氮锌交互作用对黄棕壤锌形态的影响

何忠俊1,华 珞2,洪常青1

(1. 云南农业大学资源与环境学院,云南 昆明 650201; 2. 首都师范大学地理系,北京 100037)

要:选用南方牧场土壤,在盆栽条件下,研究了氮锌交互作用对土壤中锌形态和生物有效性的影响。结果表明:(1) 随施氮[(NH₄)₂SO₄]水平增加土壤 pH 显著降低。在不施锌或低量施氮条件下,施氮对速效锌影响不大;施锌条件下,高 水平施氮显著提高了土壤速效锌含量。(2)随施锌水平增加,交换态锌、松结有机态锌、氧化锰结合态锌、无定形氧化铁 结合态锌、紧结有机态锌所占比例明显增加,晶形氧化铁结合态锌及残留态锌所占比例明显下降:随施氮水平增加,土 壤中交换态锌所占比例显著增加,松结有机态锌亦呈增加趋势。氮锌配施对土壤中交换态锌含量有协同效应,从而提 高了锌对牧草的有效性。试验结果对南方牧场合理施肥具有指导意义。

关键词: 氮: 锌: 交互作用; 生物有效性

中图分类号:X131.3 文献标识码:A 文章编号:1672-2043(2004)02-0209-04

Effects of Interaction between Nitrogen and Zinc on Forms of Zinc in Yellow - Brown Soil

HE Zhong-jun¹, HUA Luo², HONG Chang-qing¹

(1. Resource and Environment College, Yunnan Agricultural University, Kunming 650201, China; 2. Department of Geography, Capital Normal University, Beijing 100037, China)

Abstract: Effects of interaction between nitrogen and zinc on forms of zinc in yellow - brown soil collected from a pasture in southern China were studied under pot - culture conditions. The results showed that pH of the soil was remarkably decreased with the increase rate of applied N - [(NH₄)₂SO₄]. Applied N had no effect on available zinc either with no zinc application or with low dose of applied N, but high level of N application obviously increased available zinc in the soil with zinc application. With increased rates of zinc application, the proportion of extractable (Ex - Zn), loosely organic matter bound zinc (LOM - Zn), manganese oxide - bound zinc (MnO - Zn), amorphously iron oxide - bound zinc (AFeO - Zn), tightly organic matter bound zinc (TOM - Zn) obviously increased and the proportion of crystalline iron oxide - bound zinc (CFeO - Zn), residual zinc (Res - Zn) in total zinc of the soil obviously decreased. With increased rates of nitrogen application, the proportion of Ex - Zn in total zinc of the soil significantly increased and so did for LOM - Zn. It was concluded that combined application of zinc and nitrogen had a synergism effect on Ex -Zn content and, therefore, increased the availability of soil zinc to plants. It may be suggested that the present experimental results be a guidance for wise fertilization in southern pastures.

Keywords: nitrogen; zinc; interaction; bioavailability

关于氮肥形态对植物吸收锌的影响已有资料报 道。Viets[1](1957)研究发现, NaNO3 减少三叶草对锌 的吸收, 而 (NH₄)₂SO₄ 增加其对锌的吸收。Satinder^[2] (1980) 认为不同形态氮肥对玉米锌吸收的效果为 NH₄NO₃> (NH₄)₂SO₄> CO(NH₂)₂。Gupta^[3](1993)指出, 施(NH₄)₂SO₄ 玉米生物学产量和锌吸收量高于NH₄NO₃

收稿日期: 2003 - 04 - 21; 修订日期: 2003 - 10 - 08

基金项目:国家自然科学基金资助项目(39870127)

作者简介: 何忠俊(1962—), 男, 博士, 副研究员, 主要从事植物营养生

理和土壤污染方面的研究。E - mail: hezhongjun@ hotmail. com 联系人:华 珞

和 CO(NH₂)₂。但施用化学氮肥后引起植物锌营养状 况的变化是否与施氮后土壤中锌形态和有效性变化 有关,这方面国内外研究资料甚少。本文供试土壤取 自湖北省宜昌县百里荒示范牧场,为典型的南方亚热 带中山草地。土壤为微酸性黄棕壤,土壤严重缺磷、氮 也不足、速效锌含量属中等水平。但由于大量施用磷 肥显著降低了土壤有效锌水平, 使牧草缺锌, 必须补 施锌肥[4]。同时,施氮是当地提高牧草产量和品质的 重要措施之一。本文主要讨论氮锌配施对土壤中锌形 态及锌有效性的影响,以期为南方牧场合理施肥提供 理论依据。

1 材料与方法

供试土壤取自湖北省宜昌县百里荒示范牧场,为

试验于 2000 年 4 月 28 日 ~ 11 月 13 日在中国农

多年生黑麦草(Lolium perenne L.)和白三叶(Trifoium repens L.)混播草地,土壤类型为黄棕壤。取去除表面草皮后 0~20 cm 之土壤,风干备用,其基本性状见表1。

表 1 供试土壤的基本性状

Table 1 Basic properties of the tested soil

U	有机质	全 N	速效 N	速效 P	速效 K	速效 Zn(0.1 mol・L-1HCl)
рН	/%	/%	/mg • kg - 1			
5. 75	0. 79	0. 180	64. 1	1.18	38. 3	2. 47

业科学院原子能利用研究所示踪网室进行。采用二因素四水平完全设计,共 16 个处理,重复 3 次。N 用 $(NH_4)_2SO_4($ 分析纯),用量分别为 0,30,90,150 mg·kg⁻¹; Zn 用 $ZnSO_4 \cdot 7H_2O($ 分析纯),用量分别为 0,6,20,40 Zn mg·kg⁻¹。百里荒示范牧场氮肥试验表明,豆禾混播草地最佳施氮量为 75 kg·hm⁻²(相当于 33 mg·kg⁻¹)^[4]。缺锌土壤上,施锌 $5 \sim 10$ mg·kg⁻¹Zn 可显著提高大豆根瘤数量和固氮量[5,6]。本试验氮锌水平设计是在氮锌最适施用量的基础上,逐步提高氮锌施用浓度。每盆装土 5.0 kg,以 60 mg·kg⁻¹ P, 75

mg·kg⁻¹ K 作底肥。供试白三叶草品种为 Trifolium repen L. cv. Huia,黑麦草品种为 Lolium multiflorum L. cv, Barmultra,每盆留苗 20 株,黑麦草—白三叶草混播比例为 4:1。整个生长期间用去离子水浇灌。牧草收获时每盆各取土壤 1 kg,风干、过 1 mm 筛、备用。

収获的母盈各取主集 1 kg,风干、过 1 mm 师、畲用。 土壤速效锌采用 0. 1 mol·L⁻¹ HCl 浸提「¹¸ 土壤 锌形态分级参照 Shuman 等 [¹¹ (1985) 和蒋廷惠等 [¹¹ (1989) 的方法,分为 7 种形态 (见表 2),每形态提取 完后用 10 mL 蒸馏水洗涤、弃去。土壤速效锌及各形 态锌用原子吸收分光光度计(型号:WFD − Y3)测 定。常规项目测定均采用常规分析方法「¹」。

表 2 土壤锌形态分级方法

Table 2 The sequential fractionation of Zn in the tested soil

形态	提取剂	土/液比	条件
水溶态(WS-Zn)	去离子水	2.5 g/10 mL	25 ℃恒温震荡 2 h
交换态 (Ex - Zn)	1 mol • L ⁻¹ MgCl ₂ (pH7.0)	2.5 g/10 mL	25 ℃恒温震荡 2 h
松结有机态	0. 1 mol • L ⁻¹ Na ₄ P ₂ O ₇ ⁺	2.5 g/12.5 mL	25 ℃恒温震荡 2 h
(LOM - Zn)	$2~\text{mol} \cdot \text{L}^{\scriptscriptstyle -1}~\text{Na}_2\text{SO}_4(\text{pH9.5})$		
无定形 MnO2 结合态	0. 1 mol · L ⁻¹ NH ₂ OH. HCl(pH2. 0)	2.5 g/25 mL	25 ℃恒温震荡 2 h
(MnO - Zn)			
紧结有机态	30% H ₂ O ₂ 分两次加入,共 30mL	2.5 g/25 mL	a. 85 ℃水浴蒸干
(TOM - Zn)	1 mol · L-1NH4OAC(pH5. 0)		b. 25 ℃恒温震荡 1 h
无定形 Fe ₂ O ₃ 结合态	0. 2 mol • $L^{-1}H_2C_2O_4 + 0.2$ mol • L^{-1}	2.5 g/50 mL	暗处 25 ℃恒温震荡 4 h(不洗)
(AFeO - Zn)	$(NH_4)_2C_2O_4 (pH3.0)$		
晶形 Fe ₂ O ₃ 结合态	0. 2 mol • $L^{-1}H_2C_2O_4 + 0.2$ mol • L^{-1}	2.5 g/50 mL	96 ℃水浴 1 h
(CFeO – Zn)	$(NH_4)_2C_2O_4 + 0.1 \text{ mol} \cdot L^{-1}Vc \text{ (pH3.0)}$		
残留态 (Res - Zn)	HCl - HNO3 - HClO4 消化	2.5 g/50 mL	

2 结果与分析

2.1 氮锌配施对土壤 pH 和速效锌含量的影响

表 3 表明,与 N_0 水平比较,土壤 pH 随施氮水平增加而显著下降。与 Zn_0 水平相比,土壤 pH 只有在较高施锌水平时才显著下降。从 pH 平均结果可以看出,与 N_0 水平相比, N_{150} 水平土壤 pH 下降 0.333 个单位。当作物根系吸收 NH_4^+ 、 Zn^2+ 大于 SO_4^{2-} 时,根系

向环境中释放 H⁺以维持细胞电性平衡, 豆科植物固氮过程中也向土壤中排放 H⁺[10]。华珞等 [11] 研究表明,施氮水平为 30 mg·kg⁻¹时,混播白三叶草固氮百分数显著高于其他施氮水平,以施锌 6 mg·kg⁻¹固氮百分数最高。但表 3 显示,在所有施锌水平下,土壤 pH 值均随施氮水平增加而显著降低。由此说明,由于固氮过程而引起的土壤 pH 降低效应远小于NH₄⁺ – N 使用而引起的土壤酸化效应。

SSR(0.05)

表 3 不同氮锌配施对土壤 pH 及速效锌含量的影响

Table 3 Changes of pH and available Zn in the tested soil with N and $\,$ Zn combined application

施N水平		施锌水平。	/mg • kg - 1		平均值
/mg • kg - 1	0	6	20	40	十四田
рН					
0	5. 846	5. 784	5.773	5.712	5.779
30	5. 634	5.716	5. 707	5. 672	5. 671
90	5. 622	5. 635	5. 570	5. 530	5. 589
150	5. 490	5. 487	5. 431	5. 386	5. 446
平均值	5. 648	5. 635	5. 620	5. 564	
SSR(0.05)	N	= 0. 020; Zr	n = 0.020;	$N \times Zn = 0.04$	44
		速效锌/	mg·kg ⁻¹		
0	2.38	3. 19	5. 98	11.41	5.74
30	2. 23	3.06	6. 26	9. 90	5. 36
90	2.00	4. 10	6. 92	12.49	6. 38
150	1.98	3.74	6. 98	11.66	6.09
平均值	2. 15	3.52	6. 54	11.36	

氮锌配施对土壤速效锌影响的规律为:随施锌水平增加,土壤速效锌显著增加。在不施锌条件下,随施氮水平增加,土壤速效锌呈下降趋势,但达不到显著水平。在施锌条件下,与较低施氮水平相比,较高水平施氮(≥90 mg·kg⁻¹),显著增加了土壤速效锌的含量。

N = 0.47; Zn = 0.47; $N \times Zn = 1.02$

2.2 氮锌配施对土壤中锌形态的影响

表 4 表明, 供试土壤锌(N₀Zn₀ 处理)以残留态为 主,其次为晶形氧化铁结合态,其余各形态小于 10%。其顺序为:残留态(62.85%)> 晶形氧化铁结合 态(27.84%)> 无定形氧化铁结合态(3.23%)> 紧结 有机态 (2.62%)> 氧化锰结合态 (1.63%)> 交换态 (1.08%)> 松结有机态(0.74%)。随施锌水平增加, 各形态锌含量均呈增加趋势,但增加幅度最大的是松 结有机态和交换态,施锌 40 mg·kg-1 所有施氮水平 平均值与施锌 0 mg·kg-1 所有施氮水平平均值相比, 各形态锌浓度增加倍数为: 松结有机态 (4.60) > 交 换态 (4.20)> 氧化锰结合态 (3.62)> 紧结有机态 (2.72)> 无定形氧化铁结合态 (1.51)> 晶形氧化铁 结合(1.19)> 态残留态(1.09)。施氮主要影响土壤中 交换态和松结有机态锌含量,对其它形态锌含量影响 不大。在各施锌水平下,随施氮水平增加,交换态锌呈 增加趋势, 当施锌大于 6 mg·kg-1 时, 增加效果十分 显著。氦锌配施对土壤交换态锌含量有协同效应。在 低量施锌(≤6 mg·kg⁻¹)时,随氮水平增加,松结有 机态锌含量显著增加; 当施锌高于 6 mg·kg-1 时, 施 氮对其影响不大。这与施氮引起土壤酸化而使其它形 态向交换态转化以及形成Zn(NH3)2+减少了Zn2+向

表 4 不同氮锌配施对土壤锌形态分布的影响 (mg·kg⁻¹)
Table 4 Effects of various N and Zn combined applications on Zn forms in the tested soil

其它形态转化及固定有关。

处理	交换态	松结有机态	氧化锰态	紧结有机态	无定形铁态	晶形铁态	残留态	总计
N_0Zn_0	1. 12	0. 77	1. 69	2. 71	3. 35	28. 83	65. 09	103. 56
$N_{30}Zn_0 \\$	1. 21	0.84	1.57	2. 76	4. 91	25. 65	64. 12	101.06
$N_{90}Zn_0$	1. 21	0. 85	1.56	2. 96	3. 32	26. 21	64. 1	100. 21
$N_{150}Zn_0 \\$	1. 92	0.88	1.49	2. 77	3. 07	27. 16	66. 36	103.65
N_0Zn_6	1.62	1. 14	2. 15	3. 36	3. 37	30. 44	68. 81	110.89
$N_{30}Zn_6 \\$	1. 67	1. 33	2. 28	4. 06	4. 21	24. 69	66. 27	104. 51
$N_{90}Zn_6 \\$	1.78	1. 35	2. 18	3.49	3. 68	27. 98	67. 03	107. 49
$N_{150}Zn_6 \\$	2. 37	1. 42	2. 21	3. 39	3.43	31. 23	67. 61	111.66
N_0Zn_{20}	2. 37	2. 37	3. 79	5. 08	4. 82	33.81	72. 89	125. 13
$N_{30}Zn_{20}$	2. 58	2. 20	3.54	4. 78	5. 65	26. 33	71.81	116. 89
$N_{90}Zn_{20}$	2. 85	2. 32	3.61	4. 37	4. 77	29. 64	73. 32	120.88
$N_{150} Z n_{20} \\$	4. 37	2. 52	3.76	4. 19	4. 21	24. 65	75. 36	119.06
N_0Zn_{40}	4. 29	3.87	6. 01	9. 93	5. 02	32.07	70.66	131.85
$N_{30}Zn_{40}$	4.80	3. 86	5. 39	7. 38	5. 35	31. 24	71. 03	129. 05
$N_{90}Zn_{40}$	6. 03	3.86	6. 03	6. 49	5. 79	33. 10	70. 93	132. 23
$N_{150} Z n_{40} \\$	7. 79	3. 77	5. 40	6. 66	5. 96	32. 07	70. 11	131.76
SSR(0.05)	0. 19	0. 14	0.41	1. 43	0.78	6. 21	4. 24	

氮锌配施对土壤各形态锌占土壤总锌比例的影响见表 5。随施锌水平增加,交换态、松结有机态、氧化锰结合态、紧结有机态所占比例明显增加,无定型

氧化铁结合态亦呈增加趋势,晶形氧化铁结合态及残留态所占比例明显下降。交换态和松结有机态对植物有效性最大,为强度因子。氧化锰结合态、无定形氧化

表 5 不同氮锌配施对土壤中各形态锌所占比例的影响 (%)

Table 5 Effects of various N and Zn combined applications on percentages of Zn forms in the tested soil

处理	交换态	松结有机态	氧化锰态	紧结有机态	无定性铁态	晶形铁态	残留态
N_0Zn_0	1.08	0.74	1. 63	2. 62	3. 23	27. 84	62. 85
$N_{30}Zn_0 \\$	1.20	0.83	1.55	2. 73	4.86	25.38	63.45
$N_{90}Zn_0 \\$	1.21	0.85	1.56	2. 95	3.31	26. 16	63.97
$N_{150}Zn_0 \\$	1.85	0.85	1.44	2. 67	2.96	26. 20	64.02
N_0Zn_6	1.46	1.03	1.94	3. 03	3.04	27. 45	62.05
$N_{30}Zn_6 \\$	1.60	1. 27	2.18	3.88	4. 03	23.62	63.41
$N_{90}Zn_6 \\$	1.66	1. 26	2. 03	3. 25	3.42	26. 03	62.36
$N_{150}Zn_6 \\$	2. 12	1. 27	1.98	3. 04	3.07	27. 97	60.55
N_0Zn_{20}	1.89	1.89	3.03	4. 06	3.85	27. 02	58. 25
$N_{30}Zn_{20}$	2. 21	1.88	3.03	4. 09	4.83	22. 53	61.43
$N_{90}Zn_{20}$	2.36	1.92	2.99	3. 62	3.95	24. 52	60.66
$N_{150} Z n_{20} \\$	3.67	2. 12	3. 16	3. 52	3.54	20.70	63.30
N_0Zn_{40}	3. 25	2. 94	4.56	7. 53	3.81	24. 32	53.59
$N_{30}Zn_{40} \\$	3.72	2. 99	4. 18	5. 72	4. 15	24. 21	55.04
$N_{90}Zn_{40}$	4.56	2. 92	4.56	4. 91	4.38	25. 03	53.64
$N_{150}Zn_{40}$	5. 91	2.86	4. 10	5. 05	4. 52	24. 34	53. 21

铁结合态、紧有机结合态、晶形氧化铁结合态为容量因子,残留态既非强度因子,也非容量因子,很难被植物吸收利用[12]。由此说明,在供试土壤上,施锌主要以可供植物吸收利用的状态存在,随施氮水平增加,土壤中交换态锌所占比例增加,在施锌 20 mg·kg⁻¹以下,松结有机态锌亦呈增加趋势。说明施氮提高了土壤中锌对植物的有效性。

3 小结

土壤 pH 随 N - (NH₄) $_2$ SO₄ 施用量增加而显著降低。不施锌时,施氮对土壤速效锌影响不显著。在施锌条件下,与较低水平施氮相比,较高水平施氮(\ge 90 mg·kg⁻¹)显著提高了土壤速效锌含量。

供试土壤锌以残留态为主,占 62.85%,其次为 晶形氧化铁结合态,占 27.84%,其余各形态只占不到 10%。随施锌水平增加,交换态、松结有机态、氧化 锰结合态、无定形氧化铁结合态、紧结有机态所占比例明显增加,晶形氧化铁结合态及残留态所占比例明显下降。说明施锌在土壤中主要以可供植物吸收利用的状态存在,随施氮水平增加,土壤中交换态锌所占比例增加,松结有机态亦呈增加趋势,说明施氮提高了锌的生物有效性。

参考文献:

[1] Viets F G, Boawn L C and Crawford C L. The effect of N carrier on plant

uptake in indigenous and applied Zinc[J]. Soil Sci Soc Am Proc, 1957, 21: 197 – 201.

- [2] Satinder D and Shukla V C. Nitrogen Zinc content in maize as affected by their different sources [J]. J Indian Soci Soil Sci, 1980, 28: 336 – 341
- [3] Gupta V K and Patalia B S. Nutrition of maize as Influenced by zinc and nitrogen carriers [J]. J Indian Soc Sci, 1993, 41(1): 190 – 192.
- [4] 张坚中,张玉发,白静仁.中亚热带中山草地畜牧业优化生产模式研究[M].北京:中国农业科技出版社,1996.26-53.
- [5] Kapur O C, Ganggwar M S. Influence of zinc on symbiotic nitrogen fixation by soybean[J]. *Indian Journal of Agricultural research*, 1995, 9: 1 – 2, 51 – 56.
- [6] 张水旺. 氮锌配施及锌肥不同用量对夏大豆产量及品质的影响 [J]. 土壤肥料,1996,(3):37-39.
- [7] 李酉开. 土壤农化常规分析方法[M]. 北京:科学出版社,1984.
- [8] Shuman L M. Fractionation method for soil microelements[J]. Soil Science, 1985, 140: 11 – 22.
- [9] 蒋廷惠,胡霭堂. 土壤锌的形态和分级方法[J]. 土壤通报,1985, (3):86-89.
- [10] 陆景陵. 植物营养学[M]. 北京:北京农业大学出版社,1994. 69-72
- [11] 华 珞,何忠俊,韦东普. 氮锌复合作用对混播白三叶固氮及氮 转移的影响[J]. 生态学报,2003,23(2):588-592.
- [12] 丁维新,朱其清,刘元昌,汪金舫. 旱改水对砂姜黑土中锌含量的影响研究[J]. 土壤学报,2000,37(1):103-108.