, CAI Z C, et al. Effect of soil water regime and soil texture on N₂O emission from rice paddy field[J]. Acta Pedologica Sinica, 2000, 37 (4):499-505.
- [28] QIN H, WANG D, XING X, et al. A few key nirK- and nosZ-denitrifier taxa play a dominant role in moisture-enhanced N₂O emissions in acidic paddy soil[J]. Geoderma, 2021, 385(10):114917.
- [29] FIRERE N, SCHIMEL J P. Effects of drying-rewetting frequency on soil carbon and nitrogen transformations[J]. Soil Biology & Biochemistry, 2002, 34(6):777-787.
- [30] 刘畅,周明华,张博文,等.张家口坝上地区土地利用方式对土壤 理化性质的影响[J].土壤与作物,2021,10(3):333-343. LIU C, ZHOU M H, ZHANG B W, et al. Effects of land use patterns on soil physio-chemical properties in Zhangjiakou area[J]. Soil and Crop, 2021, 10(3):333-343.
- [31] 方凯, 孙丽丽, 周昌敏, 等. 长期秸秆还田对双季稻土壤有机碳组 分及碳库管理指数的影响[J]. 福建农业学报, 2022, 37(9):1216– 1224. FANG K, SUN L L, ZHOU C M, et al. Effects of long-term spent straw incorporation on organic carbons in soil and carbon pool management at two-crop rice fields[J]. Fujian Journal of Agricultural Sciences, 2022, 37(9):1216–1224.
- [32] 邹湘, 易博, 张奇春, 等. 长期施肥对稻田土壤微生物群落结构及 氮循环功能微生物数量的影响[J]. 植物营养与肥料学报, 2020, 26 (12): 2158-2167. ZOU X, YI B, ZHANG Q C, et al. Effects of long-term fertilization on the microbial community structure and the population of N cycle-related functional microorganism in paddy soil
 [J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(12): 2158-2167.
- [33] 吴荣, 刘善江, 孙昊, 等. 长期定位不同施肥方式对土壤肥力和微 生物的影响[J]. 中国土壤与肥料, 2020(4):12-18. WU R, LIU S J, SUN H, et al. Effects of long-term fertilization on soil fertility and microbial characteristics[J]. Soil and Fertilizer Sciences in China, 2020 (4):12-18.
- [34] 郝耀旭, 刘继璇, 袁梦轩, 等. 长期定位有机物料还田对关中平原 冬小麦-玉米轮作土壤 N₂O 排放的影响[J]. 环境科学, 2017, 38 (6): 2586-2593. HAO Y X, LIU J X, YUAN M X, et al. Effects of long-term organic amendments on soil N₂O emissions from winter wheat-maize cropping systems in the Guanzhong Plain[J]. Environmental Science, 2017, 38(6): 2586-2593.
- [35] 焦晓光, 高崇升, 隋跃字, 等. 不同有机质含量农田土壤微生物生态特征[J]. 中国农业科学, 2011, 44(18):3759-3767. JIAO X G, GAO C S, SUI Y Y, et al. Research on soil microbial ecology under different soil organic matter levels in farmland[J]. Scientia Agricultura Sinica, 2011, 44(18):3759-3767.
- [36] LINDELL D, POST A F. Ecological aspects of ntcA gene expression and its use as an indicator of the nitrogen status of Marine Synechococcus spp.[J]. Applied and Environmental Microbiology, 2001, 67 (8):

1665

2023年7月 3340-3349.

- [37] SHI W, NORTON J M. Microbial control of nitrate concentrations in an agricultural soil treated with dairy waste compost or ammonium fertilizer[J]. Soil Biology & Biochemistry, 2000, 32(10):1453–1457.
- [38] DOBBIE K E, SMITH K A. The effects of temperature, water-filled pore space and land use on N₂O emissions from an imperfectly drained gleysol[J]. *European Journal of Soil Science*, 2010, 52 (4): 667–673.
- [39] CHEN G C, TAM N, YE Y. Summer fluxes of atmospheric greenhouse gases N₂O, CH₄ and CO₂ from mangrove soil in south China[J]. *Science of the Total Environment*, 2010, 408(13):2761–2767.
- [40] LANG M, CAI Z C, MARY B, et al. Land-use type and temperature affect gross nitrogen transformation rates in Chinese and Canadian soils[J]. *Plant & Soil*, 2010, 334(1/2):377-389.
- [41] 李平,魏玮,郎漫,等.不同水分对半干旱地区砂壤土温室气体排放的短期影响[J].农业环境科学学报,2021,40(5):1124-1132.
 LI P, WEI W, LANG M, et al. Short-term effects of different soil moisture contents on greenhouse gas emissions from sandy loam soil in semi-arid regions[J]. Journal of Agro-Environment Science, 2021, 40 (5):1124-1132.
- [42] 刘若萱, 张丽梅, 白刀, 等. 模拟条件下土壤硝化作用及硝化微生物对不同水分梯度的响应[J]. 土壤学报, 2015, 52(2):415-422.
 LIU R X, ZHANG L M, BAI R, et al. Response of nitrification and nitrifier to change in soil moisture content under simulated conditions
 [J]. Acta Pedologica Sinica, 2015, 52(2):415-422.
- [43] BREUER L, KIESE R, BUTTERBACH-BAHL K. Temperature and moisture effects on nitrification rates in tropical rain-forest soils[J]. *Soil Science Society of America Journal*, 2002, 66(3):399–402.
- [44] CAMERON C, HUTLEY L B, FRIESS D A, et al. Hydroperiod, soil moisture and bioturbation are critical drivers of greenhouse gas fluxes and vary as a function of landuse change in mangroves of Sulawesi, Indonesia[J]. Science of the Total Environment, 2019, 654:365–377.
- [45] 郑欠, 丁军军, 李玉中, 等. 土壤含水量对硝化和反硝化过程 № 排放及同位素特征值的影响[J]. 中国农业科学, 2017, 50(24): 4747-4758. ZHENG Q, DING J J, LI Y Z, et al. The effects of soil water content on № 0 emissions and isotopic signature of nitrification and denitrification[J]. *Scientia Agricultura Sinica*, 2017, 50 (24): 4747-4758.
- [46] 孔宪旺, 刘英烈, 熊正琴, 等. 湖南地区不同集约化栽培模式下双 季稻稻田 CH4和 N₂O 的排放规律[J]. 环境科学学报, 2013, 33(9): 2612-2618. KONG X W, LIU Y L, XIONG Z Q, et al. CH4 and N₂O emissions from double-rice field under different intensified cultivation patterns in Hunan Province[J]. Acta Scientiae Circumstantiae, 2013, 33(9):2612-2618.
- [47] 武文明,杨光明,沙丽清,等.氮肥对西双版纳地区稻田 N2O 排放

通量的影响[J]. 农业环境科学学报, 2008, 27(5):1876-1881. WUWM, YANGGM, SHALQ, et al. Impact of nitrogen fertilizer on N₂O flux from a paddy soil in Xishuangbanna, southwest China[J]. Journal of Agro-Environment Science, 2008, 27(5):1876-1881.

- [48] LIU C, LU M, CUI J, et al. Effects of straw carbon input on carbon dynamics in agricultural soils: a meta-analysis.[J]. Global Change Biology, 2014, 20(5):1366-1381.
- [49] 潘凤娥, 胡俊鹏, 索龙, 等. 添加玉米秸秆及其生物质炭对砖红壤 N₂O 排放的影响[J]. 农业环境科学学报, 2016, 35(2): 396-402. PAN F E, HU J P, SUO L, et al. Effect of corn stalk and its biochar on N₂O emissions from latosol soil[J]. Journal of Agro-Environment Science, 2016, 35(2): 396-402.
- [50] 汤宏, 曾掌权, 沈健林, 等. 秸秆与水分管理稻田的温室气体排放 和碳固定[J]. 环境科学与技术, 2021, 44(1):41-48. TANG H, ZENG Z Q, SHEN J L, et al. Greenhouse gases emissions and carbon sequestration by soils in rice paddy fields as affected by rice straw incorporation and water management[J]. Environmental Science & Technology, 2021, 44(1):41-48.
- [51] 朱启林, 刘丽君, 何秋香, 等. 不同水分条件下海南红壤 N₂O 排放 对不同碳源添加的响应[J]. 农业环境科学学报, 2022, 41(4):898– 908. ZHU Q L, LIU L J, HE Q X, et al. Response of N₂O emissions from Hainan red soil to different carbon sources under different moisture conditions[J]. Journal of Agro-Environment Science, 2022, 41 (4):898–908.
- [52] 李彬彬, 武兰芳. 土壤温室气体排放对 C/N 的响应[J]. 农业环境科 学学报, 2018, 37(9): 2067-2078. LI B B, WU L F. Soil greenhouse gases emission in response to the C/N[J]. Journal of Agro-Environment Science, 2018, 37(9): 2067-2078.
- [53] MA J, LI X L, XU H, et al. Effects of nitrogen fertiliser and wheat straw application on CH₄ and N₂O emissions from a paddy rice field [J]. Australian Journal of Soil Research, 2007, 45(5):359-367.
- [54] ZOU J W, HUANG Y, JIANG J Y, et al. A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China : effects of water regime, crop residue, and fertilizer application[J]. *Global Biogeochemical Cycles*, 2005, 19(2):1–9.
- [55]张岳芳,郑建初,陈留根,等.麦秸还田与土壤耕作对稻季 CH4和 N₂O 排放的影响[J]. 生态环境学报, 2009, 18(6):2334-2338. ZHANG Y F, ZHENG J C, CHEN L G, et al. Effects of wheat straw returning and soil tillage on CH4 and N₂O emissions in paddy season[J]. *Ecology and Environmental Sciences*, 2009, 18(6):2334-2338.
- [56] 蒋静艳, 黄耀, 宗良纲, 等. 水分管理与秸秆施用对稻田 CH4和 N₂O 排放的影响[J]. 中国环境科学, 2003, 23(5):552-556. JIANG J Y, HUANG Y, ZONG L G, et al. Influence of water controlling and straw application on CH4 and N₂O emissions from rice field[J]. China Environmental Science, 2003, 23(5):552-556.

www.aer.org.cn