2. 教育部植物-土壤相互作用重点实验室, 北京 100193;
3. 农业部华北耕地保育重点实验室, 北京 100193;
4. 农业农村部环境保护科研监测所, 天津 300191
2. Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing 100193, China;
3. Key Laboratory of Arable Land Conservation(North China), Ministry of Agriculture, Beijing 100193, China;
4. Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
随着社会经济的高速发展和人类活动的高强度进行,农药、抗生素、除草剂、肥料和化石燃料的消耗与日俱增[1],这些都会导致重金属等污染物进入土壤,使土壤污染面积不断扩大[2],生态环境日益恶劣。据2014年公布的《全国土壤污染状况调查公报》显示,我国土壤污染主要以无机类污染为主,无机污染点位超标率为21.7%,其中镉(Cd)和砷(As)污染占比分别为7.0%和2.7%,均属无机污染物中污染最严重的元素[3]。因重金属污染具有隐蔽性、滞后性和不可逆转性等特点[4],在控制重金属进入土壤的同时,加强重金属污染土壤修复刻不容缓。
目前修复土壤重金属污染有物理、化学和生物的方法,但已证明化学钝化和植物修复对土壤破坏最小[5],且为使植物正常生长需添加化学物质调节土壤酸碱度以降低重金属的有效性,故施用钝化修复材料是目前修复Cd和As污染的有效措施之一[6]。土壤中Cd主要以Cd(Ⅱ)阳离子的形式存在[7],As通常以砷酸盐(Ⅴ)或亚砷酸盐(Ⅲ)阴离子的形式存在,且三价砷的毒性更大[8]。施用钝化剂可以改变Cd和As在土壤中的赋存形态[9],降低它们的生物有效性和在环境中的迁移性[10-11]。本文主要对常用的Cd和As污染钝化修复材料及钝化机制进行总结,同时对国内外典型的Cd和As污染土壤田间修复工程进行了介绍,由于Cd和As复合污染情况复杂,其受土壤pH和氧化还原状况的影响更加复杂,实际修复效果通常顾此失彼,已单独做了整理总结,在此不再详述。
1 近5年土壤Cd和As污染论文发表情况图 1和图 2数据来源于Web of Science(WOS)的核心合集数据库,以“soil and cadmium”或“soil and arsenic”为主题,检索时间跨度为2014年1月—2018年12月,并利用WOS数据库自带工具分析。图 1显示,在检索时间范围内,2014—2016年文章发表量持续上涨,2017年有所下降,2018年又有所回升且与2016年基本持平。2016年的文章发表量最高为6497篇,2018年文章发表量为6422,表明Cd和As污染土壤依然受到人们的广泛关注。
![]() |
图 1 2014年1月—2018年12月土壤Cd和As污染年度发文量 Figure 1 Annual publication amount of soil Cd and As contaminants from January 2014 to December 2018 |
![]() |
图 2 世界各国在2014年1月—2018年12月土壤Cd和As污染发文总量 Figure 2 The total publication amount of soil Cd and As contaminants published in different countries from January 2014 to December 2018 |
图 2为近5年世界各国在土壤Cd和As污染方面发表文章总量示意图,由图可知发文量前10名的国家依次为中国、美国、印度、伊朗、韩国、波兰、法国、意大利、西班牙和德国。中国在此研究方向发文量最多,共发表 5864篇文章,占检索结果的28%;美国发文量为3815篇,占12%;印度发文量为1644篇,占9%;10国以外的其他国家累计发文量为4107篇,占24%。中国和美国对土壤Cd和As污染研究较多,可见我国在土壤Cd和As污染领域的研究占有重要地位,间接说明我国对目前土壤Cd和As污染问题的重视。
使用CiteSpace(5.3.R4)软件对图 1检索数据中的“keyword”进行分析,2014年1月—2018年12月土壤Cd和As污染领域“keyword”共现关系如图 3所示。图中每个节点(圆)的大小和两节点间连线的粗细,表示“keyword”出现的频次和共现强度的高低[12]。图 3显示,Cd和As的节点较大,均与“soil”相连接,表明Cd和As对土壤污染存在普遍性,其中Cd节点更大、连线更粗,说明重金属污染土壤中Cd的研究最多,这与《全国土壤污染状况调查公报》研究一致[3]。通过“soil”、“contamination”和“China”的连接,表明中国更关注土壤污染问题。Cd与Cu、Zn、Pb、Cr和Hg节点连接,表明Cd与其他重金属协同污染研究比较广泛。土壤Cd和As污染主要是通过钝化剂固定(passivation节点)或植物修复技术(accumulation和phytoremedation节点)修复,但植物修复技术通常不会单独使用,而是需要添加一定的化学物质保证植物的正常生长[6],降低土壤中Cd和As的生物有效性。图中出现的钝化剂种类有氧化物类纳米颗粒(nanoparticle节点)、生物炭(biochar节点)和氧化石墨烯(graphene oxide节点)等,但我们常见的钝化材料石灰类、磷酸盐类和黏土矿物类并没有出现,说明近5年生物炭类和新型钝化剂的研究较多。“adsorption”等节点与Cd和As节点相连接,表明在水溶液中对Cd和As进行吸附实验较多,以此探究钝化材料的修复机理,集中在配体交换反应(ligand节点)和络合反应(complex节点),这会在后续的总结中作详细的讨论。
![]() |
图 3 2014年1月-2018年12月国际土壤Cd和As污染期刊论文关键词共现关系 Figure 3 Co-occurrence of key words in international journal papers on soil Cd and As contaminants from January 2014 to December 2018 |
通过以上科学计量分析结果发现,土壤Cd和As污染仍然受到世界范围内的广泛关注和研究,其中化学钝化修复材料的开发及其机理探究为研究热点,下面整理总结了不同类型钝化修复材料及其作用机理,旨在为我国土壤Cd和As污染修复工作的扎实推进提供一定的科学支撑。
2 土壤Cd和As钝化修复材料类型重金属的生物有效性与其存在形态有关[9],化学修复是指在土壤中添加钝化修复材料[10],改变重金属的赋存状态[11],降低其在土壤中的迁移性和生物有效性,从而达到修复污染土壤的目的。目前,常用的钝化修复材料主要有无机类和有机类钝化剂,以下分别对这些材料的修复效果进行探讨,从而为土壤Cd和As污染修复提供参考。
2.1 无机类 2.1.1 石灰类石灰类钝化剂有生石灰和熟石灰,能有效提高土壤pH值,改变土壤CEC和氧化还原电位等,影响重金属在土壤中的吸附和沉淀[13]。熊礼明[14]发现,当土壤pH值≥6时,施用石灰能有效提高红壤对Cd的吸附量并降低吸附态Cd的解吸量。Woldetsadik等[15]发现施用石灰使土壤有效态Cd含量降低82%~91%。除石灰的单施外,与其他钝化材料配施研究也较多。朱奇宏等[16]发现石灰与海泡石配施比单施效果好,稻作条件下土壤酸提取态Cd降低10%~15%,可还原态和残渣态Cd比例分别增加6%~10%和3%~4%。刘维涛等[17]发现石灰、鸡粪和过磷酸钙配施,使土壤pH值增加了2.5,土壤有效态Cd含量降低44%,白菜生物量增加83%。Wang等[18]通过添加蛇纹石和石灰发现土壤Cd的生物有效性与pH值呈显著负相关,有效态Cd含量降低14%~37%。Chen等[19]发现水稻田在淹水条件下,石灰和泥炭配施比二者单施对Cd钝化的效果更好。
2.1.2 磷酸盐类磷酸盐类钝化剂主要包括磷酸盐、羟基磷灰石、磷矿粉、磷石膏和磷肥等,其修复机理主要是通过形成难溶性磷酸盐沉淀以及其对重金属的表面吸附作用[20]。吴宝麟[20]研究表明,在Ca(H2PO4)2和Fe2(SO4)3最佳复配比为[Fe3+]/[PO43-]=2.16:1时能同时修复Cd和As污染土壤,且分步加入Ca(H2PO4)2和Fe2(SO4)3对Cd和As的钝化效果优于二者同时加入。殷飞等[21]发现在土壤中加入20%磷矿粉后(钝化剂与土壤质量比),土壤中可交换态Cd含量显著降低,钙型As含量增加,这可能是磷矿粉中的Ca对As起到了钝化修复效果,显著降低了As的生物有效性。
2.1.3 金属及其氧化物类金属及其氧化物主要指零价铁及含Fe、Mn和Al的氧化物,其钝化机理主要是吸附和共沉淀作用[22]。这类钝化材料有零价铁、水铁矿、赤铁矿、磁铁矿、针铁矿、硫酸亚铁和赤泥等[23]。金属及其氧化物对Cd和As的钝化效果如表 1所示,其中对As的总结多集中在实践钝化修复部分。
![]() |
表 1 金属及其氧化物对Cd和As的钝化作用 Table 1 Effect of metals and their oxides immobilization on Cd and As |
黏土矿物是一类含硅酸盐类物质,主要包括海泡石、膨润土和凹凸棒土等,它们通过吸附、离子交换和配位反应等钝化重金属[31]。孙约兵等[32]在红壤中添加海泡石,使有效态Cd含量降低4%~44%,菠菜中Cd含量降低18%~300%。王林等[33]发现酸改性海泡石比海泡石施用下油菜产量更高。谭科艳[34]发现,凹凸棒土与土壤的质量比为1:20时,可将土壤pH值由原来的3~5提高到5~8,对Cd污染土壤的修复率达到35%,并有效减少蔬菜对Cd吸收。Sun等[35]发现添加膨润土后,土壤中交换态Cd含量降低11%~43%,残渣态Cd增加3%~54%,幼芽Cd含量降低17%~44%。高瑞丽等[36]施用1%、2%和5%的蒙脱石,发现5%施加量下土壤中弱酸提取态的Cd含量降低了19%。
2.2 有机类 2.2.1 生物炭类生物炭指生物质在缺氧或无氧条件下热裂解得到的一类含碳的、稳定的、高度芳香化的固态物质[37],可与土壤重金属发生吸附、络合、沉淀和离子交换等一系列反应使之钝化[38]。但随着研究的深入人们发现生物炭对土壤中重金属的修复能力具有局限性,故生物炭改性技术应运而生。改性后的生物炭比表面积极大提高,官能团极大丰富,吸附能力进一步增强,使其具有更高效的环境修复潜力[39]。不同生物炭材料对Cd和As的钝化效果如表 2所示。
![]() |
表 2 不同生物炭材料对Cd和As的钝化效果 Table 2 Immobilization effect of different biochar materials on Cd and As |
有机废弃物即利用动物粪便、生物固体、城市和农村固体废物进行堆肥[51]。其含有高度腐殖化的有机质和微生物,能与重金属发生吸附、氧化还原、有机络合等反应。王立群等[24, 52]发现新鲜蒜苗、油菜、大葱等富含巯基的植物残体可与Cd有效螯合,降低土壤可交换态Cd含量20%~25%。李扬等[53]发现蚯蚓粪会显著降低土壤中重金属的生物有效性。陈春霞等[54]发现添加1%的骨粉,能显著提高菜地土壤pH值和CEC,并降低菜地和蔬菜中Cd含量。黎大荣等[55]发现蚕沙和熟石灰能有效降低蔬菜大棚土壤中Cd含量,且单施蚕沙效果最好,土壤有效态Cd含量降低39%。刘秀珍等[56]在石灰性褐土上施用猪粪、羊粪和鸡粪,土壤可交换态Cd含量分别降低23%、21%和18%,残留态Cd含量分别增加42%、40%和35%。Kwiatkowska等[57]发现在褐煤、褐煤制剂和农家肥试验中,褐煤处理下Cd的生物有效性最低,冬小麦籽粒的生物累积指数最低为0.2。
近年来,一些研究表明有机酸可以有效钝化重金属[58-59],同时也存在重新活化重金属的风险[60-63]。有研究表明酒石酸等对Cd有较明显的解毒作用,能有效抑制植株各部位对Cd的吸收[59]。Chen等[64]发现有机酸和氨基酸浓度相对低时有利于Cd的钝化。Wang等[65]发现天冬氨酸、半胱氨酸和琥珀酸pH值在3或5时促进As的钝化,而pH值在7以上则会增强As的迁移性。Boechat等[66]发现富里酸使土壤pH值下降0.7个单位,形成有机配体促进土壤中Cd和As的钝化。Alozie等[67]发现在柠檬酸、草酸和苹果酸存在下,软木生物炭表面发生质子化反应,有利于As的吸附,但不利于土壤中Cd的吸附。除了有机酸本身对Cd和As的钝化效果,植物根系分泌的有机酸也具有一定的重金属活化作用。Taghipour等[68]研究发现有机酸(柠檬酸和草酸)的存在,会促进黏土矿物(膨润土、沸石)和纳米颗粒(MgO、TiO2和ZnO)对Cd的吸附,且纳米颗粒的吸附量比黏土矿物的多。由于有机酸对针铁矿、蒙脱石和生物炭吸附的Cd均表现出一定的活化作用,故使用黏土矿物和生物炭钝化剂时要考虑土壤中植物根系分泌物重新活化重金属的风险。
除上述常见钝化修复材料外,有些材料具有较高吸附性能,且无需大量施用就能获得较好的修复效果,如功能膜材料[69]、介孔材料[70]、植物多酚类物质[71]和石墨烯材料等[72]。
3 土壤Cd和As污染钝化修复机制由于不同钝化修复材料对Cd、As的钝化过程差别很大,反应机制也十分复杂,因此明确钝化修复材料对Cd和As在土壤中的钝化机制对于评价钝化修复材料的效果和持久性具有十分重要的意义。
3.1 Cd污染钝化修复机制 3.1.1 离子交换作用离子交换作用是指钝化剂中某些高价离子在一定的条件下与重金属发生交换,如生物炭表面的官能团或盐基离子可与Cd交换[73];沸石具有的Si-O四面体和Al-O八面体结构及其含有的K、Na和Ca等离子与晶格并非紧密结合,使得沸石对Cd产生较强的离子交换[74]。
3.1.2 络合作用有机官能团能与Cd形成稳定的有机络合物,减小其可移动性和生物毒性[75]。有机质中硫醇基(RS-)和羧基(RCOO-)可与Cd发生络合反应[76]。此外生物炭的芳香化基团产生阳离子π作用,与Cd的d轨道发生络合作用[77-78],降低Cd的生物有效性。
3.1.3 沉淀作用在土壤pH值较高的情况下,含氧根阴离子(SO42-、CO32-、OH-、HPO42-)含量高时,Cd在土壤中主要以沉淀方式被固定[79-80]。常见钝化材料石灰类、黏土矿物类、金属及其氧化物类以及生物炭类都会提高土壤pH值,例如施用石灰促使Cd形成氢氧化物或碳酸盐结合态沉淀[80]。硅酸根也能与Cd形成硅酸盐类化合物沉淀[81]。
3.1.4 点位竞争机制点位竞争机制是重金属离子与溶液离子对吸附点位的竞争,在同族元素之间竞争效果更加显著[39]。例如Fe(Ⅱ)和Zn(Ⅱ)会与Cd(Ⅱ)竞争二价离子的吸附位点[82],从而降低Cd的生物有效性。此外施用硅肥可促进铁膜的形成[83],而Fe(Ⅱ)与Cd(Ⅱ)有一定的拮抗竞争作用[84-85]。
3.2 As污染钝化修复机制 3.2.1 络合作用和点位竞争As主要是与金属氧化物发生离子交换和沉淀作用。砷酸根与铁铝氧化物表面的OH-交换,在氧化物表面形成稳定的双齿双核结构的复合物[86]。As也可以被双金属氧化物(氧化铝和氧化镁)固定在层间或表面[30]。此外,磷酸盐和硅酸盐能与砷酸根或亚砷酸根竞争活性吸附位点[87]。
3.2.2 氧化还原作用As容易受氧化还原反应的影响,As(Ⅲ)易迁移、活性和毒性都远高于As(Ⅴ),所以将As(Ⅲ)氧化为As(Ⅴ)是钝化As的途径之一。例如使用含氧化铁的污泥进行As的田间修复,发现其施用后土壤中As主要以As(Ⅴ)的形式存在[88]。此外在土壤中As作为微生物新陈代谢的电子终端接受者,会将As(Ⅲ)氧化为As(Ⅴ)[89]。
3.2.3 甲基化与去甲基化甲基化指通过生物或化学机制将土壤中As转化为甲基衍生物而蒸发去除[90]。有机废弃物中含高度腐殖化的有机质和微生物,微生物在土壤中是生物甲基化的主导者,有机物质提供甲基源。甲基化的衍生物很容易从细胞中排泄出来,且具有挥发性,促进As形成毒性较小的有机砷[61]。
4 国内外土壤Cd和As钝化修复实践前文总结的土壤Cd和As污染钝化修复研究多数集中在实验室规模,能够较快地对钝化材料进行筛选从而用于实地修复,但实验室条件难以代表田间实际情况,以下对近年来国内外土壤Cd和As污染钝化修复材料的修复实践效果进行探讨。
4.1 国外土壤Cd和As钝化修复实践国外用于钝化修复实践的材料主要集中在石灰类、磷酸盐类、有机废弃物类以及黏土矿物和金属氧化物类。Hong等[91]施用2、4、8 t·hm-2的Ca(OH)2后,发现随Ca(OH)2使用量的增大,土壤和玉米中NH4OAc提取态Cd含量降低。Basta等[92]发现磷酸二铵能降低Cd的迁移能力,且施用量为5.3 t·hm-2时,土壤与Cd的结合能力最强,达到95%。Qayyum等[93]发现磷酸氢二铵和石膏对Cd的钝化残效仍较显著,且石膏残效优于磷酸氢二铵。Placek等[94]发现施用污泥提高了土壤中有机质含量和CEC,辅助松树和云杉可以修复Cd污染的土壤。Gruter等[95]发现长期施用堆肥,土壤有机碳、CEC和pH值较高,且有效降低小麦籽粒中Cd的积累。Zotiadis等[96]发现施用凹凸棒土7个月后土壤pH保持稳定,调节土壤含水量达到饱和状态1个月后,可浸出的Cd和As分别降低41%和18%。Hartley等[97]发现,施用绿色垃圾堆肥能有效固定土壤中的As,防止As向地下水中迁移。Xie等[98]将Fe(Ⅱ)和NaClO注入田间As污染含水层,促进铁氧化物或氢氧化物的形成,使As(Ⅲ)转化为As(Ⅴ)。Ko等[99]施用含氧化铁的污泥后,发现土壤孔隙水中As浓度由11.6 μg·L-1下降到4.9 μg·L-1,且通过XANES分析发现土壤和稻米中As主要以As(Ⅴ)的形式存在,Ko等[100]还施用含针铁矿的采矿污泥,发现Fe(OH)3对As的去除率为50%,针铁矿污泥对As的去除率为30%。
4.2 我国土壤Cd和As钝化修复实践目前,我国已经在Cd和As污染土壤修复方面开展了一定的工作,主要的钝化修复材料有石灰、黏土矿物类、磷酸盐类、有机堆肥类和生物炭类。黄益宗等[101]在水稻田中施用硅钙肥和石灰,稻谷增产50%~51%,糙米中Cd含量降低57%~64%,示范区排水Cd浓度降低55%。韩君等[102]发现20 t·hm-2坡缕石和23 t·hm-2海泡石处理后的土壤pH值显著提高,糙米中Cd含量显著降低,最大降幅分别为55%和74%。Yin等[103]发现天然海泡石显著降低水稻土中Cd含量,糙米、稻壳、稻草和根系分别降低55%~74%、44%~63%、27%~67%和37%~47%。此外,相关研究发现赤泥、骨炭、海泡石和石灰等可显著降低Cd和As的生物有效性[104-108]。Wang等[109]比较磷酸盐、钙镁磷肥和过磷酸钙钝化土壤Cd的效果发现,钙镁磷肥效果更好,Cd由1.7 mg·kg-1降到1.4 mg·kg-1,白菜吸收的Cd含量与土壤pH值呈负相关,而非与土壤水溶态和TCLP态Cd,故应谨慎评价磷肥对Cd的钝化效果。Li等[110]施用27~54 t·hm-2的鸡粪堆肥,小麦茎和种子中Cd的含量分别降低70%~75%和10%~18%,土壤pH值、总磷和有机质含量显著提高,土壤微生物特性如生物量碳、转化酶、蛋白酶、脲酶和过氧化氢酶等显著提高0.2~3.5倍。Bian等[111]添加20~40 t·hm−2的小麦秸秆生物炭,稻米中Cd含量降低20%~90%,达到安全水平0.4 mg·kg-1以下;Bian等[112]又探究了生物炭残效,发现其对Cd的钝化效果好于氢氧化钙和硅渣,土壤pH值和有机质含量变大,水稻各组织中Cd含量显著降低。Zhang等[113]发现施用1.5 t·hm-2和3.0 t·hm-2污泥生物炭,稻米中Cd含量由对照的1.4 mg·kg-1均下降到0.8 mg·kg-1。Yan等[114]发现施用纳米零价铁,水溶态As减少70%,铁铝氧化物结合态最大增加51%,并显著降低植物三七中As含量49%~63%。吴晓云等[115]以废弃稀土抛光粉为原料加入一定量的H2SO4和NaOH制成As钝化剂,2%质量比的钝化剂添加到土壤1~3 d后,土壤中As的生物有效量均降至15 mg·kg-1以下。赵宁亚[116]在硫酸根和As污染的土壤中,加入2%的氧化钙,As的稳定化率在94%以上。
用于田间修复的钝化修复材料,多集中在废弃物的再利用,如堆肥、生物炭以及廉价易获得的石灰和黏土矿物等。对于Cd的钝化,石灰的施用最广,其次为海泡石,生物炭表现出良好的施用前景,而金属及其氧化物多用于As的钝化。
5 问题和展望基于以上分析总结,作者对今后的研究工作提出几个问题:
(1)成本问题。田间修复Cd污染的土壤,成本较高,因此积极探寻廉价的钝化材料及最佳施用量或选择当地废弃物作为钝化材料以降低运输费用;
(2)安全性问题。有些钝化修复材料组分复杂,本身还可能含有一定量的重金属元素,过量施用可能带来一定的环境风险,应寻求更高效和环境友好的新型钝化修复材料;
(3)长效性问题。化学钝化修复技术是通过改变Cd和As的生物有效性,而非直接将其从土壤中去除,所以要检测钝化剂的长效性;
(4)综合措施问题。化学钝化修复技术虽然有效,但不应只局限于此,联合运用化学、物理、生物以及农艺措施,探究它们之间的作用原理,进而增强钝化修复效果。
总之,需因地制宜地根据不同的土壤,采用适宜的土壤钝化修复材料和管理措施,兼顾产量和品质,使土地得到合理利用,使经济和生态效益最大化。
[1] |
Mirlean N, Roisenberg A. The effect of emissions of fertilizer production on the environment contamination by cadmium and arsenic in southern Brazil[J]. Environmental Pollution, 2006, 143(2): 335-340. DOI:10.1016/j.envpol.2005.11.022 |
[2] |
Khalid S, Shahid M, Niazi N K, et al. A comparison of technologies for remediation of heavy metal contaminated soils[J]. Journal of Geochemical Exploration, 2017, 182: 247-268. DOI:10.1016/j.gexplo.2016.11.021 |
[3] |
陈能场, 郑煜基, 何晓峰, 等. 《全国土壤污染状况调查公报》探析[J]. 农业环境科学学报, 2017, 36(9): 1689-1692. CHEN Neng-chang, ZHENG Yu-ji, HE Xiao-feng, et al. Analysis of the Report on the national general survey of soil contamination[J]. Journal of Agro-Environment Sciences, 2017, 36(9): 1689-1692. |
[4] |
Jarup L. Hazards of heavy metal contamination[J]. British Medical Bulletin, 2003, 68(1): 167-182. DOI:10.1093/bmb/ldg032 |
[5] |
Michael K, Aleš V, Vojtěch E. Chemical stabilization of metals and arsenic in contaminated soils using oxides:A review[J]. Environmental Pollution, 2013, 172: 9-22. DOI:10.1016/j.envpol.2012.07.045 |
[6] |
施培俊, 王冠华, 陈亚华, 等. 原位化学钝化技术在重金属污染土壤修复中的研究进展[J]. 环境科学导刊, 2016, 35(增刊1): 121-124. SHI Pei-jun, WANG Guan-hua, CHEN Ya-hua, et al. A review of in situ chemical immobilization remediation of heavy metals in contaminated soils[J]. Environmental Science Survey, 2016, 35(Suppl1): 121-124. |
[7] |
Shao X, Huang B, Zhao Y, et al. Impacts of human activities and sampling strategies on soil heavy metal distribution in a rapidly developing region of China[J]. Ecotoxicology Environmental Safety, 2014, 104(1): 1-8. |
[8] |
Alam M G, Tokunaga S, Maekawa T. Extraction of arsenic in a synthetic arsenic-contaminated soil using phosphate[J]. Chemosphere, 2001, 43(8): 1035-1041. DOI:10.1016/S0045-6535(00)00205-8 |
[9] |
Tessier A. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851. DOI:10.1021/ac50043a017 |
[10] |
武玉, 徐刚, 吕迎春, 等. 生物炭对土壤理化性质影响的研究进展[J]. 地球科学进展, 2014, 29(1): 68-79. WU Yu, XU Gang, LÜ Ying-chun, et al. Effects of biochar amendment on soil physical and chemical properties[J]. Advances in Earth Science, 2014, 29(1): 68-79. |
[11] |
Guo G, Zhou Q, Ma L Q. Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils:A review[J]. Environmental Monitoring and Assessment, 2006, 116(1/2/3): 513-528. DOI:10.1007/s10661-006-7668-4 |
[12] |
陈悦. 引文空间分析原理与应用[M]. 北京: 科学出版社, 2014. CHEN Yue. Principles and applications of citation space analysis[M]. Beijing: Science Press, 2014. |
[13] |
陈远其, 张煜, 陈国梁. 石灰对土壤重金属污染修复研究进展[J]. 生态环境学报, 2016, 25(8): 1419-1424. CHEN Yuan-qi, ZHANG Yu, CHEN Guo-liang. Remediation of heavy metal contaminated soils by lime:A review[J]. Ecology and Environmental Sciences, 2016, 25(8): 1419-1424. |
[14] |
熊礼明. 石灰对土壤吸附镉的行为及有效性的影响[J]. 环境科学研究, 1994, 7(1): 35-38. XIONG Li-ming. Cadium adsorption and availability as affected by soil liming[J]. Research of Environmental Science, 1994, 7(1): 35-38. DOI:10.3321/j.issn:1001-6929.1994.01.007 |
[15] |
Woldetsadik D, Drechsel P, Keraita B, et al. Effects of biochar and alkaline amendments on cadmium immobilization, selected nutrient and cadmium concentrations of lettuce(Lactuca sativa)in two contrasting soils[J]. SpringerPlus, 2016, 5(1): 397. DOI:10.1186/s40064-016-2019-6 |
[16] |
朱奇宏, 黄道友, 刘国胜, 等. 石灰和海泡石对镉污染土壤的修复效应与机理研究[J]. 水土保持学报, 2009, 23(1): 111-116. ZHU Qi-hong, HUANG Dao-you, LIU Guo-sheng, et al. Effect and mechanism of lime and sepiolite on remediation of cadmium contaminated soils[J]. Journal of Soil and Water Conservation, 2009, 23(1): 111-116. DOI:10.3321/j.issn:1009-2242.2009.01.024 |
[17] |
刘维涛, 周启星. 不同土壤改良剂及其组合对降低大白菜镉和铅含量的作用[J]. 环境科学学报, 2010, 30(9): 1846-1853. LIU Wei-tao, ZHOU Qi-xing. Effectiveness of different soil ameliorants in reducing concentrations of Cd and Pb in Chinese cabbage[J]. Acta Scientiae Circumstantiae, 2010, 30(9): 1846-1853. |
[18] |
Wang X, Liang C H, Yin Y. Distribution and transformation of cadmium formations amended with serpentine and lime in contaminated meadow soil[J]. Journal of Soils and Sediments, 2015, 15(7): 1531-1537. DOI:10.1007/s11368-015-1105-7 |
[19] |
Chen Y, Xie T, Liang Q, et al. Effectiveness of lime and peat applications on cadmium availability in a paddy soil under various moisture regimes[J]. Environmental Science and Pollution Research, 2016, 23(8): 7757-7766. DOI:10.1007/s11356-015-5930-4 |
[20] |
吴宝麟.铅镉砷复合污染土壤钝化修复研究[D].长沙: 中南大学, 2014. WU Bao-lin. The immobilization remediation study on cadmium, lead and arsenic in contaminated soils[D]. Changsha: Central South University, 2014. |
[21] |
殷飞, 王海娟, 李燕燕, 等. 不同钝化剂对重金属复合污染土壤的修复效应研究[J]. 农业环境科学学报, 2015, 34(3): 438-448. YIN Fei, WANG Hai-juan, LI Yan-yan, et al. Remediation of multiple heavy metal contaminated soil using different immobilization agents[J]. Journal of Agro-Environment Sciences, 2015, 34(3): 438-448. |
[22] |
Hartley W, Lepp N W. Remediation of arsenic contaminated soils by iron-oxide application, evaluated in terms of plant productivity, arsenic and phytotoxic metal uptake[J]. Science of the Total Environment, 2008, 390(1): 35-44. DOI:10.1016/j.scitotenv.2007.09.021 |
[23] |
Lombi E, Zhao F J, Zhang G, et al. In situ fixation of metals in soils using bauxite residue:Chemical assessment[J]. Environmental Pollution, 2002, 118(3): 445-452. DOI:10.1016/S0269-7491(01)00295-0 |
[24] |
王立群, 罗磊, 马义兵, 等. 不同钝化剂和培养时间对Cd污染土壤中可交换态Cd的影响[J]. 农业环境科学学报, 2009, 28(6): 1098-1105. WANG Li-qun, LUO Lei, MA Yi-bing, et al. Effects of different amendments and incubation times on exchangeable Cd in contaminated soils[J]. Journal of Agro-Environment Sciences, 2009, 28(6): 1098-1105. DOI:10.3321/j.issn:1672-2043.2009.06.003 |
[25] |
田杰, 罗琳, 范美蓉, 等. 赤泥对污染土壤中Cd、Pb和Zn形态及水稻生长的影响[J]. 土壤通报, 2012, 43(1): 195-199. TIAN Jie, LUO Lin, FAN Mei-rong, et al. Effects of red mud addition fractions on Cd, Pb and Zn and rice growth in contaminated soil[J]. Chinese Journal of Soil Science, 2012, 43(1): 195-199. |
[26] |
黄蔼霞, 许超, 吴启堂, 等. 赤泥对重金属污染红壤修复效果及其评价[J]. 水土保持学报, 2012, 26(1): 267-272. HUANG Ai-xia, XU Chao, WU Qi-tang, et al. The remediation effect and evaluation of red mud on heavy metal contaminated red soil[J]. Journal of Soil and Water Conservation, 2012, 26(1): 267-272. |
[27] |
黄崇玲.不同铁氧化物对土壤镉有效性及水稻累积镉的影响[D].南宁: 广西大学, 2013. HUANG Chong-ling. Effects of different iron oxides on the bioavailability of soil cadmium and cadmium accumulation in rice[D]. Nanning: Guangxi University, 2013. |
[28] |
官迪, 纪雄辉. 镉污染土壤钝化修复机制及研究进展[J]. 湖南农业科学, 2016(4): 119-122. GUAN Di, JI Xiong-hui. Mechanism and research progress of immobilization remediation of cadmium contaminated soil[J]. Hunan Agricultural Sciences, 2016(4): 119-122. |
[29] |
Gonzalez V, Garcia I, Moral F D, et al. Effectiveness of amendments on the spread and phytotoxicity of contaminants in metal-arsenic polluted soil[J]. Journal of Hazardous Materials, 2012, 205/206: 72-80. DOI:10.1016/j.jhazmat.2011.12.011 |
[30] |
林志灵, 曾希柏, 张杨珠, 等. 人工合成铁、铝矿物和镁铝双金属氧化物对土壤砷的钝化效应[J]. 环境科学学报, 2013, 33(7): 1953-1959. LIN Zhi-lin, ZENG Xi-bai, ZHANG Yang-zhu, et al. Immobilization effects of synthetic Fe/Al minerals and Mg/Al layered double oxides additions on arsenic in soil[J]. Acta Scientiae Circumstantiae, 2013, 33(7): 1953-1959. |
[31] |
Xu Y, Liang X, Xu Y, et al. Remediation of heavy metal-polluted agricultural soils using clay minerals:A review[J]. Pedosphere, 2017, 27(2): 193-204. DOI:10.1016/S1002-0160(17)60310-2 |
[32] |
孙约兵, 徐应明, 史新, 等. 海泡石对镉污染红壤的钝化修复效应研究[J]. 环境科学学报, 2012, 32(6): 1465-1472. SUN Yue-bing, XU Ying-ming, SHI Xin, et al. The effects of sepiolite on immobilization remediation of cadmium contaminated red soil[J]. Acta Scientiae Circumstantiae, 2012, 32(6): 1465-1472. |
[33] |
王林, 徐应明, 孙扬, 等. 海泡石及其复配材料钝化修复镉污染土壤[J]. 环境工程学报, 2010, 4(9): 2093-2098. WANG Lin, XU Ying-ming, SUN Yang, et al. Immobilization of cadmium contaminated soils using sepiolite and its compound materials[J]. Chinese Journal of Environmental Engineering, 2010, 4(9): 2093-2098. |
[34] |
谭科艳. 凹凸棒石用于修复铜锌镉重金属污染土壤的研究[J]. 岩矿测试, 2011, 30(4): 451-456. TAN Ke-yan. Application of attapulgite in the remediation experiments of attapulgite clay to copper, zinc and cadmium contaminated soil[J]. Rock and Mineral Analysis, 2011, 30(4): 451-456. DOI:10.3969/j.issn.0254-5357.2011.04.012 |
[35] |
Sun Y, Ye L, Xu Y, et al. In situ stabilization remediation of cadmium (Cd)and lead(Pb)co-contaminated paddy soil using bentonite[J]. Applied Clay Science, 2015, 105/106: 200-206. DOI:10.1016/j.clay.2014.12.031 |
[36] |
高瑞丽, 唐茂, 付庆灵, 等. 生物炭、蒙脱石及其混合添加对复合污染土壤中重金属形态的影响[J]. 环境科学, 2017, 38(1): 361-367. GAO Rui-li, TANG Mao, FU Qing-ling, et al. Fractions transformation of heavy metals in compound contaminated soil treated with biochar, montmorillonite and mixed addition[J]. Environmental Science, 2017, 38(1): 361-367. |
[37] |
Mia S, Dijkstra F A, Singh B. Chapter one-long-term aging of biochar:A molecular understanding with agricultural and environmental implications[J]. Advances in Agronomy, 2017, 141: 1-51. DOI:10.1016/bs.agron.2016.10.001 |
[38] |
徐楠楠, 林大松, 徐应明, 等. 生物炭在土壤改良和重金属污染治理中的应用[J]. 农业环境与发展, 2013, 30(4): 29-34. XU Nan-nan, LIN Da-song, XU Ying-ming, et al. Application of biochar on soil improvement and heavy metal pollution abatement[J]. Agro-Environment & Development, 2013, 30(4): 29-34. DOI:10.3969/j.issn.1005-4944.2013.04.006 |
[39] |
祝凌.表面改性对生物炭性能的影响及其对2, 4-D和镉的吸附特性研究[D].北京: 中国农业大学, 2018. ZHU Ling. Effect of surface modification on biochar properties and its adsorption properties to 2, 4-D and cadmium[D]. Beijing: China Agricultural University, 2018. |
[40] |
Mendez A, Gomez A, Pazferreiro J, et al. Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil[J]. Chemosphere, 2012, 89(11): 1354-1359. DOI:10.1016/j.chemosphere.2012.05.092 |
[41] |
郑瑞伦.生物炭对污染和设施退化土壤的修复研究[D].北京: 中国科学院生态环境研究中心, 2012. ZHENG Rui-lun. Remediation research of biochar on contaminated and degraded facility soils[D]. Beijing: Center for Ecological Environment Research, Chinese Academy of Sciences, 2012. |
[42] |
杨惟薇, 张超兰, 曹美珠, 等. 4种生物炭对镉污染潮土钝化修复效果研究[J]. 水土保持学报, 2015, 29(1): 239-243. YANG Wei-wei, ZHANG Chao-lan, CAO Mei-zhu, et al. Immobilization and remediation of cadmium contaminated soil with four kinds of biochars[J]. Journal of Soil and Water Conservation, 2015, 29(1): 239-243. |
[43] |
杨晓庆, 侯仔尧, 常梦婷, 等. 生物炭对镉污染土壤的修复研究[J]. 江苏农业科学, 2015, 43(6): 335-337. YANG Xiao-qing, HOU Zai-yao, CHANG Meng-ting, et al. Remediation research of biochar on cadmium contaminated soil[J]. Jiangsu Agricultural Sciences, 2015, 43(6): 335-337. |
[44] |
王丹丹, 林静雯, 张岩, 等. 牛粪生物炭对Cd2+的吸附影响因素及特性[J]. 环境工程学报, 2015, 9(7): 3197-3203. WANG Dan-dan, LIN Jing-wen, ZHANG Yan, et al. Cd2+ adsorption influential factors and performance of dairy dung biochar[J]. Chinese Journal of Environmental Engineering, 2015, 9(7): 3197-3203. |
[45] |
Trakal L, Veselska V, Safarik I, et al. Lead and cadmium sorption mechanisms on magnetically modified biochars[J]. Bioresource Technology, 2016, 203: 318-324. DOI:10.1016/j.biortech.2015.12.056 |
[46] |
汪玉瑛, 计海洋, 吕豪豪, 等. 羊栖菜生物炭对镉污染土壤性质及镉形态的影响[J]. 农业环境科学学报, 2018, 37(6): 1132-1140. WANG YU-ying, JI Hai-yang, LÜ Hao-hao, et al. Effects of biochar derived from Sargassum fusiforme on the properties and cadmium forms of cadmium contaminated soil[J]. Journal of Agro-Environment Sciences, 2018, 37(6): 1132-1140. |
[47] |
关连珠, 周景景, 张昀, 等. 不同来源生物炭对砷在土壤中吸附与解吸的影响[J]. 应用生态学报, 2013, 24(10): 2941-2946. GUAN Lian-zhu, ZHOU Jing-jing, ZHOU Yun, et al. Effects of biochar produced from different sources on arsenic adsorption and desorption in soil[J]. Chinese Journal of Applied Ecology, 2013, 24(10): 2941-2946. |
[48] |
Zhang M, Gao B. Removal of arsenic, methylene blue, and phosphate by biochar/AlOOH nanocomposite[J]. Chemical Engineering Journal, 2013, 226(24): 286-292. |
[49] |
Wang S, Gao B, Li Y. Enhanced arsenic removal by biochar modified with nickel(Ni)and manganese(Mn)oxyhydroxides[J]. Journal of Industrial and Engineering Chemistry, 2016, 37: 361-365. DOI:10.1016/j.jiec.2016.03.048 |
[50] |
朱司航, 赵晶晶, 尹英杰, 等. 针铁矿改性生物炭对砷吸附性能[J]. 环境科学, 2019, 40(6): 2773-2782. ZHU Si-hang, ZHAO Jing-jing, YIN Ying-jie, et al. Application of goethite modified biochar for arsenic removal from aqueous solution[J]. Environmental Science, 2019, 40(6): 2773-2782. |
[51] |
孙翠平, 李彦, 张英鹏, 等. 农田重金属钝化剂研究进展[J]. 山东农业科学, 2016, 48(8): 147-153. SUN Cui-ping, LI Yan, ZHANG Ying-peng, et al. Research progress of farmland heavy metal immobilization[J]. Shandong Agricultural Sciences, 2016, 48(8): 147-153. |
[52] |
王立群.镉污染土壤原位修复剂及其机理研究[D].北京: 首都师范大学, 2009. WANG Li-qun. Mechanism research and in situ remediation agent of cadmium contaminated soil[D]. Beijing: Capital Normal University, 2009. |
[53] |
李扬, 乔玉辉, 莫晓辉, 等. 蚯蚓粪作为土壤重金属污染修复剂的潜力分析[J]. 农业环境科学学报, 2010, 29(增刊): 250-255. LI Yang, QIAO Yu-hui, MO Xiao-hui, et al. Analysis for earthworm feces as one of potential remediation agent of heavy metal contaminated in soil[J]. Journal of Agro-Environment Sciences, 2010, 29(Suppl): 250-255. |
[54] |
陈春霞, 卢瑛, 尹伟, 等. 骨粉和沸石对污染土壤中铅和镉生物有效性的影响[J]. 广东农业科学, 2011, 38(14): 60-62. CHEN Chun-xia, LU Ying, YIN Wei, et al. Effect of bonemeal and zeolite on bioavailability of lead and cadmium in contaminated soils[J]. Guangdong Agricultural Science, 2011, 38(14): 60-62. DOI:10.3969/j.issn.1004-874X.2011.14.021 |
[55] |
黎大荣, 吴丽香, 宁晓君, 等. 不同钝化剂对土壤有效态铅和镉含量的影响[J]. 环境保护科学, 2013, 39(3): 46-49. LI Da-rong, WU Li-xiang, NING Xiao-jun, et al. Effects of different immobilization agents on contens of available lead and cadmium in soil[J]. Environmental Protection Science, 2013, 39(3): 46-49. DOI:10.3969/j.issn.1004-6216.2013.03.012 |
[56] |
刘秀珍, 马志宏, 赵兴杰. 不同有机肥对镉污染土壤镉形态及小麦抗性的影响[J]. 水土保持学报, 2014, 28(3): 243-247. LIU Xiu-zhen, MA Zhi-hong, ZHAO Xing-jie. Effects of different organic manure on cadmium form of soil and resistance of wheat in cadmium contaminated soil[J]. Journal of Soil and Water Conservation, 2014, 28(3): 243-247. |
[57] |
Kwiatkowska M J. Functions of organic matter in polluted soils:The effect of organic amendments on phytoavailability of heavy metals[J]. Applied Soil Ecology, 2018, 123: 542-545. DOI:10.1016/j.apsoil.2017.06.021 |
[58] |
梁彦秋, 潘伟, 刘婷婷, 等. 有机酸在修复Cd污染土壤中的作用研究[J]. 环境科学与管理, 2006, 31(8): 76-78. LIANG Yan-qiu, PAN Wei, LIU Ting-ting, et al. Study on effect of organic acid on Cd contaminated soil remediation[J]. Environmental Science and Management, 2006, 31(8): 76-78. DOI:10.3969/j.issn.1673-1212.2006.08.026 |
[59] |
陈英旭, 林琦, 陆芳, 等. 有机酸对铅、镉植株危害的解毒作用研究[J]. 环境科学学报, 2000, 20(4): 467-472. CHEN Ying-xu, LIN Qi, LU Fang, et al. Study on detoxification of organic acids to raddish under the stress of lead and cadmium[J]. Acta Scientiae Crcumstantiae, 2000, 20(4): 467-472. DOI:10.3321/j.issn:0253-2468.2000.04.017 |
[60] |
杨海琳, 廖柏寒. 低分子有机酸去除土壤中重金属条件的研究[J]. 农业环境科学学报, 2010, 29(12): 2330-2337. YANG Hai-lin, LIAO Bo-han. Extraction conditions for heavy metals from contaminated soil by using low molecular organic acids[J]. Journal of Agro-Environment Sciences, 2010, 29(12): 2330-2337. |
[61] |
Bolan N, Kunhikrishnan A, Thangarajan R, et al. Remediation of heavy metal(loid)s contaminated soils to mobilize or to immobilize?[J]. Journal of Hazardous Materials, 2014, 266(4): 141-166. DOI:10.1016/j.jhazmat.2013.12.018 |
[62] |
Ebrahimian E, Bybordi A. Effect of organic acids on heavy-metal uptake and growth of canola grown in contaminated soil[J]. Communications in Soil Science and Plant Analysis, 2014, 45(13): 1715-1725. DOI:10.1080/00103624.2013.875206 |
[63] |
Qiao J, Li X, Li F, et al. Humic substances facilitate arsenic reduction and release in flooded paddy soil[J]. Environmental Science & Technology, 2019, 53(9): 5034-5042. |
[64] |
Chen S, Sun L, Chao L, et al. Influence of organic acid and amino acid on cadmium and lead desorption from soil[J]. Soil Research, 2007, 45(7): 554-558. DOI:10.1071/SR07029 |
[65] |
Wang S, Mulligan C N. Effects of three low-molecular-weight organic acids(LMWOAs)and pH on the mobilization of arsenic and heavy metals(Cu, Pb, and Zn)from mine tailings[J]. Environmental Geochemistry and Health, 2013, 35(1): 111-118. DOI:10.1007/s10653-012-9461-3 |
[66] |
Boechat C L, Pistoia V C, Ludtke A C, et al. Solubility of heavy metals/metalloid on multi-metal contaminated soil samples from a gold ore processing area:Effects of humic substances[J]. Revista Brasileira De Ciencia Do Solo, 2016, 40: e0150383. |
[67] |
Alozie N, Heaney N, Lin C, et al. Biochar immobilizes soil-borne arsenic but not cationic metals in the presence of low-molecular-weight organic acids[J]. Science of the Total Environment, 2018, 630: 1188-1194. DOI:10.1016/j.scitotenv.2018.02.319 |
[68] |
Taghipour M, Jalali M. Heavy metal release from some industrial wastes:Influence of organic and inorganic acids, clay minerals, and nanoparticles[J]. Pedosphere, 2018, 28(1): 70-83. DOI:10.1016/S1002-0160(18)60005-0 |
[69] |
徐应明, 李军幸, 孙国红, 等. 新型功能膜材料对污染土壤铅汞镉钝化作用研究[J]. 农业环境科学学报, 2003, 22(1): 86-89. XU Ying-ming, LI Jun-xing, SUN Guo-hong, et al. Inactivation of lead, mercury and cadmium in-situ in contaminated soil by a functionalized monolayer materials[J]. Journal of Agro-Environment Sciences, 2003, 22(1): 86-89. DOI:10.3321/j.issn:1672-2043.2003.01.024 |
[70] |
林大松, 徐应明, 孙国红, 等. 应用介孔分子筛材料(MCM-41)对土壤重金属污染的改良[J]. 农业环境科学学报, 2006, 25(2): 331-335. LIN Da-song, XU Ying-ming, SUN Guo-hong, et al. Amendment of heavy metal in contaminated soil by(MCM-41)[J]. Journal of AgroEnvironment Sciences, 2006, 25(2): 331-335. DOI:10.3321/j.issn:1672-2043.2006.02.013 |
[71] |
李剑睿, 徐应明, 林大松, 等. 农田重金属污染原位钝化修复研究进展[J]. 生态环境学报, 2014, 23(4): 721-728. LI Jian-rui, XU Ying-ming, LIN Da-song, et al. In situ immobilization remediation of heavy metals in contaminated soils:A review[J]. Ecology and Environmental Sciences, 2014, 23(4): 721-728. DOI:10.3969/j.issn.1674-5906.2014.04.029 |
[72] |
Markovic M, Kumar A, Andjelkovic I, et al. Ecotoxicology of manufactured graphene oxide nanomaterials and derivation of preliminary guideline values for freshwater environments[J]. Environmental Toxicology and Chemistry, 2018, 37(5): 1340-1348. DOI:10.1002/etc.4074 |
[73] |
段立杰, 谷蕾. 生物炭减轻土壤重金属污染研究进展[J]. 低碳世界, 2017(7): 14-15. DUAN Li-jie, GU Lei. Research progress of biochar to reduce heavy metal contaminated soil[J]. Low Carbon World, 2017(7): 14-15. |
[74] |
熊仕娟, 黄兴成. 沸石在镉污染土壤修复中的研究进展[J]. 现代园艺, 2017(15): 8-9. XIAONG Shi-juan, HUANG Xing-cheng. Research progress of zeolite in the remediation of cadmium contaminated soil[J]. Xiandai Horticulture, 2017(15): 8-9. |
[75] |
Harter R D, Naidu R. Role of metal organic complexation in metal sorption by soils[J]. Advances in Agronomy, 1995, 55(8): 219-263. |
[76] |
Karlsson T, Elgh-Dalgren K, Björn E, et al. Complexation of cadmium to sulfur and oxygen functional groups in an organic soil[J]. Geochimica et Cosmochimica Acta, 2007, 71(3): 604-614. DOI:10.1016/j.gca.2006.10.011 |
[77] |
Wang R Z, Huang D L, Liu Y G, et al. Investigating the adsorption behavior and the relative distribution of Cd2+, sorption mechanisms on biochars by different feedstock[J]. Bioresource Technology, 2018, 26: 265-271. |
[78] |
周婷, 周根娣, 和苗苗. 生物炭对土壤重金属吸附机理研究进展[J]. 杭州师范大学学报(自然科学版), 2018, 17(4): 404-410. ZHOU Ting, ZHOU Gen-di, HE Miao-miao. Absorption mechanism of biochar on soil heavy metals[J]. Journal of Hangzhou Normal University(Natural Science Edition), 2018, 17(4): 404-410. DOI:10.3969/j.issn.1674-232X.2018.04.012 |
[79] |
Chen S, Xu M, Ma Y, et al. Evaluation of different phosphate amendments on availability of metals in contaminated soil[J]. Ecotoxicology and Environmental Safety, 2007, 67(2): 278-285. DOI:10.1016/j.ecoenv.2006.06.008 |
[80] |
Gray C W, Dunham S J, Dennis P G, et al. Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and redmud[J]. Environmental Pollution, 2006, 142: 530-539. DOI:10.1016/j.envpol.2005.10.017 |
[81] |
王晨, 王海燕, 赵琨, 等. 硅对镉、锌、铅复合污染土壤中黑麦草生理生化性质的影响[J]. 生态环境, 2008, 17(6): 2240-2245. WANG Chen, WANG Hai-yan, ZHAO Kun, et al. Effects of silicon on physiological and biochemical properties of ryegrass under the compound pollution of Cd, Zn and Pb[J]. Ecology and Environment, 2008, 17(6): 2240-2245. DOI:10.3969/j.issn.1674-5906.2008.06.026 |
[82] |
Cho H H, Wepasnick K, Smith B A, et al. Sorption of aqueous Zn(Ⅱ) and Cd(Ⅱ)by multiwall carbon nanotubes:The relative roles of oxygen-containing functional groups and graphenic carbon[J]. Langmuir, 2010, 26(2): 967-981. DOI:10.1021/la902440u |
[83] |
王怡璇, 刘杰, 唐云舒, 等. 硅对水稻镉转运的抑制效应研究[J]. 生态环境学报, 2016, 25(11): 1822-1827. WANG Yi-xuan, LIU Jie, TANG Yun-shu, et al. Inhibition effect of silicon on cadmium accumulation and transport in rice[J]. Ecology and Environmental Sciences, 2016, 25(11): 1822-1827. |
[84] |
傅友强, 于智卫, 蔡昆争, 等. 水稻根表铁膜形成机制及其生态环境效应[J]. 植物营养与肥料学报, 2010, 16(6): 1527-1534. FU You-qiang, YU Zhi-wei, CAI Kun-zheng, et al. Mechanisms of iron plaque formation on root surface of rice plants and their ecological and environmental effects:A review[J]. Plant Nutrition and Fertilizer Science, 2010, 16(6): 1527-1534. |
[85] |
何春娥, 刘学军, 张福锁. 植物根表铁膜的形成及其营养与生态环境效应[J]. 应用生态学报, 2004, 15(6): 1069-1073. HE Chun-er, LIU Xue-jun, ZHANG Fu-suo. Formation of iron plaque on root surface and its effect on plant nutritional and ecological environmental[J]. Chinese Journal of Applied Ecology, 2004, 15(6): 1069-1073. DOI:10.3321/j.issn:1001-9332.2004.06.031 |
[86] |
Luo L, Zhang S, Shan X, et al. Arsenate sorption on two Chinese red soils evaluated with macroscopic measurements and extended X-ray absorption fine-structure spectroscopy[J]. Environmental Toxicology and Chemistry, 2010, 25(12): 3118-3124. |
[87] |
Fu D, He Z, Su S, et al. Fabrication of α-FeOOH decorated graphene oxide-carbon nanotubes aerogel and its application in adsorption of arsenic species[J]. Journal of Colloid and Interface Science, 2017, 505: 105-114. DOI:10.1016/j.jcis.2017.05.091 |
[88] |
Ko M S, Kim J Y, Park H S, et al. Field assessment of arsenic immobilization in soil amended with iron rich acid mine drainage sludge[J]. Journal of Cleaner Production, 2015, 108: 1073-1080. DOI:10.1016/j.jclepro.2015.06.076 |
[89] |
Thayer J S, Brinckman F E. The biological methylation of metals and metalloids[J]. Advances in Organometallic Chemistry, 1982, 20(45): 313-356. DOI:10.1016/S0065-3055(08)60524-9 |
[90] |
Čerňanský S, Kolenčík M, Ševc J, et al. Fungal volatilization of trivalent and pentavalent arsenic under laboratory conditions[J]. Bioresource Technology, 2009, 99(2): 1037-1040. |
[91] |
Hong C O, Gutierrez J, Yun S, et al. Heavy metal contamination of arable soil and corn plant in the vicinity of a zinc smelting factory and stabilization by liming[J]. Archives of Environmental Contamination and Toxicology, 2009, 56(2): 190-200. DOI:10.1007/s00244-008-9195-5 |
[92] |
Basta N T, Mcgowen S L. Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil[J]. Environmental Pollution, 2004, 127(1): 73-82. DOI:10.1016/S0269-7491(03)00250-1 |
[93] |
Qayyum M F, Rehman M Z, Ali S, et al. Residual effects of monoammonium phosphate, gypsum and elemental sulfur on cadmium phytoavailability and translocation from soil to wheat in an effluent irrigated field[J]. Chemosphere, 2017, 174: 515-523. DOI:10.1016/j.chemosphere.2017.02.006 |
[94] |
Placek A, Grobelak A, Kacprzak M, et al. Improving the phytoremediation of heavy metals contaminated soil by use of sewage sludge[J]. International Journal of Phytoremediation, 2016, 18(6): 605-618. DOI:10.1080/15226514.2015.1086308 |
[95] |
Gruter R, Costerousse B, Mayer J, et al. Long-term organic matter application reduces cadmium but not zinc concentrations in wheat[J]. Science of the Total Environment, 2019, 669: 608-620. DOI:10.1016/j.scitotenv.2019.03.112 |
[96] |
Zotiadis V, Argyraki A, Theologou E, et al. Pilot-scale application of attapulgitic clay for stabilization of toxic elements in contaminated soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(5): 633-637. DOI:10.1061/(ASCE)GT.1943-5606.0000620 |
[97] |
Hartley W, Dickinson N M, Riby P, et al. Arsenic mobility and speciation in a contaminated urban soil are affected by different methods of green waste compost application[J]. Environmental Pollution, 2010, 158(12): 3560-3570. DOI:10.1016/j.envpol.2010.08.015 |
[98] |
Xie X, Pi K, Liu Y, et al. In-situ arsenic remediation by aquifer iron coating:Field trial in the Datong basin, China[J]. Journal of Hazardous Materials, 2015, 302: 19-26. |
[99] |
Ko M S, Kim J Y, Park H S, et al. Field assessment of arsenic immobilization in soil amended with iron rich acid mine drainage sludge[J]. Journal of Cleaner Production, 2015, 108: 1073-1080. DOI:10.1016/j.jclepro.2015.06.076 |
[100] |
Ko M S, Kim J Y, Bang S, et al. Stabilization of the As-contaminated soil from the metal mining areas in Korea[J]. Environmental Geochemistry and Health, 2012, 34(Suppl): 143-149. |
[101] |
黄益宗, 郝晓伟, 雷鸣, 等. 重金属污染土壤修复技术及其修复实践[J]. 农业环境科学学报, 2013, 32(3): 409-417. HUANG Yi-zong, HAO Xiao-wei, LEI Ming, et al. The remediation technology and remediation practice of heavy metals-contaminated soil[J]. Journal of Agro-Environment Sciences, 2013, 32(3): 409-417. |
[102] |
韩君, 梁学峰, 徐应明, 等. 黏土矿物原位修复镉污染稻田及其对土壤氮磷和酶活性的影响[J]. 环境科学学报, 2014, 34(11): 2853-2860. HAN Jun, LIANG Xue-feng, XU Ying-ming, et al. In-situ remediation of cadmium contaminated paddy soil by clay minerals and their effects on nitrogen, phosphorus and enzyme activities[J]. Acta Scientiae Circumstantiae, 2014, 34(11): 2853-2860. |
[103] |
Yin X, Xu Y, Huang R, et al. Remediation mechanisms for Cd-contaminated soil using natural sepiolite at the field scale[J]. Environmental Science Processes & Impacts, 2017, 19(12): 1563-1570. |
[104] |
Liang X, Xu Y, Xu Y, et al. Two-year stability of immobilization effect of sepiolite on Cd contaminants in paddy soil[J]. Environmental Science and Pollution Research International, 2016, 23(13): 12922-12931. DOI:10.1007/s11356-016-6466-y |
[105] |
Wu Y J, Zhou H, Zou Z J, et al. A three-year in-situ study on the persistence of a combined amendment(limestone sepiolite)for remedying paddy soil polluted with heavy metals[J]. Ecotoxicology and Environmental Safety, 2016, 130: 163-170. DOI:10.1016/j.ecoenv.2016.04.018 |
[106] |
Zhu Q H, Huang D Y, Zhu G X, et al. Sepiolite is recommended for the remediation of Cd-contaminated paddy soil[J]. Acta Agriculturae Scandinavica, Section B-Plant Soil Science, 2010, 60(2): 110-116. DOI:10.1080/09064710802672624 |
[107] |
Sun Y, Xu Y, Xu Y, et al. Reliability and stability of immobilization remediation of Cd polluted soils using sepiolite under pot and field trials[J]. Environmental Pollution, 2015, 208: 739-746. |
[108] |
Zhou H, Zhou X, Zeng M, et al. Effects of combined amendments on heavy metal accumulation in rice(Oryza sativa L.)planted on contaminated paddy soil[J]. Ecotoxicology and Environmental Safety, 2014, 101: 226-232. DOI:10.1016/j.ecoenv.2014.01.001 |
[109] |
Wang B, Xie Z, Chen J, et al. Effects of field application of phosphate fertilizers on the availability and uptake of lead, zinc and cadmium by cabbage(Brassica chinensis L.)in a mining tailing contaminated soil[J]. Journal of Environmental Sciences, 2018, 20(9): 1109-1117. DOI:10.3321/j.issn:1001-0742.2008.09.014 |
[110] |
Li M, Mohamed I, Raleve D, et al. Field evaluation of intensive compost application on Cd fractionation and phytoavailability in a mining-contaminated soil[J]. Environmental Geochemistry and Health, 2016, 38(5): 1193-1201. DOI:10.1007/s10653-015-9784-y |
[111] |
Bian R, Chen D, Liu X, et al. Biochar soil amendment as a solution to prevent Cd-tainted rice from China:Results from a cross-site field experiment[J]. Ecological Engineering, 2013, 58: 378-383. DOI:10.1016/j.ecoleng.2013.07.031 |
[112] |
Bian R, Joseph S, Cui L, et al. A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment[J]. Journal of Hazardous Materials, 2014, 272: 121-128. DOI:10.1016/j.jhazmat.2014.03.017 |
[113] |
Zhang Y, Chen T, Liao Y, et al. Modest amendment of sewage sludge biochar to reduce the accumulation of cadmium into rice(Oryza sativa L.):A field study[J]. Environmental Pollution, 2016, 216: 819-825. DOI:10.1016/j.envpol.2016.06.053 |
[114] |
Yan X L, Lin L Y, Liao X Y, et al. Arsenic stabilization by zero-valent iron, bauxite residue, and zeolite at a contaminated site planting Panax notoginseng[J]. Chemosphere, 2013, 93(4): 661-667. DOI:10.1016/j.chemosphere.2013.05.083 |
[115] |
吴晓云, 李秋蓉, 欧阳通, 等. 改性废弃稀土抛光粉应急修复砷污染土壤研究[J]. 环境卫生工程, 2010, 18(6): 42-44. WU Xiao-yun, LI Qiu-rong, OUYANG Tong, et al. Emergency restoration of arsenic contaminated soil using modified waste rare earth polishing powder[J]. Environmental Sanitation Engineering, 2010, 18(6): 42-44. DOI:10.3969/j.issn.1005-8206.2010.06.016 |
[116] |
赵宁亚.硫酸根离子和砷污染土壤的稳定化处理技术研究[D].上海: 华东师范大学, 2013. ZHAO Ning-ya. Study on stabilization technology of soils contaminated by sulfate ions and arsenic[D]. Shanghai: East China Normal University, 2013. |