Agro-environmental Protection

毛细管气相色谱法同时测定苹果 梨中氯氰菊酯 联苯菊酯和氟氯氰菊酯的残留量

买光熙, 刘潇威, 翟广书, 陈 勇, 刘长武

(农业部环境保护科研监测所, 天津 300191)

摘 要:利用乙腈提取、氧化铝和弗罗里硅土填料净化的前处理方法,研究了采用毛细管气相色谱同时测定苹果、梨中 氯氰菊酯、联苯菊酯和氟氯氰菊酯残留量的方法。结果表明,用 20mL 10% 丙酮/石油醚作为淋洗液,0.5 mg·L⁻¹水平 时苹果、梨在两种填料的回收率都在 90%—120% 之间;在 0.05 mg·L⁻¹水平时,苹果、梨在弗罗里硅土柱上,3 种菊酯 都达到了 90%—110% 的满意结果;而在氧化铝柱上,只有联苯菊酯和氟氯氰菊酯达到 90%—110% 的结果,氯氰菊酯 只达到 64.8% 和 61.5% 的结果。综合考虑,利用弗罗里硅土柱对这 3 种菊酯的净化效果较好,高低浓度均符合农药残留分析的要求。

关键词:毛细管气相色谱; 氯氰菊酯; 联苯菊酯; 氟氯氰菊酯; 残留量

中图分类号: X839.2 文献标识码: A 文章编号: 1000 - 0267(2002)03 - 0260 - 03

Simultaneous Determination of Residues of Cypermethrin, Bifenthrin and Cyfluthrin in Apple and Pear by Capillary Gas Chromatography

MAI Guang-xi, LIU Xiao-wei, ZHAI Guang-shu, CHEN Yong, LIU Chang-wu

Abstract: A rapid method for determination of residues of cypermethrin, bifenthrin and cyfluthrin in apple and pear by capillary gas chromatography was developed. The sample was extracted with acetonitrile and cleaned – up with Florisil column and aluminia column, respectively, with acetone/petroleum ether (9:1, v/v) as the effluent in this experiment. In both columns, the recoveries of the pesticides from apple and pear fortified samples were between 90% and 120% at 0.5 mg · L⁻¹ level. While at 0.05 mg · L⁻¹ level, the recoveries of bifenthrin, cyfluthrin and cypermethrin in apple and pear from Florisil column obtained 90% — 110%. However, only the recoveries for bifenthrin and cyfluthrin were quantitative for alumina column, that of cypermethrin was just in a range of 64.8% to 61.5%.

Keywords: capillary gas chromatography; cypermethrin; bifenthrin; cyfluthrin; residue

氯氰菊酯(Cypermethrin)、联苯菊酯(Bifenthrin)和氟氯氰菊酯(Cyfluthrin)是 20 世纪 80 年代初开始研究并使用的农药,主要应用于水果、蔬菜、棉花和粮食作物上。虽然它们是高效、低毒、低残留农药,但它们的应用对生态环境也产生了一定的影响。联合国粮农组织和世界卫生组织(FAO/WHO)已对它们在苹果、梨上的残留作出了严格的限量[1]。

到现在为止,我国还没有统一的测定苹果、梨中这三种菊酯的方法,即使有相关的食品中的测定方法 [2,3],也是费时、费溶剂的传统方法。我们在实验的基础上,利用氧化铝和弗罗里硅土填料的净化柱进行前

处理,并对它们的净化效果进行比较,总结出一个切实可行的测定方法。

1 仪器和试剂

- (1) HP 6890 气相色谱仪(ECD 电子捕获检测器, HP 7683 自动进样器, 工作站控制)。
- (2) DS 200 高速组织捣碎机(江苏江阴科研器械厂)。
- (3) 氮吹仪 (Organomation Associates。Jnc, 美国产)。
- (4) XW-80A 旋涡混合器,上海医科大学仪器厂。
- (5) 试剂(除注明外,均为分析纯): 石油醚(60 ℃ —90 ℃重蒸),;乙腈;丙酮(重蒸);中性氧化铝(柱层

收稿日期: 2001 - 05 - 24

作者简介:买光熙(1953一),女,现为农业部环境保护监测总站实验师。

脱活:无水硫酸钠,450℃灼烧4h,在马弗炉中冷却至 100 ℃左右时, 趁热转移到干燥器中冷却至室温贮存 备用; 氯化钠, 140 ℃烘 4 h; 脱脂棉, 经正己烷洗涤

析级),550 ℃活化 4 h,用前 140 ℃烘 1 h,以 4% 的水

后,干燥备用;弗罗里硅土(柱层析级),在650℃活化 1-3 h,用前 140 ℃烘 1 h,以 5% 水脱活。

(6)标准物质: 氯氰菊酯 (Chemservice 公司提供, 美国); 联苯菊酯 (Chemservice 公司提供,美国); 氟氯

氰菊酯(Chemservice 公司提供,美国)。

(7) 标准工作溶液的配制:利用配制好的1000 mg·L-1的储备液,根据需要逐级稀释,配成工作应 用液。

(8)色谱条件:载气:N2(纯度 99.999%),平均线 速度为 38 cm·s⁻¹;不分流模式进样,进样体积 1μL, 以外标法定量; 进样口温度 240 ℃; ECD 电子捕获检

测器温度 320 ℃, 辅气 N₂ 流速 60 mL·min⁻¹; 毛细管 柱: HP-5(5% Phenyl Methyl Siloxane, 30.0m× 530μm×1.5μm), N₂ 流速 4.0 mL·min⁻¹, 压力 29. 7kPa; 炉温进行程序升温: 初温 150 ℃, 以 25℃。

min⁻¹ 升温至 290 ℃,在此温度保持 10 min,总运行时 间为 15.6 min。

实验步骤

2.1 提取

在烧杯中称量20.0g经初步粉碎的样品(加标浓 度为 0.5 mg·L⁻¹、0.05 mg·L⁻¹ 两水平), 用 40 mL 乙腈将样品冲洗到高速组织捣碎机中,在高速组织捣 碎机中粉碎 1 min, 然后通过滤纸过滤到放有 5-6 gNaCl 具塞量筒中,振荡 1 min,静置 5 min,分层,取上 层有机相 10 mL 于试管中,用氮吹仪吹近干。加 5 mL

淋洗液溶解残留物,准备过层析柱净化。

2.2 净化

本实验采用两种填料(中性氧化铝和弗罗里硅 土)的柱子对净化效果作对比实验,层析柱的条件如 下:氧化铝柱(内径1cm,下层填少量脱脂棉,然后依 次放 1 cm 无水硫酸钠, 3 cm 层析用中性氧化铝, 1 cm 无水硫酸钠); 弗罗里硅土柱(内径1cm,下层填少量

罗里硅土,1 cm 无水硫酸钠)。净化时先用 10 mL 淋洗 液条件化柱子,等条件化淋洗液的上层剩少许时,弃 去流出液;加入样品,用干净烧杯接淋洗液,再用固定 体积每次 5 mL 淋洗液淋洗样品进行净化, 净化后样 品用氮吹仪吹小于 5 mL, 用正己烷定容至 5 mL 后进 气相色谱测定。

脱脂棉, 然后依次放 1 cm 无水硫酸钠, 5 g 层析用弗

261

结果与讨论

3.1 淋洗液比例的确定

在上述实验步骤条件下,利用标准样品直接过柱 对淋洗液的配比进行了实验,淋洗液氧化铝柱选用丙 酮和石油醚,弗罗里硅土柱选用丙酮/石油醚和乙酸 乙酯/石油醚。这三种菊酯在苹果、梨上的色谱图见图 1,实验结果见表1和表2。

由表 1、表 2 可以看出,利用含 10% 丙酮的石油 醚对氧化铝柱和弗罗里硅土柱的淋洗回收率较高;而 100% 石油醚对氧化铝柱的淋洗回收率只有 24.6%, 这是由于氯氰菊酯具有弱极性,加入一定量的丙酮调 节石油醚的极性有利于提高氯氰菊酯的淋洗效率;在 弗罗里硅土柱上,由于弗罗里硅土的吸附性比氧化铝

氯氰菊酯的色谱图 1. 联苯菊酯, 8. 525 min; 2. 氟氯氰菊酯, 12. 187 min; 3、4、5 为氯氰菊酯(异构体),12.539、12.682、12.927 min

表 1 氧化铝柱(1 mg·L-1 水平氯氰菊酯进行实验)

图 1 苹果、梨添加实验中联苯菊酯、氟氯氰菊酯、

Table 1 Recovery test for fortified cypermethrin from alumina column at level of 1 mg \cdot L⁻¹

丙酮: 石油醚/%	5: 95	5: 95	10: 90	10: 90	0: 100
淋洗液体积/mL	20	40	20	40	40
回收率/%	84. 0	82.8	89. 3	86.0	24. 6

表 2 弗罗里硅土柱(0.05 mg·L-1 水平氯氰菊酯、联苯菊酯、氟氯氰菊酯混合样进行实验)

Table 2 Recovery test for fortified mixture of cypermethrin, bifenthrin nd cyfluthrin from Florisil column at level of 0.05 mg • L⁻¹

淋洗液	5 乙酸乙酯	: 95 石油醚	5 内酮: 9	5 石油醚	10 内酮: 90 石油醚		
AL OT HX	20 mL	40 mL	20 mL	40 mL	20 mL	40 mL	
氯氰菊酯回收率/%	84. 2	91. 4	81.0	83. 7	91. 1	94. 9	
联苯菊酯回收率/%	95. 5	88. 0	88. 5	87. 6	95. 5	92. 1	
氟氯氰菊酯回收率/%	74. 2	86. 2	85. 3	85. 0	104. 6	93. 1	

的回收率高,说明弗罗里硅土更适合对氯氰菊酯的净化。淋洗液体积对回收率也有影响,分别用 20、40 mL

低,因此在弗罗里硅土柱上净化的回收率比氧化铝柱

洗效果相近,而 20 mL 可以节省一半的溶剂,因此我们就选 20 mL 作为淋洗液的用量。最后确定用 20 mL

淋洗液进行了实验,结果表明,20 mL和40 mL的淋

们就选 20 mL 作为淋洗液的用量。最后确定用 20 m 10% 丙酮/石油醚进行苹果、梨的添加回收率实验。

3.2 苹果、梨的添加回收率实验

在苹果、梨的添加回收率实验中,做了 0.5 mg·

间,变异系数都在 10% 之内,符合农药残留分析方法 的要求。相比来说,弗罗里硅土填料比氧化铝效果更 好一些,因为氧化铝柱对氟氯氰菊酯在苹果上的部分 回收率超过 120%,而且在梨上的回收率结果好于苹

由表 3 和表 4 可以看出, 对于 0.5 mg·L-1 水平

的添加浓度,两种填料的净化柱对氯氰菊酯、联苯菊

酯和氟氯氰菊酯的平均回收率都在90%-120%之

表 3 0.5 mg·L⁻¹、0.05 mg·L⁻¹添加水平回收率实验(氧化铝柱) Table 3 Recoveries of pesticides fortified from alumina column at 0.5 and 0.05 mg·L⁻¹ levels

表 3、表 4。

		苹果回收率/%						梨回收率/%					
样品号	联苯菊酯		氟氯氰菊酯		氯氰菊酯		联苯菊酯		氟氯氰菊酯		泵氰菊酯		
件吅亏	0. 5	0.05	0. 5	0.05	0. 5	0. 05	0. 5	0.05	0.5	0.05	0.5	0.05	
	mg • L^{-1}	mg • L^{-1}	mg • L^{-1}	mg • L^{-1}	mg • L-1	mg • L^{-1}	mg • L^{-1}	mg • L^{-1}	mg • L-1	mg • L^{-1}	mg • L-1	mg • L^{-1}	
1	97. 8	116. 6	122. 0	108. 2	99.4	76. 2	104. 0	100.8	106. 0	110.8	107. 4	70. 0	
2	97. 8	116. 4	122. 0	114. 6	105. 2	69.0	114.0	103. 2	105.8	116.8	107.8	53.4	
3	97. 2	109. 6	121.4	119. 2	109. 2	63. 2	114. 4	108.6	108. 2	115. 2	111.8	59.0	
4	97. 4	105. 2	121. 4	114. 6	114.0	64. 0	104.0	106. 2	98. 2	93. 6	101.4	58. 6	
5	101.8	107. 8	116	105.7	109.6	57. 2	100. 2	102.0	102. 1	93.0	105.6	65. 2	
6	99. 4	112. 3	116	108.6	101.0	59. 0	98. 5	97.8	99. 7	111.6	100.7	62. 7	
平均	98. 6	111.3	119.8	111.8	106. 4	64. 8	105.9	103. 1	103.3	106. 8	105.8	61.5	
变异系数/%	1.79	3.80	2.49	4. 18	5. 24	9.81	6. 44	3.42	3.82	9. 16	3.97	8.60	

表 4 0.5 mg · L⁻¹、0.05 mg · L⁻¹添加水平回收率实验(弗罗里硅土柱)

Table 4 Recoveries of pesticides fortified from Florisil column at 0. 5 and 0. 05 mg \cdot L⁻¹ levels

	苹果回收率/%						梨回收率/%					
样品号	联苯菊酯		氟氯氰菊酯		氯氰菊酯		联苯菊酯		氟氯氰菊酯		氯氰菊酯	
	0. 5	0. 05	0.5	0. 05	0.5	0. 05	0.5	0. 05	0.5	0. 05	0.5	0.05
	$mg \cdot L^{-1} mg \cdot L^{-}$		mg \cdot L ⁻¹ mg \cdot L ⁻¹		mg • L^{-1} mg • L^{-1}		$mg \boldsymbol{\cdot} L^{\scriptscriptstyle -1} mg \boldsymbol{\cdot} L^{\scriptscriptstyle -1}$		mg • L^{-1} mg • L^{-1}		$mg \boldsymbol{\cdot} L^{-1} mg \boldsymbol{\cdot} L^{-1}$	
1	98. 2	100. 2	92. 0	96. 4	98. 6	99. 2	105.3	89. 6	101.8	92. 0	104. 7	102. 8
2	92. 9	102.4	100.3	89. 2	102. 2	100. 2	108. 2	91.0	98.8	90.0	100.1	102. 2
3	97. 2	104. 2	105.4	106.6	99.8	98.0	96. 4	90.4	98. 2	92.8	96.0	101.8
4	105.3	110.4	103.9	91.4	105.0	110.0	94.0	93.4	96. 9	95. 2	91.8	103. 2
5	102. 1	94. 0	111.0	95. 2	101.6	93.0	101.6	100	102.8	99. 6	106. 5	102. 2
6	107.8	91.4	106.0	99. 2	108.7	92.4	98.8	90	97.9	89. 4	101.5	106. 2
平均	100.6	100.4	103. 1	97. 0	102.7	98.8	100.7	92. 4	99. 4	93. 2	100. 1	103. 1
变异系数/%	5.02	6. 90	5.71	5. 58	3. 28	6. 45	4.88	3.91	2. 16	4. 05	4. 99	1. 57

要异系数/% 5.02 6.90 5.71 5.58 3.28 果。联苯菊酯和氯氰菊酯在两种填料柱上都取得了较好的效果。但对于 0.05 mg·L⁻¹水平的氯氰菊酯、联苯菊酯和氟氯氰菊酯的回收率实验中,氧化铝柱和弗罗里硅土柱对回收率的影响较大,特别是对氯氰菊酯,在氧化铝柱上苹果和梨的回收率分别是 64.8%和 61.5%,达不到农残检测的要求;而在弗罗里硅土柱上,苹果和梨的回收率分别是 98.8%和 103.1%,达到了很满意的结果,这可能是因为氧化铝对氯氰菊

酯的吸附能力较强,使一部分氯氰菊酯难以洗脱,在

98.8 100.7 92.4 99.4 93.2 100.1 103.1 6.45 4.88 3.91 2.16 4.05 4.99 1.57

0.5 mg·L⁻¹ 时吸附部分所占的比例较小,因此对总的回收率影响不大;在较低的 0.05 mg·L⁻¹ 水平时吸附部分所占的比例较大,已经严重影响了实验的回收率。对于联苯菊酯和氟氯氰菊酯的回收率实验中,苹果在氧化铝柱和弗罗里硅土柱的平均回收率分别为 111.3%、111.8%和 100.4%、97.0%;梨在氧化铝柱和弗罗里硅土柱的平均回收率分别为 103.8%、106.1%和 92.4%、93.2%;都达到了比较满意的结果。所有的变异系数都在 10%之内,大部分在 5%以

境

农

保

下,说明此方法的精密度较好,前处理和仪器条件都 比较稳定。

3.3 本方法的最低检出浓度

本方法的最低检出浓度联苯菊酯、氟氯氰菊酯和氯氰菊酯分别为 0.0022、0.0019、0.0050 mg·kg $^{-1}$ 。

4 结论

本实验对淋洗液选择的配比和淋洗液的用量进行了研究,得出了利用含 10% 丙酮的石油醚的淋洗液的结果。对一个样品,整个过程所用溶剂 70 mL 左右,远远少于传统方法所用溶剂 250—300 mL,这样也节约了测定费用。对于较高浓度(0.5 mg·L-1)的这三种菊酯的残留量,利用氧化铝柱和弗罗里硅土柱

都能达到较好的结果,根据具体条件选择两者之一都是实际可行的;但对于低浓度水平(0.05 mg·L⁻¹)时,由于氧化铝柱的回收率较低,因此,应该用弗罗里硅土柱,此方法可以达到节约经费、快速、准确可靠的结果。

参考文献:

- FAO/WHO, CAC/PR3 1985, Guide to codes Recommendations Concerning Pesticide Residess. Food and Agriculture Organization of the United Nations World Health Organization. Rome 109 (1985).
- [2] GB/T 14929. 4—94, 食品中氯氰菊酯、氰戊菊酯和溴氰菊酯残留量的测定方法[S].
- [3] 庞国芳,等. 填充柱气相色谱法同时测定水果、蔬菜和粮谷中10种拟除虫菊酯的残留量[J]. 现代商检科技,1995,5(1):1-7.