农业环境保护 2002, 21(4): 322 - 324,336

Agro-environmental Protection

液培条件下养分组成对叶菜硝酸盐及 营养品质的影响

徐卫红, 王正银, 林春云

(西南农业大学资源环境学院, 重庆 北碚 400716)

摘 要:采用液培试验研究了养分组成对生菜和莴笋 2 种叶菜生长、硝酸盐含量及营养品质的影响,结果表明:(1)在氮肥用量相等时,增施磷肥和钼肥,降低营养液 NO_5^- N 与 NH_4^+ - N 比例及增施氮、钾肥,均降低了 2 种叶菜的硝酸盐含量;(2)生菜以增施磷肥和钼肥, NO_5^- N: NH_4^+ - N = 8: 2 处理时,使生菜硝酸盐含量减少 19.7%,同时获得较高产量及营养品质;莴笋在营养液配方以增施磷肥和钼肥, NO_5^- N: NH_4^+ - N = 6: 4(柠檬酸叶面喷施)处理最佳,使茎、叶硝酸盐含量分别降低 39.5%、17.0%,改善了营养品质,提高了产量;(3)改变氮肥形态比例,增施磷、钼肥,同时增加氮、钾用量,莴笋产量增加 36.8%,茎、叶硝酸盐含量降低 8.5%、9.8%,营养品质改善;而生菜产量降低 16.3%,且对营养品质不利。

关键词:液培;养分组成;叶菜;硝酸盐;营养品质

中图分类号: \$131 文献标识码: A 文章编号: 1000 - 0267(2002)04 - 0322 - 03

Effects of Nutrient Composition on Nitrate and Nutrient Quality of Leaf Vegetables Under Solution Culture

XU Wei-hong, WANG Zheng-yin, LIN Chun-yun

(College of Resources. and Environmental. Sciences, Southwest Agricultural University, Chongqing 400716, China)

Abstract: Solution culture experiment was conducted to study effect of nutrient composition on contents of nitrate and nutrient quality of romaine lettuce and lettuce. The results showed that: (1) nitrate contents of 2 leaf vegetables were decreased by increasing application of phosphorus and molybdenum fertilizers, and reducing proportion between NO_5^- – N and NH_4^+ – N, and adding potassium fertilizer at the same dosage of nitrogen fertilizer. The maximum of decrease was the adding potassium fertilizer treatment. (2) Romaine lettuce was more adaptability to high NO_5^- – $N(NO_5^-$ – $N:NH_4^+$ – N=9:1), the growth was decreased with NH_4^+ – N increase, because of nitrate content was decreased by 19.7% and higher yield and nutrient quality were obtained once, while an optimal nutrient direction of romaine lettuce was the NO_5^- – $N:NH_4^+$ – N=8:2. The growth of lettuce was obviously enhanced by increasing NH_4^+ – N proportion according to contrast $(NO_5^-$ – $N:NH_4^+$ – N=9:1), revealing that optimal nutrient direction of lettuce was NO_5^- – $N:NH_4^+$ – N=6:4. (3) changing the proportion between NO_5^- – N and NH_4^+ – N and increasing the dosage of phosphorus and molybdenum, and enhancing the dosage of nitrogen and potassium fertilizers, yield of lettuce was enhanced by 36.8%, nitrate content was reducing by 8.5%, 9.8% in stem and leaf, and improved the nutrient quality, while yield of romaine lettuce was decreased by 16.3% and the nutrient quality was not desirable. Because of impropriety between nitrogen and potassium, yields of 2 leaf vegetables were reduced by 15.9%, 24.4% in only increasing potassium fertilizer treatment.

Keywords: solution culture; nutrient composition; leaf vegetable; nitrate; nutrient quality

目前设施栽培蔬菜发展很快,但有关营养液中氮肥形态及量比对蔬菜硝酸盐含量、营养品质的影响研究较少^[1,2]。为此,采用溶液培养方法,研究NH₄ - N与 NO₃ - N 比例以及与微量元素、有机酸配合对蔬菜硝酸盐含量和营养品质的影响,旨在为发展优质叶菜

收稿日期: 2001-03-31

基金项目:重庆市科委资助项目

作者简介: 徐卫红(1969—),女,重庆市人,西南农业大学资环学院讲师,从事植物营养研究。

筛选最佳营养液配方提供理论依据。

1 材料与方法

1.1 试验设计

2 种供试作物为: 莴笋(Lactic sativa, 品种为大白甲)、生菜(Maine lecture, 品种为美国大速), 其幼苗购自九龙坡含谷镇重庆蔬菜基地科技示范园。采用塑料杯(直径×高=10 cm×10 cm)进行液培试验。塑料杯

农

境

表 1 试验处理方案

Table 1 Design of the test in the present study

处理号	试验内容(说明)
1	$CK NO_3^ N: NH_4^+ - N = 9: 1$
2	处理 1 + 5Mo + 2P (Mo 和 P 为原配方浓度的 5 倍和 2 倍)
3	处理 2, NO ₃ - N: NH ₄ - N = 8: 2
4	处理 2, NO ₃ - N: NH ₄ - N = 6: 4
5	处理 4 + 0.1 mmol·L ⁻¹ 柠檬酸(喷) (喷施 3 次,每杯每次
3	6 mL 柠檬酸液)
6	处理 4 + 0.1 mmol・L ⁻¹ 柠檬酸 (直接加)
7	处理 3 + N150 + K250 (以处理 3 为基础, 加入总氮量为
,	150 mg,总钾量为 250 mg)

上盖塑料板, 杯外及塑料板上均用黑色塑光纸包裹以 遮光,塑料板均匀打有3个孔,并放入定植杯(直径×

(以处理2为基础,加入总钾量为250 mg)

高 = $2.2 \text{ cm} \times 4.5 \text{ cm}$

处理 2 + K250

1.2 试验方法 试验在西南农大盆栽场玻璃网室内进行。营养液

(表 1)。于 2000 年 4 月 7 日移栽莴笋幼苗(4 叶期)3 株,4月8日移栽生菜幼苗(2叶期)3株,在盛有营养 液 300 mL 的塑料杯 (直径 × 高 = 10 cm × 10 cm) 内培 养。试验期间每2d换一次营养液,每次每个培养杯 盛营养液 300 mL,调节营养液 pH 值为 6.4,加入不同 养分物质(主要为 N 形态, P、K、Mo 和有机酸)。重复 4 次。莴笋培养34d,生菜培养30d收获。同时测定植

配方以华南农大营养液配方[4]为基础,共设8个处理

1.3 测定方法

叶菜可食部分的硝酸盐用酚二磺酸比色法,氨基 酸用水合印三酮比色法,水溶性糖用水杨酸比色法, 维生素 C 用 2, 6 - 二氯蓝靛酚滴定法, 叶绿素用丙酮 提取分光光度法[5,6]测定。

株生物学性状、硝酸盐含量及营养品质。

结果与讨论

2.1 不同营养液对叶菜生长状况的影响

长, 较对照株高提高 0.8% -19.7%, 以增施氮、钾处 理增量最大;对生菜,所有处理较对照株高降低为 4.4% —15.0%, 其中以处理6降低量最大。处理3、 5、7 使莴笋根长、根重较对照增加 12.5% — 37.5%、 8.5% —17.5%; 生菜根长, 以处理3和处理4分别较 对照降低 14.7% 和 11.8% 外,其余各处理变化不 大。生菜根重,除仅处理2增加1.1%外,其余处理减 少3.7%-25%,以处理6降低量最大,其株高降低

营养液组成成分的变化对 2 种蔬菜生长状况的 影响差异很大(表2)。不同营养液均促进了莴笋生

也最大,对生菜的生长最为不利。 莴笋叶绿素含量 处理 4 和处理 6 较对照分别增加 13.2% 和 10.9%, 生菜除处理6增加12.7%外,其余各处理基本保持 不变。这些结果表明,氮素用量相等时,适当降低硝态 氮比例,可以提高莴笋叶绿素含量;对于生菜,降低硝

态氮比例时,需加入柠檬酸缓解生菜氨中毒,以利于

2.2 不同营养液对叶菜产量的影响

叶绿素合成和植株正常生长。

2种叶菜培养结束后的生长情况见表 3。结果表 明,生菜对高NO3-N的适应性较好,提高NH4-N 在营养液氮素中的比例,生长量均较对照不同程度下 降。处理2莴笋生长量较对照提高9.9%,但使生菜 下降了19.4%。在增施磷、钼肥基础上,再增加 NH⁺ - N 在营养液氮素比例,生长量较对照明显提 高,以处理7提高最大。处理3及处理5的生长量分 别为对照的 117.4%、126.9%。 目处理 5 的生长量明 显高于处理 4。可见,在高NH4-N供应条件下,施用 有机酸来减缓蔬菜铵中毒危害,可达到明显效果。但 将柠檬酸直接加的处理6效果不佳,使生长量减少 13.7%。只增加钾用量的处理,因植株体内氮、钾比例 不平衡, 莴笋、生菜生长量反而降低了 15.9%、

Table 2 Comparison of growth of leaf vegetables with different treatments

表 2 不同处理叶菜的生长状况比较

处	<u></u> - 英					生 菜										
理	株	高	根	艮长	根重	Ì	叶绿	素	株	高	根	:K	根重	É	叶绿	素
号	/cm	/%	/cm	/%	/g・杯 ⁻¹	/%	$/\mu g \cdot g^{-1}$	/%	/cm	/%	/cm	/%	/g・杯 ⁻¹	/%	$/\mu g \cdot g^{-1}$	/%
1	24. 8	100	4	100	7. 593	100	0.086	100	32. 7	100	6.8	100	2. 320	100	0.055	100
2	25.0	100.8	4. 3	107.5	5. 643	14. 3	0.085	99. 3	21.7	95. 6	6. 5	95. 6	2. 345	101.1	0.052	94. 5
3	27.5	110. 9	4. 5	112.5	8. 925	117.5	0.089	104. 0	21. 2	93. 4	5.8	85. 3	2. 134	92.0	0.053	96. 4
4	28. 3	114. 1	3.8	95.0	6. 942	91.4	0.097	113. 2	20. 7	91. 2	6. 2	91. 2	2.072	89.3	0.051	92. 7
5	27.7	111.7	5.0	125.0	8. 443	111.2	0.086	110.4	19.8	87. 2	6	88. 2	1. 945	83.8	0.058	105.5
6	25.0	100.8	3.8	95.0	7. 439	98.0	0.095	110. 9	19. 3	85. 0	6.8	100	1.741	75.0	0.062	112.7
7	29. 7	119.7	5.5	137.5	8. 237	108.5	0.088	102. 9	20.0	88. 1	7. 0	102. 9	2.807	80.0	0.054	98. 2
- 8	25. 3	102.0	3.5	87. 5	4. 659	61.4	0.082	96. 1	19. 8	87. 2	6.8	100	2. 234	96. 3	0.054	98. 2

表 3 不同营养液对叶菜产量的影响

Table 3 Effects of different nutrient solutions on the yields of leaf vegetables

处理号	生 菜		莴 笋			
处理与	$x \pm s(g \cdot 杯^{-1})$	%	$x \pm s(g \cdot \overline{K}^{-1})$	%		
1	27. 094 ± 2. 485a	100	23 . 968 ± 2. 622e	100		
2	21. 844 \pm 3. 317bc	80.6	$26.343 \pm 10.816\mathrm{d}$	109. 9		
3	26. 252 ± 6. 396a	96. 9	$28.140 \pm 13.758\mathrm{c}$	117.4		
4	23. $608 \pm 4.199b$	87. 1	23. 154 \pm 8. 179e	96. 6		
5	19. 958 \pm 2. 241d	73.7	30.408 ± 16.343 b	126. 9		
6	19. $699 \pm 3.353d$	72.7	20. 688 ± 10.350 f	86. 3		
7	22. 679 ± 3.308 b	83.7	32. $310 \pm 7.571a$	136. 8		
8	22. 789 ± 1.790 b	84. 1	18. 127 ± 4.410 j	75.6		

24.4%。因此,蔬菜栽培过程中盲目加大钾肥用量,以降低蔬菜硝酸盐含量,提高营养品质,反而对产量形成不利。本试验条件下,生菜和莴笋的产量与其生长状况(株高、根重、根长)有着较直接关系,即植株越高,根越长、越重,产量就越高。

2.3 不同营养液对叶菜硝酸盐含量的影响

不同营养液对 2 种叶菜硝酸盐含量的影响见表 4。增施磷、钼肥,由于促进了糖类转化、呼吸作用及各 种有机酸的合成,有机酸又可作为氨的受体,合成氨 基酸和蛋白质,从而促进氮代谢、降低植物体内硝酸 盐含量;而钼是植物体内硝酸还原酶的组成成分[3], 因此,在本试验条件下,增施磷、钼肥,莴笋茎、叶及生 菜体内硝酸盐含量分别较对照减少14.3%、5.6%、 2.8%。以在施磷、钼的基础上,增施钾肥的降低作用 最大, 莴笋茎和叶分别降低 29.7% 和 54.6%, 生菜降 低 57.4%。有关植物钾素营养理论认为,钾在植物体 内的作用是多方面的,其中包括促进蛋白质的合成。 植物体 K+浓度达到 0.01-0.05 mol·L-1, 能使氨基 酰 tRNA 合成酶活化促进蛋白质的合成,提高氮的利 用率。K+浓度高,这种促进作用也增强。本试验说明, 介质中钾含量愈高,蔬菜中硝酸盐含量愈低。在增施 磷、钼肥基础上,改变NO3-N与NH4-N比例,莴笋 硝酸盐含量明显下降, 茎硝酸盐含量降低 12.7% 一 17.7%, 叶降低 25.0% —38.5%。加入柠檬酸使蔬菜 体内硝酸盐含量下降最明显。处理5茎、叶硝酸盐含 量为对照的 61.5%、83.0%。处理 3 茎、叶硝酸盐含 量降低 25.0%、12.7%。在增施磷、钼肥基础上,改变 NO₃ - N 与NH₄ - N 比例, 也明显降低了生菜硝酸盐 含量(39.7%-42.6%),以处理4降低量最大,处理 3次之。产生这种差异的最大因素是由于不同种类蔬 菜对铵态氮和硝态氮吸收的偏差性以及生长量差异 共同作用结果。处理5使生菜的硝酸盐含量提高,表 现出反常现象,其原因有待进一步研究。此外,增施磷、钼肥,虽然降低蔬菜硝酸盐明显,但其作用也明显低于增施磷、钼肥,又改变氮肥形态比例,并加入柠檬酸的综合作用对硝酸盐含量的影响。

2.4 不同营养液对叶菜营养品质的影响

对各处理叶菜可食部分水溶性糖、氨基酸及维生表 4 不同营养液对叶菜硝酸盐(NO₃-N)含量的影响

Table 4 Effects of different nutrient solutions on nitrate contents of leaf vegetables

		芨	生菜				
处理号	叶		茎		叶		
	/mg • kg ⁻¹	/%	/mg • kg - 1	/%	/mg • kg - 1	/%	
1	2 345. 7	100	2 978. 2	100	2 221.5	100	
2	2 011.3	85.7	2 812. 2	94. 4	2 158.6	97. 2	
3	1 759.5	75.0	2 599. 5	87. 3	1 339.0	60.3	
4	1 652. 1	70.4	2 577.5	86. 5	1 318.5	59.4	
5	1 443.2	61.5	2 472. 2	83.0	2 390. 2	107. 5	
6	1 674. 8	71.4	2 451.6	82. 3	1 804. 5	81.2	
7	2 116. 3	90. 2	2 724. 0	91.5	1 740.0	78. 3	
8	1 065.3	45.4	2 094. 6	70. 3	1 275. 9	57.4	

素 C 的含量测定结果表明, 在增施磷、钼肥基础上, 降低NO₃ - N 在NO₃ - N 与NH₄ - N 营养液中配合的 比例,使莴笋茎水溶性糖、氨基酸含量提高2.3%一 30.9%、0-100.5%, 叶中水溶性糖、维生素 C 含量 也分别较对照增加 32.7% —96.6% 、13.5% — 110.1%。可见, 调控莴笋营养液中磷、钼及NO3-N 与NH4-N配合中的比例,可以获得高产、高卫生品 质和营养品质的优良产品,如处理3及处理5,以处 理 5 增产 26.9%,降低茎、叶硝酸盐 61.5%、83.0%, 为莴笋最佳营养液配方。增加NH4-N在营养液氮肥 中的比例,生菜水溶性糖含量较对照提高 6.0% 一 25.4%,处理4及处理5维生素C含量较对照提高 5.0%、8.4%。但改变NO₃-N与NH₄-N比例对生 菜氨基酸作用不大。若考虑低硝酸盐、较高产量及营 养品质,适合生菜生长的营养液氮肥形态配方为处理 3。在对照基础上,增施磷、钼肥,仅使莴笋茎中水溶性 糖、氨基酸含量提高 7.0%、25.2%, 使生菜维生素 C 含量提高 3.4%。表明,增施磷、钼肥,同时改变氮肥 形态比例,并加入柠檬酸的综合措施也较单一提高 磷、钼量有利于改善蔬菜营养品质。增施磷、钼肥,改 变氮肥形态比例,同时增加氮、钾用量,使莴笋叶、茎 及生菜水溶性糖、氨基酸、维生素C含量分别增加 46. 7% \ 21. 2% \ 9. 5% \ 12. 2% \ 20. 2% \ 1. 7% 4.3%、16.0%。在增施磷、钼肥基础上,仅增钾肥的处

(下转第336页)