

请通过网上投稿系统投稿 网址:http://www.aes.org.cn

崇明东滩湿地CH4与N20双消减的耦合过程研究

陈汉,饶旭东,滕钊军,张耀鸿,贾仲君

引用本文:

陈汉, 饶旭东, 滕钊军, 张耀鸿, 贾仲君. 崇明东滩湿地CH₄与N₂O双消减的耦合过程研究[J]. 农业环境科学学报, 2023, 42(11): 2604–2613.

在线阅读 View online: https://doi.org/10.11654/jaes.2023-0606

您可能感兴趣的其他文章

Articles you may be interested in

围垦对滨海稻田土壤N2O还原潜力的影响

汪方圆,张耀鸿,饶旭东,谢晴,贾仲君 农业环境科学学报. 2020, 39(11): 2668-2674 https://doi.org/10.11654/jaes.2020-0533

巢湖圩区再生稻田甲烷及氧化亚氮的排放规律研究

王天宇, 樊迪, 宋开付, 张广斌, 徐华, 马静 农业环境科学学报. 2021, 40(8): 1829-1838 https://doi.org/10.11654/jaes.2021-0181

有机无机肥配施对苹果园温室气体排放的影响

马艳婷,赵志远,冯天宇,SOMPOUVISETThongsouk,孔旭,翟丙年,赵政阳 农业环境科学学报. 2021, 40(9): 2039-2048 https://doi.org/10.11654/jaes.2020-1477

不同水分对半干旱地区砂壤土温室气体排放的短期影响

李平,魏玮,郎漫 农业环境科学学报.2021,40(5):1124-1132 https://doi.org/10.11654/jaes.2021-1377

稻田土壤CHa排放及其关联微生物功能基因丰度对磺胺二甲嘧啶和铜污染的响应

程粟裕,朱长俊,李昕钰,董宁,周金蓉,蒋静艳 农业环境科学学报.2021,40(10):2246-2256 https://doi.org/10.11654/jaes.2021-0212

关注微信公众号,获得更多资讯信息

陈汉, 饶旭东, 滕钊军, 等. 崇明东滩湿地 CH4与 N2O 双消减的耦合过程研究[J]. 农业环境科学学报, 2023, 42(11): 2604-2613. CHEN H, RAO X D, TENG Z J, et al. Coupling process of CH4 and N2O double reduction in the Chongming Dongtan Wetland, China[J]. *Journal of Agro-Environment Science*, 2023, 42(11): 2604-2613.

崇明东滩湿地CH4与N2O双消减的耦合过程研究

陈汉1,2, 饶旭东1, 滕钊军1,2, 张耀鸿1*, 贾仲君2

(1.南京信息工程大学应用气象学院/江苏省农业气象重点实验室,南京 210044;2.中国科学院南京土壤研究所土壤与农业可持续发展国家重点实验室,南京 210008)

摘 要:N₂O还原驱动的CH₄厌氧氧化作用(AOM)是湿地系统温室气体双减排的一种新途径,而基于滨海围垦开发的稻田利用方式对该途径的影响效应尚不清楚。本研究选取长江入海口崇明东滩湿地的自然滩涂(光滩湿地和芦苇湿地)和围垦稻田(围垦种稻19 a 和86 a)为研究对象,设置3个试验处理(¹³CH₄,¹³CH₄+N₂O,N₂O)进行室内厌氧培养。采用稳定性同位素标记结合定量PCR等手段,分析不同湿地土壤的N₂O型CH₄厌氧氧化速率及其固碳潜力,研究其相关功能基因的数量特征。结果发现,围垦稻田土壤中N₂O驱动的AOM速率为6.10~7.51 ng·g⁻¹·d⁻¹,显著高于自然滩涂湿地。供试土壤N₂O驱动CH₄厌氧氧化的¹³C-SOC 固碳量为18.1~49.4 nmol·g⁻¹,表明该过程具有较强的固碳潜力。¹³CH₄+N₂O添加条件下,供试土壤中硝酸盐型和硫酸盐型CH₄厌氧氧化古菌的mcrA功能基因丰度分别为(1.08~2.29)×10⁷copies·g⁻¹和(2.55~14.30)×10⁷copies·g⁻¹,比只添加¹³CH₄处理分别高出25.8%~64.1%和41.0%~50.1%;相反,亚硝酸盐型CH₄厌氧氧化细菌的pmoA功能基因丰度则无明显变化。相关性分析发现N₂O驱动的AOM速率与nosZII基因和硝酸盐型mcrA基因均呈显著正相关,表明nosZII型N₂O还原微生物和硝酸盐型CH₄厌氧氧化古菌可能共同参与了N₂O驱动的CH₄厌氧氧化过程,而硫酸盐型CH₄厌氧氧化古菌则在自然滩涂湿地中发挥着重要作用。研究表明,围垦植稻在一定程度上促进了N₂O驱动的CH₄厌氧氧化作用。

关键词:滨海湿地;CH₄厌氧氧化;N₂O还原;耦合反应;mcrA基因;nosZⅡ基因 中图分类号:X144 文献标志码:A 文章编号:1672-2043(2023)11-2604-10 doi:10.11654/jaes.2023-0606

Coupling process of CH₄ and N₂O double reduction in the Chongming Dongtan Wetland, China

CHEN Han^{1,2}, RAO Xudong¹, TENG Zhaojun^{1,2}, ZHANG Yaohong^{1*}, JIA Zhongjun²

(1. School of Applied Meteorology/Jiangsu Provincial Key Laboratory of Agricultural Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China; 2. State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China)

Abstract: Anaerobic oxidation of methane (AOM) driven by N_2O reduction is a new pathway for greenhouse gas reduction in wetland systems; however the effect on paddy field utilization after the reclamation of coastal natural wetland using this pathway is unclear. In this study, three experimental treatments ($^{13}CH_4$, $^{13}CH_4$ + N_2O , and N_2O) were set up for anaerobic incubation of natural coastal wetlands (bare wetlands and reed wetlands) and reclaimed rice fields (19 and 86 years of rice cultivation) in the Chongming Dongtan Natural Wetland in the Yangtze River Estuary. Stable isotope labelling combined with quantitative PCR was used to analyze AOM rates driven by N_2O reduction and its carbon sequestration potential in different wetland soils, and to study the quantitative characteristics of their related functional genes. The rates of CH_4 anaerobic oxidation driven by N_2O reduction in the reclaimed paddy fields ranged from 6.10 ng \cdot g⁻¹ \cdot d⁻¹ to 7.51 ng \cdot g⁻¹ \cdot d⁻¹, much higher than those in natural marsh wetlands. The sequestered organic carbon ($^{13}C-SOC$) derived from anaerobic CH_4

收稿日期:2023-07-30 录用日期:2023-09-27

作者简介:陈汉(1999一),男,安徽来安人,硕士研究生,主要从事土壤温室气体减排研究。E-mail:202212330011@nuist.edu.cn

^{*}通信作者:张耀鸿 E-mail:yhzhang@nuist.edu.cn

基金项目:国家自然科学基金项目(42377295,42175138,41671247)

Project supported : The National Natural Science Foundation of China (42377295, 42175138, 41671247)

oxidation driven by N₂O reduction was $18.1-49.4 \text{ nmol} \cdot \text{g}^{-1}$, indicating the strong carbon sequestration potential of the process. For nitrateand sulfate-dependent anaerobic CH₄-oxidizing archaea in the tested soils, *mcr*A numbers under ¹³CH₄+N₂O addition conditions ranged from $(1.08-2.29) \times 10^7$ copies $\cdot \text{g}^{-1}$ and $(2.55-14.30) \times 10^7$ copies $\cdot \text{g}^{-1}$, which were 25.8%-64.1% and 41.0%-50.1% higher than those under ¹³CH₄ treatment, respectively. In contrast, *pmo*A numbers of nitrite-dependent CH₄ anaerobic oxidizing bacteria did not change significantly between the two addition treatments. Correlation analysis revealed that N₂O-dependent AOM rates were significantly and positively correlated with both *nos*Z II and the nitrate-dependent *mcr*A numbers, suggesting that *nos*Z II N₂O-reducing microorganisms and nitrate-dependent anaerobic CH₄-oxidizing archaea may jointly participate in the coupling reaction of anaerobic CH₄ oxidation and N₂O reduction, whereas sulfate-dependent anaerobic CH₄-oxidizing archaea play an important role in natural coastal wetlands. In conclusion, the reclamation of coastal wetlands into paddy fields promotes the N₂O-driven anaerobic CH₄ oxidation process, which makes a remarkably positive contribution to the dual reduction of CH₄ and N₂O in coastal wetlands.

Keywords: coastal wetland; anaerobic CH4 oxidation; N2O reduction; coupling reaction; mcrA; nosZ II

甲烷是一种重要的温室气体,其增温潜能是等物 质量 CO₂的 28 倍,对全球温室效应的贡献率超过 20%^[1]。陆地生态系统中 CH₄的消减过程主要是由微 生物介导的 CH₄氧化作用实现的。该过程可分为两 大类型:一类是微生物利用 O₂分子作为电子受体氧 化 CH₄以获取碳源和能量的甲烷好氧氧化作用;一类 是以 NO₂、NO₃、SO²等为电子受体的甲烷厌氧氧化作 用^[2]。目前,甲烷厌氧氧化过程在稻田、河床、滨海、 湖泊、污泥、深海等环境中均有报道^[3-6],在陆地系统 CH₄消减过程中发挥着重要作用。

研究发现,在滨海湿地和河床底泥中发生甲烷厌 氧氧化作用的同时伴随有 N₂O 还原过程^[7-8],推测 N₂O 可能作为电子受体进行还原,耦合驱动 CH₄厌氧氧化 作用^[9]。这表明自然界中 CH₄厌氧氧化作用能以多种 物质为电子受体驱动进行,具有电子传递多样性的特 征。另一方面, N₂O 还原过程作为反硝化的最后一 步,是控制 N₂O 排放通量的关键过程之一。这个还原 过程由氧化亚氮还原酶(*Nos*)催化进行,该酶的编码 基因 *nos*Z 包括以完全反硝化细菌为主的典型 *nos*Z I 和以非反硝化菌为主的非典型 *nos*Z II,后者表现出 更为鲜明的物种、代谢多样性^[10-13]。这可能为 N₂O 还 原与 CH₄厌氧氧化协同耦合反应提供了生物学基础。

滨海湿地处于海陆交错带,具有海洋性和陆地性 双重特征;随着经济的发展和人口的增长,滨海湿地 围垦造田成为解决土地问题的有效途径^[14-15]。崇明 东滩湿地是我国长江口发育最完善的河口型滩涂湿 地,先后开展了多次围垦造田工程,形成了一系列不 同年限的围垦稻田^[16-17]。这种土地利用方式驱动的 土壤生物地球化学过程的变化,对滨海湿地 CH4和 N₂O的排放过程可能会产生深刻影响^[18]。尽管有关 滨海湿地 CH4氧化过程、反硝化过程的研究已有大量 报道^[19-20],但是从 CH4厌氧氧化和 N₂O 还原两个角度 研究滨海湿地C、N转化过程及其温室气体减排机理的研究尚未见报道。这种耦合反应是否在该区域真 实发生,其相关的微生物如何变化?这些科学问题的 探索对于深入了解滨海湿地生物地球化学过程及其 温室气体减排机理至关重要。

本研究选取上海崇明东滩的滨海滩涂湿地和毗邻的围垦稻田为研究对象,采用¹³CH4稳定性同位素标记结合分子生物学技术,对比研究自然湿地和不同年限围垦稻田 CH4厌氧氧化与 N₂O 还原作用的分异规律及其功能基因数量特征,阐明滨海湿地 CH4厌氧氧化与 N₂O 还原的耦合特征及机理,为深入了解人类活动影响下滨海湿地生物地球化学过程演变及缓解全球气候变化提供科学依据。

1 材料与方法

1.1 样品采集

试验土壤样品采自上海市崇明岛东滩湿地和围垦 区稻田(31.6°N,121.8°E),所属气候为典型亚热带季风 气候,年平均气温为15.3℃,年平均降水量为1003.7 mm。选取自然保护区内光滩湿地记作GT和芦苇湿 地记作LW。毗邻保护区以西为围垦稻田区。选取 围垦19 a和86 a的稻田分别记作WK19和WK86。不 同围垦年限样点的选择依据相关文献选取^[21]。该区 域农田为稻麦轮作方式,所用水稻品种为南粳46号, 小麦品种为扬麦16号。其中,稻田采用直播方式种 植,6月中旬播种,11月初成熟收割。稻田水分管理 采用当地传统灌溉方式:水稻分蘖期后实行淹水-烤 田-湿润灌溉相结合进行。播种前施用600 kg·hm⁻² 三元复合肥(N-P-K为24-8-10)作基肥,7月中旬施 用225 kg·hm⁻²尿素作分蘖肥。病虫害、杂草防治等 其他田间管理措施与当地高产大田一致。

选取样点的位置坐标分别为:光滩样点(31°30′

13"N,121°59'13"E);芦苇样点(31°29'56"N,121° 58'44"E);19 a样点(31°29'54"N,121°56'00"E):86 a样点(31°30'09"N,121°50'31"E)。在每个样点先 选取50 m×50 m的采样区,选用S型采样法在采样区 选取6个点,每个点位间隔10~15 m,以提高样品的代 表性。用土钻取0~20 cm鲜土,将6个采样点的土壤 均匀混合成1个样本,重复3次。土样装入冰盒内迅 速转移至实验室,储存于4℃冰箱备用。

1.2 理化性质测定

对采回的土壤样品进行理化性质分析。土壤总 有机碳采用浓硫酸-重铬酸钾消煮法测定;土壤全氮 采用半微量凯氏定氮法测定;土壤铵态氮和硝态氮用 2 mol·L⁻¹ KCl溶液浸提后,采用AA3流动分析仪(德 国 SEAL公司)测定;土壤pH采用水土比为2.5:1提取 后,用数字酸度计(上海雷磁)测定;土壤可溶性盐度 (EC)采用电导法用EC计(上海雷磁)测定;土壤硫酸 盐采用离子色谱法(美国 Thermo Fisher Scientific 公 司)测定。

1.3 CH4氧化速率与N2O净还原速率的测定

每个土样设置3个处理:(1)¹³CH₄,(2)¹³CH₄+ N₂O,(3)N₂O。具体操作为:称取3.000g鲜土放入12 mL的Labco顶空瓶后加入3mL去离子水后盖紧瓶 盖,充分摇晃60s成均匀泥浆,抽真空3min后充入高 纯氩气(Ar),重复进行3次,在25℃培养箱中预培养 7d。预培养结束后,按照试验处理打入¹³CH₄200 μL 和N₂O 800 μL,再用Ar补充使每个培养瓶顶空气体 体积均为7mL。充分摇晃形成均匀泥浆以及气体达 到气液相平衡。立刻采集100 μL顶空气体测定0时 刻CO₂、CH₄、N₂O的起始浓度以及¹³C-CO₂丰度。培养 28 d后采集顶空气体测定其浓度及¹³C-CO₂丰度。根 据培养始末顶空气体中CO₂气体的浓度和丰度计算 得出¹³CO₂产生量,结合培养时间和土壤质量即可计 算出培养期间土壤的CH₄厌氧氧化速率(*R*1)。

 $R1 = (C_t \times C_i - C_0 \times 1.08) \times 100 \times V/(V_m \times m \times t)$ 式中: C_t 为培养t时刻后的CO₂浓度, μ L·L⁻¹; C_i 为培养 t时刻后顶空气体中的¹³C-CO₂丰度,%; C_0 为零时刻 顶空气体中的CO₂浓度, μ L·L⁻¹;V为培养瓶顶空体 积,L; V_m 为标准状态下气体摩尔体积,L·mol⁻¹;m为土 壤干土质量,g;t为培养时间,d。

同理,根据培养始末顶空气体中N₂O气体的变化 量计算出N₂O净还原速率(*R*2)。

 $R2 = (C_0 - C_t) \times V/(V_m \times m \times t)$

式中:C₀为零时刻顶空气体中的N₂O浓度, µL·L⁻¹; C_i

为培养t时刻后的N₂O浓度,μL·L⁻¹。

1.4 土壤有机碳¹³C丰度分析

培养结束后,测定土壤有机碳含量及¹³C-SOC丰 度。先打开Labco瓶盖,用注射器将上覆水抽走,再 加入2 mol·L⁻¹的HCl溶液进行酸化处理,盖上瓶盖摇 晃后转移至15 mL的离心管中,再用5 mLHCl溶液冲 洗Labco瓶,将残留泥浆全部转移至离心管中,静置 过夜以去除土壤中的无机碳。第2天,将泥浆上层的 HCl溶液排掉,加8 mL纯净水盖上瓶盖剧烈摇晃,以 3 000 r·min⁻¹离心5 min。如此重复3次,将土壤中的 Cl⁻清洗干净。将土壤进行冷冻干燥,结束后磨碎过 2 mm筛,测定土壤有机碳含量,再用同位素质谱仪 (Isoprime100)测定该土壤有机碳的¹³C丰度值。根据 此有机碳含量及其¹³C丰度值可计算出培养结束时土壤 的¹³C-SOC总增量,再减去培养开始时土壤的¹³C-SOC

1.5 荧光定量PCR分析

目前认为,自然界中驱动CH4厌氧氧化过程的主要功能微生物类群包括:介导亚硝酸盐型甲烷厌氧氧化的 Candidatus Methylomirabilis oxyfera 细菌(M.oxy-fera),介导硝酸盐型甲烷厌氧氧化的 Candidatus Methanoperedens nitroreducens 古菌(M.nitroreducens),和介导硫酸盐型甲烷厌氧氧化的 anaerobic methanotrophic archaea 古菌(ANME)。本试验对这3种微生物 CH4厌 氧氧化关键酶的功能基因进行定量 PCR 分析。

将野外采集的原状鲜土冷冻干燥后,采用 FastDNA Spin Kit for Soil 试剂盒(MP Biomedicals,美 国)提取土壤微生物基因组 DNA。称取 0.5 g土样,按 照说明书的步骤提取土壤微生物总 DNA,溶解于 100 μ L 无菌 TE 缓冲液(10 mmol·L⁻¹ Tris-HCl, 1 mmol· L⁻¹ EDTA, pH 8.0)。通过微量紫外分光光度计(Nano-Drop ND-1000,美国)测定 DNA浓度和纯度,并利 用 1%的琼脂糖凝胶电泳检测 DNA 的完整性,满足条 件后用于 qPCR 分析。

实时 PCR 扩增所用仪器为 CFX96 Real-Time PCR System(Bio-Rad公司)。标准曲线分别用所测功 能基因的质粒为模板,并将其连续稀释8个数量级配 制。定量 PCR 扩增反应体系为20 μ L,包括:10 μ L的 SYBR Premix Ex TaqTM, 1.0 μ L 土壤总 DNA 模板,上、 下游引物(10 pmol· μ L⁻¹)各 0.5 μ L,加灭菌水至20 μ L。nosZ、pmoA、mcrA等基因 PCR 引物及 qPCR 的循 环条件见表1。所有样品重复3次,并采用灭菌双蒸 水代替 DNA 作为反应模板设置阴性对照。

1.6 数据处理分析

采用 SPSS 25.0 软件进行数据的统计分析。CH4 氧化速率、N2O 净还原速率、基因拷贝数的差异性比 较采用方差分析和最小差值法表示。CH4氧化速率、 N2O 净还原速率与功能基因丰度的相互关系采用线 性回归分析拟合。图形制作采用 Excel 2019 和 Origin 2022 软件完成。

2 结果与分析

2.1 湿地土壤理化性质的演变特征

滨海湿地不同采样点间的土壤理化性质差异较大。如表2所示,芦苇湿地(LW)土壤的SOC含量显著高于光滩湿地(GT),围垦86 a稻田的SOC含量(WK86)显著高于围垦19 a稻田,也显著高于芦苇湿地土壤。LW土壤的TN含量显著高于其他3个湿地土壤,而WK86稻田的TN含量远高于WK19稻田土壤。对于NH¹和NO³而言,WK86稻田土壤的含量均显著高于其他3个湿地土壤,而LW湿地的含量则显著高于GT湿地和WK19稻田。4个采样点土壤的pH 值变化范围为7.25~7.86,且随着采样点远离海岸线而显著降低。EC 值和SO²⁻含量的变化范围分别为0.74~5.07 mS·cm⁻¹和196~797 mg·kg⁻¹,两者也随着采样点远离海岸线而显著降低。从pH 值、EC 值和SO²⁻

含量的变化特征可以看出,从光滩湿地到围垦86 a稻 田,其湿地土壤理化性质的陆地性特征逐渐增强,海 洋性特征逐渐减弱。

2.2 CH₄厌氧氧化速率和N₂O净还原速率变化特征 2.2.1 顶空气体¹³C-CO₂丰度值变化

厌氧培养28 d后,培养瓶顶空气体¹³CO₂丰度值 发生了明显变化(图1)。其¹³CO₂丰度值均远大于大 气¹³CO₂自然丰度值(1.08%),说明土壤中发生了厌氧 氧化过程。在只添加¹³CH₄条件下,WK86稻田 的¹³CO₂丰度值为最高,达到1.41%,而LW湿地则最 低,仅为1.19%。4个湿地土壤中,在添加¹³CH₄+N₂O 条件下其¹³CO₂丰度值均显著高于只添加¹³CH₄处理, 增幅范围达到6.4%~8.9%,这说明添加N₂O显著提高 了供试土壤顶空气体CO₂的丰度值。

2.2.2 CH4厌氧氧化速率

根据顶空气体中CO₂浓度和¹³CO₂丰度值可计算 出培养土壤的CH₄厌氧氧化速率(图2a)。添加¹³CH₄ 处理下,WK86稻田土壤的CH₄厌氧氧化速率为 15.08 ng·g⁻¹·d⁻¹,显著高于其他3个湿地土壤。而 WK19稻田的CH₄厌氧氧化速率为11.01 ng·g⁻¹·d⁻¹, 显著高于光滩湿地土壤,低于芦苇湿地土壤。添 加¹³CH₄+N₂O处理下,4个湿地土壤CH₄厌氧氧化速率 的变化特征与只添加¹³CH₄处理土壤基本一致:其中,

表1 qPCR 引物及循环条件

Table 1 List of primers and thermal cycling conditions used for pmoA, mcrA and nosZ genes

Tuble 1 Elst of primers and merinar cycling conditions about for priori, merit and nose genes							
基因 Gene	引物 Primer	循环条件 Thermal cycling condition					
pmoA	Cmo182(5'-TCA CGT TGA CGC CGA TCC-3') Com568(5'-GCACATACTCCATCCCATC-3')	94 °C for 5 min, 30×[95 °C for 45 s, 56 °C for 50 s, 72 °C for 50 s], 72 °C for 5 min					
硝酸盐型 mcrA	McrA159F(5'-AAA GTG CGG AGC AGC AAT CAC C-3') McrA345R(5'-TCG TCC CAT TCC TGC TGC ATT GC-3')	50 °C for 2 min,95 °C for 10 min,40 × [95 °C for 30 s,57 °C for 45 s,72 °C for 50 s]					
硫酸盐型 mcrA	(5'-GCT CTA CGA CCA GAT MTG GCT TGG-3') (5'-CCG TAG TAC GTG AAG TCA TCC AGC A-3')	95 °C for 5 min, 35×[95 °C for 1 min, 55 °C for 45 s, 72 °C for 45 s], 72 °C 10 min					
nosZ I	1840F(5′-CGC RAC GGC AAS AAG GTS MSS GT-3′) 2090R(5′-CAK RTG CAK SGC RTG GCA GAA-3′)	95 °C for 5 min; 95 °C for 15 s,65~60 °C(-1 °C /cycle) for 30 s,60 °C for 30 s					
nosZ Ⅱ	<i>nos</i> Z II $F(5'-CTI GGI CCI YTK CAY AC-3')$ <i>nos</i> Z II $R(5'-GCI GAR CAR AAI TCB GTR C-3')$	95 $^\circ\!\! {\rm C}$ for 5 min,95 $^\circ\!\! {\rm C}$ for 30 s,54 $^\circ\!\! {\rm C}$ for 60 s,72 $^\circ\!\! {\rm C}$ for 60 s× 35cycles					

表2 湿地土壤理化性质的变化

Table 2 Changes in physicochemical properties of wetland soils									
处理 treatment	有机碳 SOC/(g·kg ⁻¹)	总氮 TN/(g·kg ⁻¹)	氨态氮 NH4/(mg•kg ⁻¹)	硝态氮 NO₃/(mg·kg ⁻¹)	рН	电导率 EC/(mS·cm ⁻¹)	硫酸盐 SO4-/(mg·kg-1)		
GT	7.95±0.55d	$0.86 \pm 0.07 \mathrm{c}$	6.38±0.36c	$6.39{\pm}0.32\mathrm{d}$	7.86±0.42a	5.07±0.22a	797±38a		
LW	$13.55 \pm 0.98 \mathrm{b}$	1.20±0.09a	$15.77 \pm 1.25 b$	$10.83 \pm 0.73 \mathrm{b}$	$7.67{\pm}0.38{\rm b}$	4.80±0.21b	$578 \pm 45 \mathrm{b}$		
WK19	9.55±0.81c	$0.77 \pm 0.06 \mathrm{d}$	$5.46 \pm 0.35 \mathrm{d}$	8.86±0.61c	7.44±0.41c	1.84±0.11c	328±26c		
WK86	18.34±1.39a	$1.12 \pm 0.06 \mathrm{b}$	16.25±1.21a	14.11±0.91a	$7.25{\pm}0.23\mathrm{d}$	$0.74{\pm}0.07{\rm d}$	196±15d		

注:同一列不同字母表示在P<0.05水平差异显著。

Note: Different letters in the same column indicate significant differences at the P<0.05 level.

不同大写字母表示同一采样点不同处理间具有显著性差异,不同小写 字母表示同一处理不同采样点具有显著性差异(P<0.05)。下同。 Different capital letters indicate significant differences between treatments at the same sampling site, and different lowercase letters indicate significant differences among sampling sites for the same treatment (P<0.05). The same below.

图1 不同土壤培养瓶中顶空气体¹³C-CO₂丰度值变化

Figure 1 ¹³C-CO₂ abundance in different soils

WK86稻田土壤的CH₄厌氧氧化速率为22.59 ng·g⁻¹· d⁻¹,显著高于其他3个湿地土壤,而光滩湿地的CH₄厌 氧氧化速率为13.04 ng·g⁻¹·d⁻¹,显著低于芦苇湿地和 WK86稻田。通过比较两个添加处理(¹³CH₄和¹³CH₄+ N₂O)下土壤CH₄厌氧氧化速率的变化量,可计算出由 N₂O驱动的CH₄厌氧氧化速率(图2b)。其中,WK19和 WK86的N₂O型CH₄厌氧氧化速率分别为6.10 ng·g⁻¹· d⁻¹和7.51 ng·g⁻¹·d⁻¹,显著高于自然湿地土壤,比光滩 湿地分别提高了21.8%和50.0%。由此可见,滨海湿 地土壤中可进行由N₂O驱动的CH₄厌氧氧化过程,其 氧化速率随围垦年限增长有逐渐增大的趋势。

2.2.3 土壤N₂O净还原速率变化

根据培养期间顶空气体中 N₂O浓度变化量可计 算出土壤 N₂O 净还原速率(图 3)。可以看出,土壤 N₂O 净还原速率范围为 9.02~19.05 μg·g⁻¹·d⁻¹,比其 CH₄厌氧氧化速率高出 3 个数量级,说明培养期间土 壤 N₂O 还原过程远比 CH₄厌氧氧化过程强烈得多。 其中,只添加 N₂O 处理下,GT 和 LW 湿地的 N₂O 净还 原速率分别为 16.04 μg·g⁻¹·d⁻¹和 19.05 μg·g⁻¹·d⁻¹,显 著高于围垦稻田土壤 9.02 μg·g⁻¹·d⁻¹和 14.13 μg·g⁻¹·

农业环境科学学报 第42卷第11期

d⁻¹。围垦稻田土壤中,WK86稻田的N₂O净还原速率 显著高于WK19稻田。与添加N₂O处理相比,添加 CH₄+N₂O处理下LW、WK19、WK86三个湿地土壤的 N₂O还原速率均无显著变化,说明添加CH₄气体对这 些土壤N₂O还原速率无明显影响,以土壤本底的活性 有机碳为电子供体的N₂O还原过程可能占主导地位。

2.3 土壤有机碳的¹³C丰度变化

由土壤的¹³C-SOC 丰度和 SOC 浓度计算得出 其¹³C-SOC 净增量(图4)。添加¹³CH4处理下,围垦稻 田的土壤¹³C-SOC 净增量显著低于自然湿地。添 加¹³CH4+N2O处理下,各湿地土壤¹³C-SOC 净增量的 变化特征与添加¹³CH4处理土壤一致,自然湿地土壤 显著高于围垦稻田。与只添加¹³CH4处理相比,添 加¹³CH4+N2O处理的GT、LW、WK19和WK86显著增 加了湿地土壤的¹³C-SOC净增量,分别提高了107%、 131%、91%和83%。

2.4 功能基因 qPCR 分析

2.4.1 CH4厌氧氧化相关功能基因

本试验对 M.oxyfera 细菌、M. nitroreducens 古菌和 ANME 古菌的 3 种微生物 CH4厌氧氧化关键酶的功能 基因进行了定量 PCR 分析(图5)。从图 5a 可以看出, 添加¹³CH4处理下,光滩和芦苇湿地土壤的 M.oxyfera 细菌甲烷厌氧氧化酶的 pmoA 功能基因拷贝数分别为

图 3 土壤 N₂O 净还原速率变化

Figure 3 Variation of net N₂O reduction rates in different soils

图2 不同土壤CH4厌氧氧化速率(a)与N2O驱动的CH4厌氧氧化速率(b)

Figure 2 CH_4 anaerobic oxidation rates of different soils(a) and N_2O -driven CH_4 anaerobic oxidation rates(b)

Figure 4 Net increase of ¹³C–SOC in different soils

2.45×10⁷ copies · g⁻¹和 2.71×10⁷ copies · g⁻¹, 显著低于围 垦稻田土壤的基因拷贝数3.67×107 copies · g⁻¹和4.23× 10⁷ copies · g⁻¹;4个土壤的 pmoA 基因拷贝数表现为从 低滩位光滩到高滩位围垦稻田呈陆向性方向递增趋 势。与添加¹³CH₄处理相比,添加¹³CH₄+N₂O处理对4 个湿地土壤的pmoA功能基因拷贝数无明显影响,表 明添加N₂O底物对M.oxyfera 细菌数量及其酶活性没 有显著影响效应。从图5b可以看出,光滩和芦苇湿 地土壤的 M. nitroreducens 古菌甲烷厌氧氧化酶的 mcrA功能基因拷贝数分别为0.66×107 copies · g⁻¹和 0.88×10⁷ copies · g⁻¹, 显著低于围垦稻田土壤的基因拷 贝数1.45×10⁷ copies · g⁻¹和1.82×10⁷ copies · g⁻¹。与土 壤pmoA功能基因拷贝数变化趋势一致,4个土壤的 mcrA基因拷贝数表现为从低滩位光滩到高滩位围垦 稻田呈陆向性方向递增趋势。比较2个试验处理发 现,添加N₂O气体显著提高了土壤M. nitroreducens古 菌的数量,其mcrA基因拷贝数分别增加了26%、 30%、61%和61%,说明N₂O气体对土壤M. nitroreducens 古菌介导的硝酸盐型甲烷厌氧氧化过程具有显 著的促进作用。由图5c可知,添加¹³CH₄处理下,围垦 稻田土壤的 ANME 古菌甲烷厌氧氧化酶的 mcrA 功能 基因拷贝数分别为1.95×10⁷ copies · g⁻¹和2.45×10⁷ copies · g⁻¹, 显著低于自然湿地土壤的基因拷贝数 7.19×10⁷ copies · g⁻¹和 9.59×10⁷ copies · g⁻¹,表现为从低 滩位湿地到高滩位稻田呈陆向性递减趋势,与pmoA 基因和硝酸盐型mcrA基因拷贝数的变化趋势正好相 反。比较2个试验处理发现,添加N2O气体显著提高 了土壤ANME古菌的数量,其硫酸盐型mcrA基因拷 贝数分别增加了49%、31%、50%和31%,说明添加 N₂O 对湿地土壤 ANME 古菌介导的硫酸盐型甲烷厌 氧氧化过程具有显著的促进效应。

2.4.2 N₂O还原相关功能基因

目前认为,土壤中N2O的唯一生物消减途径是携

带有 N₂O 还原酶的微生物将其转化为 N₂,这些微生物 可分为具有 nosZ I 基因和 nosZ II 基因两种类型。由 图 6a 可知,只添加 N₂O 处理下,光滩湿地和芦苇湿地 土壤的 nosZ I 基因拷贝数分别为 3.27×10^7 copies $\cdot g^{-1}$ 和 3.56×10^7 copies $\cdot g^{-1}$,显著高于围垦稻田土壤 2.56×10^7 copies $\cdot g^{-1}$ 和 2.85×10^7 copies $\cdot g^{-1}$ 。在添加 13 CH₄+ N₂O 处理下,芦苇湿地土壤的 nosZ I 基因拷贝数高达 17.78×10^7 copies $\cdot g^{-1}$,显著高于其他 $3 \wedge 湿地土壤$; WK86 稻田土壤的 nosZ I 基因拷贝数为 8.11×10^7 copies $\cdot g^{-1}$,显著高于 WK19 稻田的 5.66×10^7 copies $\cdot g^{-1}$,而低于光滩湿地 11.02×10^7 copies $\cdot g^{-1}$ 。与添加 N₂O 处理相比,添加 13 CH₄+N₂O 处理显著提高了土壤 nosZ I 基因的拷贝数,分别增加了 237%、400%、 121%和 184%。

由图 6b 可知,只添加 N₂O 处理下,围垦稻田土壤的 nosZ Ⅱ 基因拷贝数分别为 4.78×10⁷ copies • g⁻¹和 5.01×10⁷ copies • g⁻¹,显著高于 GT 湿地土壤 3.41×10⁷

enzymes for CH4 anaerobic oxidation

copies · g⁻¹, 而 LW 湿地与 WK19 稻田之间无显著差异。 在添加¹³CH₄+N₂O处理下, 围垦稻田土壤的 nosZ II 基 因拷贝数分别为 19.23×10⁷ copies · g⁻¹和 29.82×10⁷ copies · g⁻¹, 显著高于 GT 湿地土壤 8.83×10⁷ copies · g⁻¹ 和 LW 湿地土壤 13.26×10⁷ copies · g⁻¹, 表现为从低滩 位光滩到高滩位围垦稻田呈陆向性递增趋势。与添 加 N₂O 处理相比, 添加¹³CH₄+N₂O 处理显著提高了土 壤 nosZ II 基因的拷贝数, 分别增加了 159%、192%、 302% 和 496%, 说明添加¹³CH₄对土壤 nosZ II 型 N₂O 还原酶的数量特征具有明显的促进作用。

2.5 回归性分析

2.5.1 mcrA功能基因与CH4厌氧氧化速率的回归分析

对 N₂O 驱动的 CH₄氧化速率与硝酸盐型 mcrA 基 因和硫酸盐型 mcrA 基因拷贝数分别进行了回归分 析,结果(图7)发现,N₂O型 CH₄氧化速率与硝酸盐型 mcrA 基因拷贝数的回归方程达到显著水平(P< 0.05),其斜率值为 2.09,说明硝酸盐型 CH₄厌氧氧化 古菌可能是 N₂O型 CH₄氧化速率变化的重要贡献者 之一。N₂O型 CH₄氧化速率与硫酸盐型 mcrA 基因拷 贝数的回归方程也达到了显著水平(P<0.05),但其斜 率为负值-0.19,说明硫酸盐型 CH₄厌氧氧化古菌是 引起 N₂O型 CH₄氧化速率变化的重要影响因素之一, 在 N₂O型 CH₄氧化速率较低的低滩位滨海湿地中可 能发挥着重要的作用。

2.5.2 nosZ功能基因与N₂O净还原速率、CH₄氧化速率的回归分析

对N₂O净还原速率和N₂O型CH4氧化速率与nosZ I、nosZ II基因拷贝数分别进行了回归分析,结果 (图8)发现,湿地土壤N₂O净还原速率与nosZ I基因 拷贝数的回归方程达到显著水平(P<0.05),其斜率值 为0.67,说明nosZ I型N₂O还原微生物可能是引起4 个所试湿地土壤N₂O净还原速率变化的主要贡献者。 N₂O驱动的CH4氧化速率与nosZ II功能基因拷贝数的 回归方程达到显著水平(P<0.05),这表明nosZ II型 N₂O还原微生物参与了N₂O驱动的CH4厌氧氧化过程, 是试验土壤N₂O型CH4氧化速率变化的主要贡献者。

3 讨论

3.1 湿地CH4厌氧氧化特征

本试验表明滨海湿地土壤中发生了CH4厌氧氧 化过程。运用99%丰度的¹³CH4底物进行厌氧培养, 可以更为真实地反映CH4厌氧氧化过程。在喂 养¹³CH4条件下,培养瓶内顶空¹³CO2气体的丰度值均

Figure 6 Copy number variation of functional genes related to N₂O reduction in different soils

显著高于大气 CO₂气体的自然丰度 1.08%。这表明试 验湿地土壤发生了 CH₄厌氧氧化作用,与之前的报道 一致^[22]。有不少研究发现,在长江入海口湿地、杭州 湾湿地和珠江入海口湿地中均发生了 CH₄厌氧氧化 过程^[5,23-24]。不仅如此,在添加¹³CH₄和 N₂O 条件下,顶 空¹³CO₂气体的丰度值均显著高于只添加¹³CH₄处理 的土壤,表明 N₂O 促进了 CH₄厌氧氧化过程。由此计 算出 N₂O 驱动的 CH₄厌氧氧化速率范围为 5.01~7.51 ng·g⁻¹·d⁻¹,与我们之前的结果基本一致^[25]。Cheng 等^[26]发现,在山东梅河沉积物中 CH₄厌氧氧化与 N₂O 还原可以耦合进行,其 N₂O 驱动的 CH₄厌氧氧化速率

图 8 nosZ基因与 N₂O 净还原速率和 CH₄氧化速率的回归分析 Figure 8 Regression analysis of N₂O reduction rate and CH₄ oxidation rate with nosZ gene

为3.41 nmol·g⁻¹·d⁻¹,高于本试验的结果。Valenzuela 等^[27]采集墨西哥Sisal滨海湿地沉积物进行富集培养, 发现富集培养物CH4厌氧氧化产生的电子可被N2O 还原过程所利用,二者耦合进行,驱动的CH4厌氧氧 化速率高达1.3 μmol·g⁻¹·d⁻¹。综上结果表明, N₂O作 为电子受体可促进CH4厌氧氧化过程,其驱动的CH4 厌氧氧化速率大小各异,可能与不同湿地类型、不同 培养时间有关。

以往研究表明,NO2、NO3和SO4等可作为电子受 体,在相关微生物催化作用下完成甲烷厌氧氧化过 程。介导亚硝酸盐型甲烷厌氧氧化的 M.oxyfera 细 菌,可把CH4厌氧氧化过程产生的电子传递给电子受 体NO2,将其还原为N2^[7-8]。目前认为这种细菌只能以 NO₂为电子受体催化CH₄分子的厌氧氧化。本试验发 现,添加N₂O对所有湿地土壤M.oxyfera细菌CH₄厌氧 氧化的功能基因 pmoA 拷贝数没有影响,说明该类细 菌不能还原N2O这种电子受体,可能不参与N2O驱动 的CH4厌氧氧化过程。介导硝酸盐型甲烷厌氧氧化 的*M.nitroreducens*古菌,可把CH4厌氧氧化过程产生 的电子传递给电子受体 NO3,将其还原为 NO2191。研究 发现这类古菌还能以SO²⁻、Fe³⁺、AQDS以及腐植酸等 为电子受体驱动CH4厌氧氧化,表现出明显的电子受 体底物多样性特征^[28]。本试验中添加N₂O条件下湿 地土壤M.nitroreducens古菌CH4厌氧氧化的功能基因 mcrA拷贝数增加了26%~64%,而且4个湿地土壤的 mcrA拷贝数与N₂O驱动的CH₄厌氧氧化速率之间呈 显著正相关,这表明 M. nitroreducens 古菌可能会以 N₂O为电子受体耦合CH₄分子的厌氧氧化。本试验还 发现,4个滨海土壤的 M.oxyfera 细菌 pmoA 基因拷贝 数和 M. nitroreducens 古菌 mcrA 基因拷贝数随着内陆 方向而显著增加,与Li等同的报道结果一致;他们认

为盐度是长江河口和沿海环境中影响CH4厌氧氧化 微生物活性的关键因素。介导硫酸盐型甲烷厌氧氧 化的 ANME 古
幕是滨海和海洋牛
境中最为重要的 CH4厌氧氧化微生物,包含有 ANME-1、ANME-2、 ANME-3等不同亚群;其中ANME-2型亚群古菌与硫 酸盐还原细菌结合形成共生关系,前者氧化产生的电 子传递给后者用于其SO²-还原。近期发现, AODS可 替代硫酸盐还原细菌,驱动ANME-2型亚群古菌完成 CH4厌氧氧化过程,该古菌表现出较强的电子受体底 物多样性特点。本试验发现,4个滨海土壤的ANME-2古菌硫酸盐型mcrA基因拷贝数随着内陆方向而显 著降低,且与土壤的EC值和SO4-浓度呈显著正相关, 说明在近海区自然湿地中ANME-2古菌对CH4厌氧氧 化过程发挥着重要作用。添加 N₂O 条件下湿地土壤 ANME-2古菌功能基因 mcrA 拷贝数增加了 31%~ 50%,说明该古菌可能也参与了N2O驱动的CH4厌氧 氧化过程。值得注意的是, Valenzuela等^[27]运用高通量 测序的方法,发现墨西哥Sisal滨海湿地中许多种类的 微生物参与了CH4厌氧氧化与N2O还原的耦合过程。 因此,本研究也需要进一步采用DNA-SIP结合高通量 测序的方法,深入阐释滨海湿地N2O型CH4厌氧氧化 作用的更多关键功能微生物物种特征及其催化活性。

本试验表明,CH4厌氧氧化过程具有较强的固碳 特性。厌氧条件下土壤微生物将¹³CH₄的一部分异化 呼吸转变为¹³CO₂,以获取代谢能量;另一部分¹³CH₄则 被微生物同化代谢,合成胞内有机物或胞外分泌物, 成为土壤有机碳的重要组分。本试验中滨海自然湿 地的¹³C-SOC净增量显著高于围垦稻田土壤,可能在 低滩位临海湿地中ANME-2、ANME-3等种类多样的 硫酸盐型CH4厌氧氧化古菌对CH4氧化及固碳发挥 着重要的作用[29-30]。此外,这也可能与近海滩涂沉积 物中黏粒含量高有关,新输入的有机碳易被土壤黏粒 吸附,形成有机无机交联体^[31],有利于土壤有机碳的 固持。与只添加¹³CH₄处理相比,添加¹³CH₄+N₂O处理 下湿地土壤的¹³C-SOC净增量提高了83%~131%,这 表明添加N₂O促进了湿地土壤CH₄厌氧氧化的固碳 量。相对于围垦稻田来说,芦苇和光滩湿地中N₂O驱 动的CH₄厌氧氧化过程,将更高比例的¹³C-CH₄同化 进入到土壤有机碳中,这可能与土壤质地性质、功能 微生物种类等因素有关,需要进一步分析土壤团聚体 特征、微生物宏基因组,阐明其固碳机理及其关键影 响因素。

3.2 湿地 N₂O 还原特征

N₂O还原过程是土壤反硝化作用的最后一步,一 般认为,土壤异养反硝化作用占主导地位,其电子供 体主要来自于低分子量活性有机物,可维持较高的反 硝化速率(包括N2O还原速率)^[32]。本试验中所试土 壤的 N₂O 净还原速率为 9.02~19.05 µg·g⁻¹·d⁻¹,表明培 养土壤中发生了强烈的 N₂O 还原过程。与只添加 N₂O处理相比,在供应¹³CH₄+N₂O条件下,湿地土壤的 N₂O净还原速率虽略有增加,但并未达到显著水平。 这表明与土壤本底有机物相比,CH4分子对N2O净还 原速率的促进效应极其微弱。从热力学角度来看,异 养反硝化微生物(包括N₂O还原菌)需要消耗很高的 能量才能活化CH4惰性分子,获得其电子[33];所以这 些微生物从环境中摄取电子时,优先选择活性有机物 如甲酸、甲醇等。而且,按照耦合反应式的化学计量 关系来看, N₂O还原速率与CH₄厌氧氧化速率的比值 应为4:1,在同一个数量级水平。本试验中湿地土壤 的CH4厌氧氧化速率范围为13~23 ng·g⁻¹·d⁻¹,推算出 CH4驱动的 N2O 还原速率应为 52~92 ng·g⁻¹·d⁻¹, 该理 论值远低于本试验中测出的N2O净还原速率。这说 明本试验湿地土壤的N₂O还原过程主要以土壤本底 活性有机物提供电子的异养反硝化为主,而以CH4厌 氧氧化提供电子驱动的 N₂O 耦合还原过程可能对 N₂O净还原速率的贡献甚微。

本试验发现,与只添加N₂O处理相比,在供应¹³CH₄+ N₂O条件下,氧化亚氮还原酶的编码基因 nosZ I 和 nosZ II 的拷贝数均显著增加;回归分析发现 nosZ I 基因拷贝数与所试土壤的 N₂O 净还原速率呈显著正 相关。这表明 nosZ I 型氧化亚氮还原酶对 N₂O 还原 过程的贡献可能高于 nosZ II 型,这与之前的报道一 致^[34]。围垦稻田土壤的 nosZ I 基因拷贝数显著低于 自然湿地土壤,而 nosZ II 基因则随围垦种植年限增 加呈显著上升趋势。回归分析发现 N₂O 驱动的 CH₄ 厌氧氧化速率与 nosZ II 基因拷贝数呈显著正相关, 这暗示了与 CH₄厌氧氧化过程耦合进行的 N₂O 还原 过程可能主要由 nosZ II 型微生物驱动。有报道认 为,含有 nosZ II 基因的微生物物种更为多样化,它们 大多数为非完全反硝化微生物,体内缺少 nirS、nirK 基因,无法完成 NO₂→NO 的转化过程^[35],但可以将 N₂O 还原为 N₂,对土壤环境中 N₂O 的消减作用具有重 要意义。由此可见,nosZ II 型 N₂O 还原的耦合过程中发 挥着重要作用,对湿地土壤的 CH₄和 N₂O 双减排具有 重要意义。

4 结论

(1)崇明东滩湿地土壤可进行 N₂O 驱动的 CH₄氧 化过程,且土壤¹³C-SOC 净增量显著增加了 83%~ 131%,提升了滨海湿地土壤的固碳量。

(2) 围垦植稻促进了 N₂O 驱动的 CH₄厌氧氧化过程。硝酸盐型古菌 *M.nitroreducens* 可能直接参与了该过程, 而硫酸盐型古菌 ANME则在滨海自然湿地中发挥重要作用。此外, 滨海湿地 N₂O 还原过程主要由 nosZ I型细菌驱动, 而 nosZ II型微生物是 CH₄厌氧氧化和 N₂O 还原耦合过程的重要参与者。

参考文献:

- [1] SU J, HU C, YAN X, et al. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice[J]. *Nature*, 2015, 523 (7562):602-606.
- [2] HINRICHS K U, HAYES J M, SYLVA S P, et al. Methane-consuming archaebacteria in marine sediments[J]. *Nature*, 1999, 398(6730):802– 805.
- [3] FAN L, DIPPOLD M A, GE T, et al. Anaerobic oxidation of methane in paddy soil: role of electron acceptors and fertilization in mitigating CH₄ fluxes[J]. Soil Biology and Biochemistry, 2020, 141:107685.
- [4] KNITTEL K, BOETIUS A. Anaerobic oxidation of methane: progress with an unknown process[J]. Annual Review of Microbiology, 2009, 63: 311-334.
- [5] LI X, GAO D, LIU M. Composition, diversity and abundance of Candidatus M. oxyfera-like bacteria in response to the estuary salinity gradient[J]. *Biogeochemistry*, 2019, 143(1):1–14.
- [6] SANCHEZ G A P, MAYER B, WUNDERLICH A, et al. Analysing seasonal variations of methane oxidation processes coupled with denitrification in a stratified lake using stable isotopes and numerical modeling [J]. Geochimica Et Cosmochimica Acta, 2022, 323:242–257.
- [7] ETTWIG K F, BUTLER M K, LE PASLIER D, et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria[J]. *Nature*, 2010, 464 (7288):543-548.

2023年11月 陈汉,等:崇明东滩湿地CH4与N2O双消减的耦合过程研究

- [8] RAGHOEBARSING A A, POL A, VAN DE PAS-SCHOONEN K T, et al. A microbial consortium couples anaerobic methane oxidation to denitrification[J]. *Nature*, 2006, 440(7086):918–921.
- [9] HAROON M F, HU S, SHI Y, et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage[J]. *Nature*, 2013, 500(7464):567-570.
- [10] SANFORD R A, WAGNER D D, WU Q, et al. Unexpected nondenitrifier nitrous oxide reductase gene diversity and abundance in soils[J]. *PNAS*, 2012, 109(48):19709–19714.
- [11] JONES C M, GRAF D R, BRU D, et al. The unaccounted yet abundant nitrous oxide-reducing microbial community: a potential nitrous oxide sink[J]. *ISME J*, 2013, 7(2):417–426.
- [12] JONES C M, SPOR A, BRENNAN F P, et al. Recently identified microbial guild mediates soil N₂O sink capacity[J]. Nature Climate Change, 2014, 4(9):801-805.
- [13] 刘春梅,魏文学,盛荣,等.氧化亚氮还原酶基因 nosZ Ⅱ及与环境的关系研究进展[J].应用与环境生物学报,2018,24(3):651-656. LIU C M, WEI W X, SHENG R, et al. Progress in the study of the nitrous oxide reductase gene nosZ Ⅱ and its relationship with the environment[J]. Journal of Applied and Environmental Biology, 2018, 24 (3):651-656.
- [14] XIE X, PU L, WANG Q, et al. Response of soil physicochemical properties and enzyme activities to long-term reclamation of coastal saline soil, Eastern China[J]. Science of the Total Environment, 2017, 607: 1419-1427.
- [15] 侯颖, 李红, 赵敏, 等. 从湿地到农田: 围垦对生态系统碳排放的影响[J]. 生态学报, 2017, 28(8): 2517-2526. HOU Y, LI H, ZHAO M, et al. From wellands to farmland: the impact of polder on ecosystem carbon emissions[J]. Acta Ecologica Sinica, 2017, 28(8): 2517-2526.
- [16] 李建国, 濮励杰, 徐彩瑶, 等. 1977—2014年江苏中部滨海湿地演 化与围垦空间演变趋势[J]. 地理学报, 2015, 70(1):17-28. LI J G, PU L J, XU C Y, et al. Spatial evolutionary trends of coastal wetland evolution and polder in central Jiangsu from 1977—2014[J]. Acta Geographica Sinica, 2015, 70(1):17-28.
- [17] 徐彩瑶, 濮励杰, 朱明. 沿海滩涂围垦对生态环境的影响研究进展
 [J]. 生态学报, 2018, 38(3):1148-1162. XU C Y, PU L J, ZHU M. Research progress on the ecological impact of coastal mudflat reclamation[J]. Acta Ecologica Sinica, 2018, 38(3):1148-1162.
- [18] 赵新新,金晓斌,杜心栋,等.沿海滩涂垦殖对土壤氮总转化速率 的影响分析[J]. 长江流域资源与环境, 2015, 24(9):1552-1559. ZHAO X X, JIN X B, DU X D, et al. Analysis of the effect of coastal mudflat reclamation on total soil nitrogen conversion rate[J]. Yangtze River Basin Resources and Environment, 2015, 24(9):1552-1559.
- [19] GAUTHIER M, BRADLEY R L, SIMEK M. More evidence that anaerobic oxidation of methane is prevalent in soils: is it time to upgrade our biogeochemical models? [J]. Soil Biology & Biochemistry, 2015, 80:167-174.
- [20] WANG Z, LI K, SHEN X, et al. Soil nitrogen substances and denitrifying communities regulate the anaerobic oxidation of methane in wetlands of Yellow River Delta, China[J]. Science of the Total Environment, 2023, 857:159439.
- [21] CUI J, LIU C, LI Z, et al. Long-term changes in topsoil chemical

properties under centuries of cultivation after reclamation of coastal wetlands in the Yangtze Estuary, China[J]. *Soil & Tillage Research*, 2012, 123:50-60.

- [22] ZHANG Y H, WANG F Y, JIA Z J. Electron shuttles facilitate anaerobic methane oxidation coupled to nitrous oxide reduction in paddy soil [J]. Soil Biology and Biochemistry, 2021, 153.
- [23] WANG J, CAI C, LI Y, et al. Denitrifying anaerobic methane oxidation: a previously overlooked methane sink in intertidal zone[J]. Environ Sci Technol, 2019, 53(1):203-212.
- [24] SHEN L D, HU B L, LIU S, et al. Anaerobic methane oxidation coupled to nitrite reduction can be a potential methane sink in coastal environments[J]. *Appl Microbiol Biotechnol*, 2016, 100(16):7171-7180.
- [25] ZHANG Y, WANG F, XIA W, et al. Anaerobic methane oxidation sustains soil organic carbon accumulation[J]. *Applied Soil Ecology*, 2021, 167:108096.
- [26] CHENG C, SHEN X, XIE H, et al. Coupled methane and nitrous oxide biotransformation in freshwater wetland sediment microcosms[J]. *Science of the Total Environment*, 2019, 648:916–922.
- [27] VALENZUELA E I, PADILLA-LOMA C, GOMEZ-HERNANDEZ N, et al. Humic substances mediate anaerobic methane oxidation linked to nitrous oxide reduction in wetland sediments[J]. *Front Microbiol*, 2020, 11:587.
- [28] ARANDA-TAMAURA C, ESTRADA-ALVARADO M I, TEXIER A C, et al. Effects of different quinoid redox mediators on the removal of sulphide and nitrate via denitrification[J]. *Chemosphere*, 2007, 69 (11):1722-1727.
- [29] BHATTARAI S, CASSARINI C, GONZALEZ-GIL, et al. Anaerobic methane-oxidizing microbial community in a coastal marine sediment: anaerobic methanotrophy dominated by ANME-3[J]. *Microbiological Ecology*, 2017, 74:608-622.
- [30] ZHANG Y H, ZHANG X L, WANG F Y, et al. Exogenous nitrogen addition inhibits sulfate-mediated anaerobic oxidation of methane in estuarine coastal sediments[J]. *Ecological Engineering*, 2020, 158: 106021.
- [31] DAVIDSON E A, JANSSENS I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J]. *Nature*, 2006, 440(7081):165–173.
- [32] DI CAPUA F, PIROZZI F, LENS P N L, et al. Electron donors for autotrophic denitrification[J]. *Chemical Engineering Journal*, 2019, 362: 922–937.
- [33] PANG Y, WANG J. Various electron donors for biological nitrate removal: a review[J]. Science of the Total Environment, 2021, 794: 148699.
- [34] 汪方圆, 张耀鸿, 饶旭东, 等. 围垦对滨海稻田土壤 N₂O还原潜力的 影响[J]. 农业环境科学学报, 2020, 39(11):2668-2674. WANG F Y, ZHANG Y H, RAO X D, et al. Effect of polder on N₂O reduction potential of coastal rice fields[J]. Journal of Agro-environment Sciences, 2020, 39(11):2668-2674.
- [35] HALLIN S, PHILIPPOT L, LÖFFLER F E, et al. Genomics and ecology of novel N₂O-reducing microorganisms[J]. *Trends in Microbiology*, 2018, 26(1):43–55.

(责任编辑:叶飞)

www.aer.org.cn