2. 中国科学院大学, 北京 100049
2. University of Chinese Academy of Sciences, Beijing 100049, China
“土壤是历史自然体,是位于地球陆地表面和浅水域底部具有生命力、生产力的疏松而不均匀的聚积层,是地球系统的组成部分和调控环境质量的中心要素”,这是《环境土壤学》一书对土壤的清晰定义[1]。土壤环境保护的研究是现代土壤学的重要标志,环境土壤学是土壤学和环境科学的交叉学科,主要研究自然因素和人为条件下土壤环境质量变化、影响及其调控。它涉及土壤质量与生物品质,即土壤质量与生物多样性及食物链的营养价值与安全问题;涉及土壤与水和大气质量的关系,即土壤作为源与汇对水质和大气质量的影响;涉及人类居住环境问题,即土壤元素丰缺与人类健康的关系;涉及土壤与其他环境要素的交互作用,即土壤圈、水圈、岩石圈、生物圈和大气圈的相互影响;涉及土壤质量的保护和改善等土壤环境工程。环境土壤学领域的相关研究在很大程度上促进了现代土壤学的蓬勃发展。
文献计量学以文献体系和文献计量特征为研究对象,被用于文献定量分析。借助知识图谱和文献计量学软件的可视化功能,研究者得以较为客观地评价目标领域在一定时期内的历史演进过程、研究方向及当前热点,预测未来的发展趋势[2],目前已被广泛应用于农林、生态和环境等领域[3-4]。基于此,本文力图借助Web of Science(WoS)核心合集数据库和中国知网(CNKI)在2016—2020年间发表的以土壤为主题的相关文献,利用WoS自带分析工具和文献计量学软件CiteSpace,从年度、国家/地区、重要期刊的发文量、文献共被引和关键词共现词分析等角度,阐述环境土壤学领域中相关研究的发展态势、研究方向和热点,以期为研究者掌握学科当前发展程度、科学地选择研究方向提供参考。
1 材料与方法环境土壤学的研究主体是土壤,是土壤学的分支学科,因此“土壤”这一主题基本可以反映其目前的研究概况。本研究所用软件为陈超美博士开发的5.7R2 64位版本CiteSpace[5],利用软件提供的引文共被引分析和关键词共现词分析等功能,采集2016—2020年间以“土壤”为主题发表的国内外文献,从土壤学及环境科学两种学科角度,分析了环境土壤学的进展及热点问题。
引文的共被引分析是指两篇文献共同出现在除二者之外的文献(施引文献)引文目录中,而形成共被引关系。因此,特定领域论文后的引文可以形成共被引网络,对该网络的聚类分析可以展现研究领域的知识基础,反映其整体特征。关键词共现词分析可以统计关键词在所有发表文章中共同出现的情况,并由此反映研究热点[6]。
1.1 国际该领域发表文章的数据获取及CiteSpace分析参数设置此部分数据来源于WoS核心合集数据库,以“soil”为主题词,选定时间范围为2016—2020年,WoS类别“ENVIRONMENTAL SCIENCES”和“SOIL SCIENCE”,文献类别“ARTICLE”。软件分析参数如表 1所示。
![]() |
表 1 不同种类分析的参数设置 Table 1 Parameter setting for different analyses |
此部分数据来源于CNKI,以“土壤”为主题词,选定时间范围为2016—2020年,文献分类:环境科学和土壤学,期刊来源:北大核心、CSSCI和CSCD。软件分析参数如表 1所示。
2 结果分析与讨论 2.1 2016—2020年该领域文献发表情况经检索本领域5年来共计发表论文87 612篇,其中70 510篇文献来自WoS,17 102篇来自CNKI(截至2020年12月),可看出本领域发文量较大,产出丰硕,年度发文趋势较为稳定(图 1)。利用WoS自带的统计功能,对本领域的国家/地区发文及相关期刊发文进行汇总,具体见表 2。中美德三国发文量位居前三,其中我国发文量最高,近乎超过第二名美国一倍,中美两国发文占比超过国际该领域发文的50%,可见两国是推动本领域发展的重要动力。
![]() |
图 1 2016—2020年间WoS和CNKI发文量情况 Figure 1 The number of publications collected from WoS and CNKI in 2016—2020 |
![]() |
表 2 2016—2020年国家/地区及国际出版物论文发表情况(来自WoS数据) Table 2 Publications from various countries and journals in 2016—2020(data from WoS) |
从国际刊物发文上看,环境科学类期刊Science of the Total Environment、Environmental Science and Pollution Research和Chemosphere占据前三排行,共计发文11 644篇,发文占比为16.5%。此外,土壤科学类期刊Geoderma、Catena、Plant and Soil和Soil Biology Biochemistry跻身前十,共计发文7 203篇,占比10.2%。以土壤为主题词的研究中,环境科学类研究发文大于土壤科学,体现了土壤环境领域的研究热度,也可能与不同学科的研究特点、相关期刊的审稿速度和发文量等因素相关。
2.2 2016—2020年国际该领域重点研究方向利用CiteSpace的引文共被引分析功能对2016— 2020年间WoS上发表论文的所有参考文献进行分析,结果如图 2a所示。图内年轮状圆圈所示的节点代表引文,年轮颜色代表其被引用的年份分布,大小代表引用次数的多少,最外圈紫色圆环体现该文献的中介中心性较高,是图谱中过渡和枢纽节点。通过聚类分析并根据聚类的大小,得到“微生物群落”(bacterial communities)、“有机碳”(organic carbon)、“生物炭改良”(biochar amendment)、“N2O排放”(N2O emission)、“重金属”(heavy metal)、“土壤侵蚀”(soil erosion)、“机器学习”(machine learning)、“保护性农业”(conservation agriculture)8个聚类(图 2b),反映了本领域2016—2020年间的几个重要发展方向。通过图 3所示的聚类分析时间线视图,可以直观了解本领域重要引文的发表年份。聚类0、1、2、4的引文在不同年份均有分布,可见其知识基础在不断更新和发展,有利于推动相关研究方向的深入进行;聚类6的引文发表时间较近,可见机器学习是本领域研究中较为新颖的手段。此外,聚类间节点的连线还体现了不同研究方向中知识基础的交叉,有利于拓宽研究思路及发展新的方向。以下就不同聚类的施引文献和被引文献,分别从研究现状和知识基础的角度展开分析。
![]() |
图 2 2016—2020年WoS检索结果:引文共被引网络(a)及聚类结果(b) Figure 2 Reference co-citation network(a)and cluster analysis of papers(b)from WoS in 2016—2020 |
![]() |
图 3 2016—2020年WoS检索结果的引文共被引网络聚类分析的时间轴视图 Figure 3 Timeline view of the cluster analysis of reference co-citation network between 2016 and 2020 (data from WoS) |
通过对此聚类的重要施引文献的调研发现,2016—2020年主要围绕以下内容开展研究:土壤中微生物群落受农艺措施及城市化、填海造陆等人类活动的影响及应对,微生物群落对于维持植物生产力以及土壤碳固定的重要意义。土壤中微生物群落丰度在生物炭、堆肥以及化肥施用等常见土壤改良措施下得到有效提升[7-8],同时致病菌群的结构也会因轮作和少耕等措施得以改变,因而实现可持续的生产[9]。在城市化和填海造陆等高强度人类活动影响下,微生物群落在短时间内即可恢复到与原始状态相似的水平,体现了土壤微生物群落的极强恢复能力[10]。土壤重金属镍污染,会诱导提升土壤抗生素抗性基因(ARGs)的频率和丰度,增强了ARGs水平转移的潜力[11]。与此同时,微生物群落本身的功能和多样性意义同样受到关注,土壤微生物多样性对于维持植物的生产力尤为关键[12],在养分处理下其群落丰度直接影响土壤有机质的分解[13]。
此聚类中的节点(即被引文献)反映了其中的知识基础,主要阐述了微生物群落对土壤有机碳的分解与全球气候变化的关联[14];微生物群落结构受到不同养分(氮)梯度以及土壤性质影响下的宏基因组学、系统发生学和生理学的研究[15];此外,在方法学方面, 得益于微生物数据分析pipeline工具uParse,嵌合体检测工具UCHIME的开发以及基于R语言的lmer混合线性回归模型的应用,微生物数据处理的速度及灵敏度得以提升[16-18]。这些参考文献为微生物群落相关研究提供了扎实的研究背景。
2.2.2 聚类1:有机碳通过对此聚类施引文献的调研发现,2016—2020年间,研究者在全球气候变化的大背景下,于不同时间及不同空间尺度上评估和修正了土壤有机碳的损失,阐述了微生物对土壤有机碳固定和形成的重要作用。在方法学上,利用稳定同位素示踪及机器学习等方法分别从微观及区域尺度下对土壤有机碳开展相应研究。研究发现土壤有机碳的向下迁移行为可以抵消全球升温过程中微生物的加速分解,有利于准确评估全球变暖下土壤有机碳的损失[19]。在千年尺度下,苏北滨海土壤对有机质的固存速率超过0.4%,同时发现其初始速率较高,并随时间逐渐放缓[20]。从区域尺度上看,土地利用变化对颗粒有机质、有机矿物复合体和黑炭3种组分土壤有机碳的稳定性影响主要受制于基线效应,而气候和土壤理化性质等因素对各种类有机质的影响大小各异[21]。微生物活动对土壤有机碳的固定及分解具有重要意义。有研究采用“微生物碳泵”(MCP)和效率-基质稳定假说等探讨微生物固碳作用[22-23]。在方法学上,利用土壤酶或者15N同位素标记等手段追踪微生物碳源,量化土壤有机质的原位分解速率[24-25]。此外,机器学习也被应用于有机碳的相关研究,研究使用混合机器学习模型等,在区域尺度上评估了土壤有机碳储量,开展土壤碳组分数字制图[26-27]。
此聚类的知识基础主要集中在阐述现阶段研究领域中有关土壤有机碳的新观点,如Schmidt等[28]和Lehmann等[29]在Nature期刊上对土壤有机碳的组成结构和稳定性的系统阐述,以及对有机碳的分解、黑炭、植物根系影响、物理隔离、土壤深层碳、冻土层融化、土壤微生物等方面提供的新见解;同时,对由操作定义得出的土壤腐殖质的活性和实际代表性提出挑战,并提出土壤有机质是逐步分解有机化合物的连续体。在微生物与土壤有机质的相互作用方面,引用文献从微观上探讨了微生物与土壤有机物之间的启动效应[30],阐述了全球气候变暖对土壤有机碳的影响取决于微生物对土壤有机碳的利用效率[31],土壤有机物分解对温度升高的响应是生态系统对全球变化响应的关键[32]。
2.2.3 聚类2:生物炭改良生物炭是在低氧和缺氧条件下,将各种有机质经高温热解后得到的多孔性物质,是一种有效的土壤改良剂,具有重要农业应用价值和环境效益。通过对此阶段聚类的施引文献调研发现,研究主要围绕土壤中生物炭改良措施对土壤物理化学性质、营养元素利用以及作物生长发育的影响来开展。生物炭可用于维持土壤有机碳含量并抵消土壤退化[33],降低土壤的热导率和热扩散率[34],提升土壤饱和导水率[35]。在对土壤肥力影响方面,施用生物炭可有效改善退化酸性砂土的肥力,提升微生物活性[36],提升土壤固磷能力,促进磷素的活化释放[37]。此外,生物炭还可提升作物对土壤中水分的利用效率,刺激作物生长,对非灌溉条件下的作物种植具有重要农学意义[38]。
有关生物炭改良聚类的知识基础主要集中于从分子层面阐述生物炭组成的动态变化[39],以及生物炭影响土壤微生物、动植物和植物根系的机制[40],着重探讨生物炭本身的矿化机制[41]和生物炭施用对土壤有机质矿化的影响[42]。将其视为一种具有前景的高效固碳手段以缓解全球气候变化,同时还可提供能量并增加农作物的产量[43]。
2.2.4 聚类3:N2O排放N2O作为一种重要温室气体,比二氧化碳有更高的增温潜势,其在大气中的浓度以每年0.25%的速率增长,因而获得极大关注。然而,为了应对不断增长的粮食需求,农田氮肥施加量不断提升,削减由此导致的农业土壤中N2O的排放已成为全球性挑战。通过对此聚类的施引文献调研发现,该领域主要围绕农业土壤中N2O产生、排放及估算模型开展研究。农田N2O排放的空间显式估计(Spatially explicit estimates)表明,改善肥料管理可以缓解气候变化[44]。同时,有必要通过监测整年度的N2O排放来估算农田排放清单中的N2O排放因子[45]。在实验室及在相关区域尺度上的研究表明,微生物对土壤中氮素的循环具有重要意义,氨氧化菌相对于氨氧化古菌对氮肥施加有更强的响应[46]。在缺磷的土壤中施加磷肥,微生物会在无机氮较为丰富时通过反硝化过程提升N2O的排放[47];生物炭改良土壤可以抑制N2O的产生,同时可将N2O还原为N2[48];在对澳大利亚一处集约化草场的研究发现,较高的土壤充水孔隙会降低当地氮肥利用率[49];同时,河口和沿海湿地生态系统也是大气中N2O的重要来源,对长江口潮间带土壤研究发现,细菌脱氮是此处N2O主要的产生途径[50]。
聚类3中重要节点文献所代表的知识基础关注了全球氮肥分配不公造成的氮损失或粮食减产情况[51],通过meta分析土壤N2O排放对氮肥施用的非线性响应,解释了作物需求对氮排放的重大影响[52]。还关注了典型集约化农业系统中氮肥过量施用造成的大气、土壤和水体污染,以及土壤退化问题,号召合理的氮素管理措施以应对其负面影响[53-54]。此外,土壤N2O排放中微生物生产和消费过程与生物/非生物因素的耦合关系的综述[55],以及对氨氧化菌的amoA基因序列分析[56],为阐明微生物在N2O排放中的作用提供了研究知识储备。
2.2.5 聚类4:重金属土壤中重金属污染问题由来已久,对土壤肥力质量和土壤环境质量具有重要影响。此聚类的施引文献从不同区域尺度上开展了土壤中重金属的分布及风险评估研究,也从微生物参与重金属形态转化的角度阐述了对作物吸收累积的影响;通过机器学习的手段预测作物对土壤中重金属的累积。在不同区域尺度上对土壤中铬、镉、铅、汞、砷、铜、锌和镍等重金属的空间分布变化、环境风险和源头等问题进行了分析[57-60]。土壤微生物燃料电池可以降低稻田土壤中镉、铜、铬和镍的生物有效性,缓解水稻籽粒中相关重金属的累积[61]。同时,变价金属锑的氧化细菌可以氧化三价锑来减弱锑的毒性和吸收以缓解锑对拟南芥的胁迫[62]。机器学习等新的研究方法也被应用于传统重金属的研究,Hu等[63]应用机器学习的方法,发现植物类型是重金属从土壤到作物转移的主要控制因素,其次为土壤中重金属及有机质的含量,此方法可以辅助预测作物中的重金属含量,降低实验室分析所需的时间及人力成本。
此聚类研究基础大多集中在近些年有关土壤污染的相关综述,其指明了我国土壤重金属的污染特征和现状,阐述了有效应对策略及人体健康风险情况,对后续重金属相关研究具有一定指导作用[64-66]。同时,欧盟国家农业土壤中的重金属对食品安全的影响研究也得到一定参考[67]。在消除土壤重金属污染的措施方面,活化或稳定化策略[68],植物重金属修复和应用前景[69]也被着重关注。
2.2.6 聚类5:土壤侵蚀土壤侵蚀是指土壤及其母质在外营力作用下,被破坏、分离、搬运和沉积的过程,对土壤肥力及下游水体质量具有不利影响。此聚类中的研究分析了前期研究的相关问题,围绕地中海等典型地区土壤侵蚀的模型评估以及具体农艺应对措施开展相关研究。例如有研究系统介绍了现阶段水力侵蚀过程中的问题,包括土壤侵蚀的定义和度量等分歧,以及目前此方面研究中的时空依赖性对预测土壤侵蚀带来的局限性[70]。在微观层面,采用降雨模拟和运动结构摄影测量法分析地中海葡萄园土壤的水力侵蚀[71];在宏观层面上,对土壤侵蚀模式和土壤表面成分进行精确比较和分析[72],也有采用定性和定量法相结合的方式评估相关区域的土壤侵蚀[73];发现秸秆覆盖等方式对缓解地中海土壤侵蚀的效果显著[74-76]。
此聚类现阶段的知识基础主要围绕土壤学的基本知识及意义,包括土壤分类学知识[77],土壤的跨学科性质[78]以及土壤和土壤科学对实现联合国可持续发展目标的意义[79]。同时,前期文章中的土壤管理措施对不同土壤水力侵蚀的影响研究对此聚类发展也有一定贡献[80-81]。
2.2.7 聚类6:机器学习和聚类7:保护性农业聚类6和聚类7分别为机器学习和保护性农业,其规模相较于前几个聚类较小。机器学习作为此研究领域中较为新颖的研究手段,已被用于土壤数字制图、土壤有机碳空间预测等。机器学习的常用算法包括随机森林、支持向量机、深度神经网络、多任务卷积神经网络等,其已成功应用于特定区域的土壤粒径分布图的绘制[82]、土壤有机碳空间预测[83]等,并提高了数字土壤测绘的预测准确性[84-85]。机器学习聚类的知识基础主要在于基于机器学习得到的全球土壤网格化信息SoilGrids250m[86],自动地球科学分析系统(SAGA)1.4.4版本[87],具有1 km空间分辨率的全球陆地区域气候表面WorldClim 2[88]以及用于生成ERAInterim的预测模型等[89]。
保护性农业作为一种可持续的农业管理策略而得到广泛推广,其原则包含最低限度的土壤扰动、永久性土壤覆盖层以及作物轮作等,将土壤侵蚀、退化及相关水体污染降至最低。有研究者展示了保护性农业的高分辨率形态特征,通过免耕土壤与常规耕作土壤表面形态之间的关系,更好地了解该系统的水文地理过程[90],也利用多准则分析进一步提升国家区域层面的保护性农业分布的空间分辨率[91],也有研究在科学家、政策制定者和土壤相关从业人员等利益相关者团体的参与下创建了一套土壤指标,旨在施行保护性农业,促进土壤的可持续发展[91]。此聚类的研究基础主要围绕粮食安全问题[92]、耕地高效利用的策略[93]以及全球粮食需求与农业集约化的可持续间的关系[94],为保护性农业的提出和发展提供了现实依据。
2.3 2016—2020年国际该领域研究热点对WoS结果进行关键词共现词分析,以体现2016 —2020年间本领域的研究热点。结果如图 4所示,TOP10关键词如表 3所示。出现频次最高的关键词“重金属”(heavy metal)呼应了聚类4中的相关研究,重点围绕“镉”(cadmium)、“铅”(lead)、“铜”(copper)、“锌”(zinc)等重金属,从“形态”(speciation)、“生物可利用性”(bioavailability)、“健康风险”(health risk)、“累积”(accumulation)、“空间分布”(spatial distribution)等角度开展研究。
![]() |
表 3 2016—2020年该领域期刊论文TOP10高频关键词 Table 3 TOP10 high-frequency keywords in related fields in 2016—2020 |
![]() |
图 4 2016—2020年WoS检索结果的关键词共现词关系 Figure 4 Keyword co-occurring networks of papers from WoS in 2016—2020 |
关键词“有机质”(organic matter)反映了聚类1中的研究热点,同“碳”(carbon)、“氮”(nitrogen)、“磷”(phosphorus)等营养元素类关键词紧密联系,在“气候变化”(climate change)背景下,探讨“碳固定”(carbon sequestration)等关键过程的“动态变化”(dynamics)。还与聚类0的内容息息相关,如关键词“微生物生物量”(microbial bioma)、“分解”(decomposition)和“呼吸”(respiration)等,反映了微生物过程对土壤有机质分解乃至全球气候变化的至关重要的作用。
关键词“水”(water)与“生物炭”(biochar)在聚类2中的“土壤改良”(amendment)、“吸附”(adsorption)、“污染去除”(removal)等功效紧密相关,同时,土壤水分还与“硝酸盐”(nitrate)、“地下水”(groundwater)、“反硝化作用”(denitrification)以及“温室气体排放”(greenhouse gas emission)等关键词相近,反映了聚类3中氮素损失和N2O排放等研究重点。
“影响”(impact)、“土壤管理”(management)、“生长”(growth)和“作物”(plant)等关键词与“根际”(rhizosphere)、“酶活性”(enzyme activity)、“微生物群落”(microbial community)和“多样性”(diversity)等微生物相关关键词联系紧密,反映了聚类0中微生物群落对于不同土壤管理措施的响应及其对维持植物生产力的意义是本领域的研究热点之一。此外,“土地利用”(land use)、“黄土高原”(loess plateau)、“土壤侵蚀”(soil erosion)、“径流”(runoff)、“流域”(catchment)和“侵蚀”(erosion)等关键词的出现体现聚类5土壤侵蚀中的相关研究热点。
2.4 2016—2020年国内该领域研究热点对中国知网CNKI 2016—2020年发表的本领域中文章的关键词进行共现词分析,结果如图 5所示,TOP10关键词见表 3。通过WoS和CNKI关键词的对比发现,在土壤环境领域国际、国内发文关注点多有重合。如CNKI中的“土壤有机质”“土壤微生物”“生物炭”“土壤侵蚀”和“重金属”关键词直接体现了WoS中的聚类名称;“土壤水分”“土壤养分”和“产量”等中文关键词与“water”“nitrogen”“carbon”和“growth”等英文关键词直接相关,这些均可体现出国内外研究的同步发展。此外,重金属为国际发文热点,排名第一,而国内发文则排名第十;全球气候变化进入WoS TOP10关键词前十,而未进入CNKI的相关列表。这些差异可能来自国内外研究热点的侧重,也可能与数据来源期刊的收录范围有关(WoS中所有期刊收录和CNKI核心期刊收录)。由于CNKI检索结果无法开展引文分析,现通过重要关键词的分析以图掌握本领域的研究热点。
![]() |
图 5 2016—2020年CNKI检索结果的关键词共现词关系 Figure 5 Keyword co-occurring networks of papers from CNKI in 2016—2020 |
围绕关键词“土壤有机质”,研究从土壤固碳的角度考察了生物炭、沼液、秸秆或泥炭等的施用以及地膜覆盖等农艺措施,以及氮沉降、降雨量等气候变化的影响[95-97];提出土壤碳同化(soil carbon assimilation)概念以描述土壤对CO2的吸收和无机固定过程,阐述了我国西北干旱区土壤有机碳等因素对碳同化的影响[98];从区域尺度到相对微观尺度,探讨了土壤有机质的空间变异以及在土壤团聚体中的分布情况[99-101];在方法学上,稳定碳同位素和示差红外光谱等技术被应用于土壤有机碳转化及组成的相关研究中[102-103]。
“土壤养分”是重要的研究热点之一,研究者以有机质、全氮、有效磷、速效钾为评价因子,利用地理信息系统、地统计分析法、遥感解译分类和组合赋权TOPSIS模型法等手段,对黔中经济区、江淮丘陵地区等农产品生产基地的养分空间变异情况[104-105],及高寒草原草甸区土壤养分受土壤侵蚀和植被覆盖的影响进行了合理分析与评估[106]。同时,通过大田试验及实验室研究分析了煤基复混肥和生物炭的施用对农业土壤中的养分及作物产量提升作用的影响[107-108]。
围绕“土壤微生物”这一关键词,利用“高通量测序”等手段探测土壤微生物群落的丰度、结构和功能多样性随环境变化而发生的改变,并从以上角度入手开展了相应研究。如在田间条件下模拟大气CO2浓度和气温上升等情况,分析了土壤微生物呼吸及其温度敏感性的变化特征,探究气候变化对土壤微生物多样性以及功能的影响[109-110];考察了矿区和污灌区等典型污染区域镉、铅、砷等重金属以及多环芳烃、双酚A、苯并[a]芘等有机污染物对土壤微生物群落丰度和多样性的影响[111-113],也考察了粪肥和有机肥施用等农艺措施以及林木的混交种植对土壤微生物群落多样性的影响[114-115]。
围绕“土壤水分”,研究从区域尺度下考察了林地、草地等不同土地利用类型中土壤水分的平衡情况及空间异质性[116-119];探究了土壤水分对土壤呼吸及石灰土无机碳释放的影响[120-121];研究了免耕、垄作和常规耕作等不同耕作方式[120]以及枝条覆盖等措施[122]对土壤水分状况的影响。
“生物炭”在2016—2020年间持续成为本领域的研究热点。此间研究涵盖了不同土壤中生物炭添加对CO2、CH4和N2O等温室气体释放[123-126],以及对肥料利用效率的影响[125-126];还阐述了生物炭改良酸化土壤,提升团聚体结构稳定性,延缓土壤可蚀性的作用[127-129],以及促进多环芳烃等有机污染物降解的作用[130]。
围绕“土壤侵蚀”这一热点,研究从土地利用类型、坡度、植被、土壤类型等环境因子着手,对土壤侵蚀的特征、分布及时空演变进行了详细的评估[131-132];采用室内人工降雨模拟试验,深入探究坡耕地土壤侵蚀机理[133],还从土壤侵蚀诱导土壤有机碳分布的角度,阐述了该过程对土壤酶活性的影响[134]。也有相关综述性文章分析了国内外土壤侵蚀及其阻控研究,总结了我国复杂环境下土壤侵蚀理论和实践的研究成果[135];对我国青藏高原地区不同土壤侵蚀类型及研究短板进行了系统性的阐述[136]。
围绕“土壤酶活性”,开展了以下研究:通过不同肥料养分和生物菌剂的添加,研究了旱地和稻田土壤中土壤酶活的提升[137-138]。考察了次生林、人工林、灌草丛、坡耕地、湿地植物区中的土壤酶活性,分析了开窗补阔等人工改造方式和土地利用方式的变化下土壤酶活的垂直分布等特征[139-141]。
作物“产量”常是土壤学及环境科学相关研究的最终评价方式。有研究考察了养分投入和腐植酸等调理剂的施加对土壤物理化学性状的改善,其可提升果园产量,改善作物品质[142-143];研究不同秸秆还田方式、地膜覆盖等措施对土壤水分、土壤微生物和酶活的影响,以及小麦、大豆和玉米等作物相应的产量响应[144-146];还考察了咸水资源灌溉下土壤水盐分布与籽棉产量的响应[147]。
围绕土壤“重金属”污染问题,从其在土壤中的有效性、植物(作物)富集和风险评价角度开展相应研究。如畜禽粪便有机肥中的重金属在水稻土中生物有效性的动态变化[148];典型重金属在不同研究区域(湿地、矿区)中的优势植物、设施农业中蔬菜、城市森林中不同树种的富集特征[149-152]。还从微生物与重金属相互作用的角度,分析了不同土地利用类型的土壤中微生物群落多样性对重金属的响应[153]以及产脲酶细菌矿化修复镉、铅污染土壤的机制[154]。
2.5 局限性探讨基于CiteSpace的文献计量学分析可以借助庞大的原始数据量较为客观地体现所研究领域的总体演进趋势、发展方向及热点,然而由于数据筛选阈值等软件设置问题,领域最前沿的研究通常因为其知识基础(参考文献)或文中所列关键词出现次数过低而尚未形成规模,被常规研究的数据所埋没,造成分析结果的局限性,如土壤环境大数据的构建与应用、土壤有机污染物、土壤纳米颗粒和微塑料等新型污染物、污染物的交互作用、土壤修复、土壤健康等前沿问题均未作为热点问题而得以体现。在后续研究中需要对检索关键词、数据来源和软件阈值等条件的筛选和设置进行更为客观地评估,并可按照领域中研究方向的划分再次进行检索分析,使其更能反映领域最前沿的发展。
3 结论本文利用文献计量学软件CiteSpace,对2016— 2020年间在WoS和CNKI上收录的以“土壤”为主题发表的国内外文献开展了分析,一定程度上反映了环境土壤学中相关研究的发展方向及热点。
(1)2016—2020年5年间相关研究领域发展稳定,发文量较大。中国的研究成果居世界首位,且中美两国发文占比超过国际该领域发文的50%。
(2)从国际该研究领域的发展方向和热点上看,共有微生物群落、有机碳、生物炭改良、N2O排放、重金属、土壤侵蚀、机器学习、保护性农业8个重要聚类。围绕土壤中重金属污染、有机质固定与转化、各营养元素利用与循环以及全球气候变化等热点问题开展研究。
(3)从国内本领域研究热点上看,土壤有机质、养分和微生物的相关研究最受关注,同时也围绕土壤水分、生物炭改良、土壤侵蚀和作物产量等问题开展了大量研究。
(4)由于方法的局限性,在后续研究中应进一步完善软件功能与参数的合理性,使其更为科学、全面而客观地反映本领域的前沿与进展。
[1] |
陈怀满. 环境土壤学[M]. 三版. 北京: 科学出版社, 2018: 2. CHEN Huai-man. Environmental soil science[M]. 3rd Edition. Beijing: Science Press, 2018: 2. |
[2] |
邱均平, 段宇锋, 陈敬全, 等. 我国文献计量学发展的回顾与展望[J]. 科学学研究, 2003, 21(2): 143-148. QIU Jun-ping, DUAN Yufeng, CHEN Jing-quan, et al. The retrospect and prospect on bibliometrics in China[J]. Studies in Science of Science, 2003, 21(2): 143-148. DOI:10.3969/j.issn.1003-2053.2003.02.007 |
[3] |
Han R, Zhou B, Huang Y, et al. Bibliometric overview of research trends on heavy metal health risks and impacts in 1989-2018[J]. Journal of Cleaner Production, 2020, 276: 123249. DOI:10.1016/j.jclepro.2020.123249 |
[4] |
Li D, Zhao R, Peng X, et al. Biochar-related studies from 1999 to 2018:A bibliometrics-based review[J]. Environmental Science and Pollution Research, 2020, 27(3): 2898-2908. DOI:10.1007/s11356-019-06870-9 |
[5] |
Chen C. Searching for intellectual turning points:Progressive knowledge domain visualization[J]. Proceedings of the National Academy of Sciences, 2004, 101(Suppl 1): 5303-5310. |
[6] |
Chen C. CiteSpace Ⅱ:Detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for Information Science and Technology, 2006, 57(3): 359-377. DOI:10.1002/asi.20317 |
[7] |
Abujabhah I S, Bound S A, Doyle R, et al. Effects of biochar and compost amendments on soil physico-chemical properties and the total community within a temperate agricultural soil[J]. Applied Soil Ecology, 2016, 98: 243-253. DOI:10.1016/j.apsoil.2015.10.021 |
[8] |
Allard S M, Walsh C S, Wallis A E, et al. Solanum lycopersicum(tomato)hosts robust phyllosphere and rhizosphere bacterial communities when grown in soil amended with various organic and synthetic fertilizers[J]. Science of the Total Environment, 2016, 573: 555-563. DOI:10.1016/j.scitotenv.2016.08.157 |
[9] |
Detheridge A P, Brand G, Fychan R, et al. The legacy effect of cover crops on soil fungal populations in a cereal rotation[J]. Agriculture, Ecosystems & Environment, 2016, 228: 49-61. |
[10] |
Huang L, Bai J, Wen X, et al. Microbial resistance and resilience in response to environmental changes under the higher intensity of human activities than global average level[J]. Global Change Biology, 2020, 26(4): 2377-2389. DOI:10.1111/gcb.14995 |
[11] |
Hu H-W, Wang J-T, Li J, et al. Long-term nickel contamination increases the occurrence of antibiotic resistance genes in agricultural soils[J]. Environmental Science & Technology, 2017, 51(2): 790-800. |
[12] |
Chen Q-L, Ding J, Zhu Y-G, et al. Soil bacterial taxonomic diversity is critical to maintaining the plant productivity[J]. Environment International, 2020, 140: 105766. DOI:10.1016/j.envint.2020.105766 |
[13] |
Banerjee S, Kirkby C A, Schmutter D, et al. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil[J]. Soil Biology and Biochemistry, 2016, 97: 188-198. DOI:10.1016/j.soilbio.2016.03.017 |
[14] |
Schuur E A, Mcguire A D, Schädel C, et al. Climate change and the permafrost carbon feedback[J]. Nature, 2015, 520(7546): 171-179. DOI:10.1038/nature14338 |
[15] |
Fierer N, Lauber C L, Ramirez K S, et al. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients[J]. The ISME Journal, 2012, 6(5): 1007-1017. DOI:10.1038/ismej.2011.159 |
[16] |
Edgar R C. UPARSE:Highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10: 996-998. DOI:10.1038/nmeth.2604 |
[17] |
Edgar R C, Haas B J, Clemente J C, et al. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics, 2011, 27(16): 2194-2200. DOI:10.1093/bioinformatics/btr381 |
[18] |
Bates D, Mächler M, Bolker B, et al. Fitting linear mixed-effects models using lme4[J]. Journal of Statistical Software, 2015, 67(1): 1-48. |
[19] |
Luo Z, Luo Y, Wang G, et al. Warming-induced global soil carbon loss attenuated by downward carbon movement[J]. Global Change Biology, 2020, 26(12): 7242-7254. DOI:10.1111/gcb.15370 |
[20] |
Jiao C, Zheng G, Xie X, et al. Rate of soil organic carbon sequestration in a millennium coastal soil chronosequence in northern Jiangsu, China[J]. CATENA, 2020, 193: 104627. DOI:10.1016/j.catena.2020.104627 |
[21] |
Luo Z, Viscarra Rossel R A, Shi Z. Distinct controls over the temporal dynamics of soil carbon fractions after land use change[J]. Global Change Biology, 2020, 26(8). |
[22] |
Liang C, Schimel J P, Jastrow J D. The importance of anabolism in microbial control over soil carbon storage[J]. Nature Microbiology, 2017, 2(8): 1-6. |
[23] |
Cotrufo M F, Wallenstein M D, Boot C M, et al. The Microbial Efficiency-Matrix Stabilization(MEMS)framework integrates plant litter decomposition with soil organic matter stabilization:Do labile plant inputs form stable soil organic matter?[J]. Global Change Biology, 2013, 19(4): 988-995. DOI:10.1111/gcb.12113 |
[24] |
Chen J, Elsgaard L, Van Groenigen K J, et al. Soil carbon loss with warming:New evidence from carbon-degrading enzymes[J]. Global Change Biology, 2020, 26(4): 1944-1952. DOI:10.1111/gcb.14986 |
[25] |
Hu Y, Zheng Q, Noll L, et al. Direct measurement of the in situ decomposition of microbial-derived soil organic matter[J]. Soil Biology and Biochemistry, 2020, 141: 107660. DOI:10.1016/j.soilbio.2019.107660 |
[26] |
Keskin H, Grunwald S, Harris W G. Digital mapping of soil carbon fractions with machine learning[J]. Geoderma, 2019, 339: 40-58. DOI:10.1016/j.geoderma.2018.12.037 |
[27] |
Silatsa F B, Yemefack M, Tabi F O, et al. Assessing countrywide soil organic carbon stock using hybrid machine learning modelling and legacy soil data in Cameroon[J]. Geoderma, 2020, 367: 114260. DOI:10.1016/j.geoderma.2020.114260 |
[28] |
Schmidt M W, Torn M S, Abiven S, et al. Persistence of soil organic matter as an ecosystem property[J]. Nature, 2011, 478(7367): 49-56. DOI:10.1038/nature10386 |
[29] |
Lehmann J, Kleber M. The contentious nature of soil organic matter[J]. Nature, 2015, 528(7580): 60-68. DOI:10.1038/nature16069 |
[30] |
Kuzyakov Y. Priming effects:Interactions between living and dead organic matter[J]. Soil Biology and Biochemistry, 2010, 42(9): 1363-1371. DOI:10.1016/j.soilbio.2010.04.003 |
[31] |
Allison S D, Wallenstein M D, Bradford M A. Soil-carbon response to warming dependent on microbial physiology[J]. Nature Geoscience, 2010, 3(5): 336-340. DOI:10.1038/ngeo846 |
[32] |
Conant R T, Ryan M G, Ågren G I, et al. Temperature and soil organic matter decomposition rates-synthesis of current knowledge and a way forward[J]. Global Change Biology, 2011, 17(11): 3392-3404. DOI:10.1111/j.1365-2486.2011.02496.x |
[33] |
Hansen V, Müller-Stöver D, Munkholm L J, et al. The effect of straw and wood gasification biochar on carbon sequestration, selected soil fertility indicators and functional groups in soil:an incubation study[J]. Geoderma, 2016, 269: 99-107. DOI:10.1016/j.geoderma.2016.01.033 |
[34] |
Zhao J, Ren T, Zhang Q, et al. Effects of biochar amendment on soil thermal properties in the North China Plain[J]. Soil Science Society of America Journal, 2016, 80(5): 1157-1166. DOI:10.2136/sssaj2016.01.0020 |
[35] |
Lim T, Spokas K, Feyereisen G, et al. Predicting the impact of biochar additions on soil hydraulic properties[J]. Chemosphere, 2016, 142: 136-144. DOI:10.1016/j.chemosphere.2015.06.069 |
[36] |
Molnár M, Vaszita E, Farkas É, et al. Acidic sandy soil improvement with biochar:A microcosm study[J]. Science of the Total Environment, 2016, 563: 855-865. |
[37] |
Dari B, Nair V D, Harris W G, et al. Relative influence of soil-vs. biochar properties on soil phosphorus retention[J]. Geoderma, 2016, 280: 82-87. DOI:10.1016/j.geoderma.2016.06.018 |
[38] |
Paneque M, José M, Franco-Navarro J D, et al. Effect of biochar amendment on morphology, productivity and water relations of sunflower plants under non-irrigation conditions[J]. CATENA, 2016, 147: 280-287. DOI:10.1016/j.catena.2016.07.037 |
[39] |
Keiluweit M, Nico P S, Johnson M G, et al. Dynamic molecular structure of plant biomass-derived black carbon(biochar)[J]. Environmental Science & Technology, 2010, 44(4): 1247-1253. |
[40] |
Lehmann J, Rillig M C, Thies J, et al. Biochar effects on soil biota:A review[J]. Soil Biology and Biochemistry, 2011, 43(9): 1812-1836. DOI:10.1016/j.soilbio.2011.04.022 |
[41] |
Zimmerman A R. Abiotic and microbial oxidation of laboratory-produced black carbon(biochar)[J]. Environmental Science & Technology, 2010, 44(4): 1295-1301. |
[42] |
Luo Y, Durenkamp M, De Nobili M, et al. Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH[J]. Soil Biology and Biochemistry, 2011, 43(11): 2304-2314. DOI:10.1016/j.soilbio.2011.07.020 |
[43] |
Woolf D, Amonette J E, Street-Perrott F A, et al. Sustainable biochar to mitigate global climate change[J]. Nature Communications, 2010, 1(1): 1-9. |
[44] |
Gerber J S, Carlson K M, Makowski D, et al. Spatially explicit estimates of N2O emissions from croplands suggest climate mitigation opportunities from improved fertilizer management[J]. Global Change Biology, 2016, 22(10): 3383-3394. DOI:10.1111/gcb.13341 |
[45] |
Shang Z, Abdalla M, Kuhnert M, et al. Measurement of N2O emissions over the whole year is necessary for estimating reliable emission factors[J]. Environmental Pollution, 2020, 259: 113864. DOI:10.1016/j.envpol.2019.113864 |
[46] |
Carey C J, Dove N C, Beman J M, et al. Meta-analysis reveals ammonia-oxidizing bacteria respond more strongly to nitrogen addition than ammonia-oxidizing archaea[J]. Soil Biology and Biochemistry, 2016, 99: 158-166. DOI:10.1016/j.soilbio.2016.05.014 |
[47] |
Mehnaz K R, Dijkstra F A. Denitrification and associated N2O emissions are limited by phosphorus availability in a grassland soil[J]. Geoderma, 2016, 284: 34-41. DOI:10.1016/j.geoderma.2016.08.011 |
[48] |
Dong W, Walkiewicz A, Bieganowski A, et al. Biochar promotes the reduction of N2O to N2 and concurrently suppresses the production of N2O in calcareous soil[J]. Geoderma, 2020, 362: 114091. DOI:10.1016/j.geoderma.2019.114091 |
[49] |
Friedl J, Scheer C, Rowlings D W, et al. Denitrification losses from an intensively managed sub-tropical pasture:Impact of soil moisture on the partitioning of N2 and N2O emissions[J]. Soil Biology and Biochemistry, 2016, 92: 58-66. DOI:10.1016/j.soilbio.2015.09.016 |
[50] |
Gao D, Hou L, Liu M, et al. Mechanisms responsible for N2O emissions from intertidal soils of the Yangtze Estuary[J]. Science of the Total Environment, 2020, 716: 137073. DOI:10.1016/j.scitotenv.2020.137073 |
[51] |
Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen cycle:Recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878): 889-892. DOI:10.1126/science.1136674 |
[52] |
Shcherbak I, Millar N, Robertson G P. Global metaanalysis of the nonlinear response of soil nitrous oxide(N2O)emissions to fertilizer nitrogen[J]. Proceedings of the National Academy of Sciences, 2014, 111(25): 9199-9204. DOI:10.1073/pnas.1322434111 |
[53] |
Guo J H, Liu X J, Zhang Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008-1010. DOI:10.1126/science.1182570 |
[54] |
Ju X T, Xing G X, Chen X P, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. Proceedings of the National Academy of Sciences, 2009, 106(9): 3041-3046. DOI:10.1073/pnas.0813417106 |
[55] |
Butterbach-Bahl K, Baggs E M, Dannenmann M, et al. Nitrous oxide emissions from soils:How well do we understand the processes and their controls?[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2013, 368(1621): 20130122. DOI:10.1098/rstb.2013.0122 |
[56] |
Purkhold U, Pommerening-Röser A, Juretschko S, et al. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis:Implications for molecular diversity surveys[J]. Applied and Environmental Microbiology, 2000, 66(12): 5368-5382. DOI:10.1128/AEM.66.12.5368-5382.2000 |
[57] |
Hu B, Shao S, Ni H, et al. Current status, spatial features, health risks, and potential driving factors of soil heavy metal pollution in China at province level[J]. Environmental Pollution, 2020, 266: 114961. DOI:10.1016/j.envpol.2020.114961 |
[58] |
Wang Z, Xiao J, Wang L, et al. Elucidating the differentiation of soil heavy metals under different land uses with geographically weighted regression and self-organizing map[J]. Environmental Pollution, 2020, 260: 114065. DOI:10.1016/j.envpol.2020.114065 |
[59] |
Liu P, Hu W, Tian K, et al. Accumulation and ecological risk of heavy metals in soils along the coastal areas of the Bohai Sea and the Yellow Sea:A comparative study of China and South Korea[J]. Environment International, 2020, 137: 105519. DOI:10.1016/j.envint.2020.105519 |
[60] |
Huang Y-N, Dang F, Li M, et al. Environmental and human health risks from metal exposures nearby a Pb-Zn-Ag mine, China[J]. Science of the Total Environment, 2020, 698: 134326. DOI:10.1016/j.scitotenv.2019.134326 |
[61] |
Gustave W, Yuan Z-F, Li X, et al. Mitigation effects of the microbial fuel cells on heavy metal accumulation in rice(Oryza sativa L.)[J]. Environmental Pollution, 2020, 260: 113989. DOI:10.1016/j.envpol.2020.113989 |
[62] |
Gu T, Yu H, Li F, et al. Antimony-oxidizing bacteria alleviate Sb stress in Arabidopsis by attenuating Sb toxicity and reducing Sb uptake[J]. Plant and Soil, 2020, 452: 397-412. DOI:10.1007/s11104-020-04569-2 |
[63] |
Hu B, Xue J, Zhou Y, et al. Modelling bioaccumulation of heavy metals in soil-crop ecosystems and identifying its controlling factors using machine learning[J]. Environmental Pollution, 2020, 262: 114308. DOI:10.1016/j.envpol.2020.114308 |
[64] |
Chen H, Teng Y, Lu S, et al. Contamination features and health risk of soil heavy metals in China[J]. Science of the Total Environment, 2015, 512: 143-153. |
[65] |
Zhao F-J, Ma Y, Zhu Y-G, et al. Soil contamination in China:Current status and mitigation strategies[J]. Environmental Science & Technology, 2015, 49(2): 750-759. |
[66] |
Li Z, Ma Z, Van Der Kuijp T J, et al. A review of soil heavy metal pollution from mines in China:Pollution and health risk assessment[J]. Science of the Total Environment, 2014, 468: 843-853. |
[67] |
Tóth G, Hermann T, Da Silva M, et al. Heavy metals in agricultural soils of the European Union with implications for food safety[J]. Environment International, 2016, 88: 299-309. DOI:10.1016/j.envint.2015.12.017 |
[68] |
Bolan N, Kunhikrishnan A, Thangarajan R, et al. Remediation of heavy metal(loid) s contaminated soils-to mobilize or to immobilize?[J]. Journal of Hazardous Materials, 2014, 266: 141-166. DOI:10.1016/j.jhazmat.2013.12.018 |
[69] |
Ali H, Khan E, Sajad M A. Phytoremediation of heavy metals:Concepts and applications[J]. Chemosphere, 2013, 91(7): 869-881. DOI:10.1016/j.chemosphere.2013.01.075 |
[70] |
García-Ruiz J M, Beguería S, Lana-Renault N, et al. Ongoing and emerging questions in water erosion studies[J]. Land Degradation & Development, 2017, 28(1): 5-21. |
[71] |
Prosdocimi M, Burguet M, Di Prima S, et al. Rainfall simulation and Structure-from-Motion photogrammetry for the analysis of soil water erosion in Mediterranean vineyards[J]. Science of the Total Environment, 2017, 574: 204-215. DOI:10.1016/j.scitotenv.2016.09.036 |
[72] |
Comino J R, Senciales J, Ramos M A, et al. Understanding soil erosion processes in Mediterranean sloping vineyards(Montes de Málaga, Spain)[J]. Geoderma, 2017, 296: 47-59. DOI:10.1016/j.geoderma.2017.02.021 |
[73] |
Djuma H, Bruggeman A, Camera C, et al. Combining qualitative and quantitative methods for soil erosion assessments:An application in a sloping Mediterranean watershed, Cyprus[J]. Land Degradation & Development, 2017, 28(1): 243-254. |
[74] |
García-Díaz A, Bienes R, Sastre B, et al. Nitrogen losses in vineyards under different types of soil groundcover. A field runoff simulator approach in central Spain[J]. Agriculture, Ecosystems & Environment, 2017, 236: 256-267. |
[75] |
Cerdà A, Rodrigo-Comino J, Giménez-Morera A, et al. An economic, perception and biophysical approach to the use of oat straw as mulch in Mediterranean rainfed agriculture land[J]. Ecological Engineering, 2017, 108: 162-171. DOI:10.1016/j.ecoleng.2017.08.028 |
[76] |
Prosdocimi M, Jordán A, Tarolli P, et al. The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards[J]. Science of the Total Environment, 2016, 547: 323-330. DOI:10.1016/j.scitotenv.2015.12.076 |
[77] |
Service N R C, Department A. Keys to soil taxonomy[M]. Government Printing Office, 2010.
|
[78] |
Brevik E, Cerdà A, Mataix-Solera J, et al. The interdisciplinary nature of soil[J]. Soil, 2015, 1(1): 117-129. DOI:10.5194/soil-1-117-2015 |
[79] |
Keesstra S D, Bouma J, Wallinga J, et al. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals[J]. Soil, 2016, 2: 111-128. DOI:10.5194/soil-2-111-2016 |
[80] |
Prosdocimi M, Cerdà A, Tarolli P. Soil water erosion on Mediterranean vineyards:A review[J]. CATENA, 2016, 141: 1-21. DOI:10.1016/j.catena.2016.02.010 |
[81] |
Keesstra S, Pereira P, Novara A, et al. Effects of soil management techniques on soil water erosion in apricot orchards[J]. Science of the Total Environment, 2016, 551: 357-366. |
[82] |
Taghizadeh-Mehrjardi R, Mahdianpari M, Mohammadimanesh F, et al. Multi-task convolutional neural networks outperformed random forest for mapping soil particle size fractions in central Iran[J]. Geoderma, 2020, 376: 114552. DOI:10.1016/j.geoderma.2020.114552 |
[83] |
Mahmoudzadeh H, Matinfar H R, Taghizadeh-Mehrjardi R, et al. Spatial prediction of soil organic carbon using machine learning techniques in western Iran[J]. Geoderma Regional, 2020, 21: e00260. DOI:10.1016/j.geodrs.2020.e00260 |
[84] |
Taghizadeh-Mehrjardi R, Schmidt K, Eftekhari K, et al. Synthetic resampling strategies and machine learning for digital soil mapping in Iran[J]. European Journal of Soil Science, 2020, 71(3): 352-368. DOI:10.1111/ejss.12893 |
[85] |
Padarian J, Mcbratney A B, Minasny B. Game theory interpretation of digital soil mapping convolutional neural networks[J]. Soil, 2020, 6(2): 389-397. DOI:10.5194/soil-6-389-2020 |
[86] |
Hengl T, Mendes De Jesus J, Heuvelink G B, et al. SoilGrids250m:Global gridded soil information based on machine learning[J]. PLoS One, 2017, 12(2): e0169748. DOI:10.1371/journal.pone.0169748 |
[87] |
Conrad O, Bechtel B, Bock M, et al. System for automated geoscientific analyses(SAGA)v. 2.1.4[J]. Geoscientific Model Development Discussions, 2015, 8: 2271-2312. |
[88] |
Fick S E, Hijmans R J. WorldClim 2:New 1-km spatial resolution climate surfaces for global land areas[J]. International Journal of Climatology, 2017, 37(12): 4302-4315. DOI:10.1002/joc.5086 |
[89] |
Dee D P, Uppala S M, Simmons A, et al. The ERA-Interim reanalysis:Configuration and performance of the data assimilation system[J]. Quarterly Journal of the Royal Meteorological Society, 2011, 137(656): 553-597. DOI:10.1002/qj.828 |
[90] |
Tarolli P, Cavalli M, Masin R. High-resolution morphologic characterization of conservation agriculture[J]. CATENA, 2019, 172: 846-856. DOI:10.1016/j.catena.2018.08.026 |
[91] |
Prestele R, Hirsch A L, Davin E L, et al. A spatially explicit representation of conservation agriculture for application in global change studies[J]. Global Change Biology, 2018, 24(9): 4038-4053. DOI:10.1111/gcb.14307 |
[92] |
Godfray H C J, Beddington J R, Crute I R, et al. Food security:The challenge of feeding 9 billion people[J]. Science, 2010, 327(5967): 812-818. DOI:10.1126/science.1185383 |
[93] |
Foley J A, Ramankutty N, Brauman K A, et al. Solutions for a cultivated planet[J]. Nature, 2011, 478(7369): 337-342. DOI:10.1038/nature10452 |
[94] |
Tilman D, Balzer C, Hill J, et al. Global food demand and the sustainable intensification of agriculture[J]. Proceedings of the National Academy of Sciences, 2011, 108(50): 20260-20264. DOI:10.1073/pnas.1116437108 |
[95] |
付鑫, 王俊, 刘全全, 等. 秸秆和地膜覆盖对旱作玉米田土壤团聚体及有机碳的影响[J]. 土壤通报, 2016, 47(2): 405-413. FU Xin, WANG Jun, LIU Quan-quan, et al. Effect of straw and plastic film mulching on aggregate size distribution and organic carbon contents in a rainfed corn field[J]. Chinese Journal of Soil Science, 2016, 47(2): 405-413. |
[96] |
向元彬, 周世兴, 肖永翔, 等. 模拟氮沉降和降雨量改变对华西雨屏区常绿阔叶林土壤有机碳的影响[J]. 生态学报, 2017, 37(14): 4686-4695. XIANG Yuan-bin, ZHOU Shi-xing, XIAO Yongxiang, et al. Effects of simulated nitrogen deposition and precipitation changes on soil organic carbon in an evergreen broad-leaved forest that is part of the rainy area of western China[J]. Acta Ecologica Sinica, 2017, 37(14): 4686-4695. |
[97] |
陈美淇, 马垒, 赵炳梓, 等. 木本泥炭对红黄壤性水田土壤有机质提升和细菌群落组成的影响[J]. 土壤, 2020, 52(2): 279-286. CHEN Mei-qi, MA Lei, ZHAO Bing-zi, et al. Effects of woody peat on quick improvement of soil organic matter and bacterial community composition in newly reclaimed red-yellow paddy soils[J]. Soils, 2020, 52(2): 279-286. |
[98] |
苏培玺, 王秀君, 解婷婷, 等. 干旱区荒漠无机固碳能力及土壤碳同化途径[J]. 科学通报, 2018, 63(8): 755-765. SU Pei-xi, WANG Xiu-jun, XIE Ting-ting, et al. Inorganic carbon sequestration capacity and soil carbon assimilation pathway of deserts in arid region[J]. Chinese Science Bulletin, 2018, 63(8): 755-765. |
[99] |
赵俊峰, 肖礼, 黄懿梅, 等. 黄土丘陵区不同种植类型梯田2 m土层有机碳的分布特征[J]. 水土保持学报, 2017, 31(5): 253-259. ZHAO Jun-feng, XIAO Li, HUANG Yi-mei, et al. Distribution characteristics of organic carbon in 2 m soil layers under difference planting types in terraced fields on loess hilly region[J]. Journal of Soil and Water Conservation, 2017, 31(5): 253-259. |
[100] |
王富华, 吕盛, 黄容, 等. 缙云山4种森林植被土壤团聚体有机碳分布特征[J]. 环境科学, 2019, 40(3): 1504-1511. WANG Fuhua, LÜ Sheng, HUANG Rong, et al. Distribution of organic carbon in soil aggregates from four kinds of forest vegetation on Jinyun Mountain[J]. Environmental Science, 2019, 40(3): 1504-1511. |
[101] |
刘刚, 闫静雯, 谢云, 等. 黑土坡耕地土壤有机质空间变异及其与土壤侵蚀的关系——以黑龙江省鹤山农场为例[J]. 地理科学, 2016, 36(11): 1751-1758. LIU Gang, YAN Jing-wen, XIE Yun, et al. Spatial variation of soil organic matter on black soil sloping cropland and its relationship with soil erosion:A case study of Heshan farm in Heilongjiang Province[J]. Scientia Geographica Sinica, 2016, 36(11): 1751-1758. |
[102] |
李杨梅, 贡璐, 安申群, 等. 基于稳定碳同位素技术的干旱区绿洲土壤有机碳向无机碳的转移[J]. 环境科学, 2018, 39(8): 3867-3875. LI Yang-mei, GONG Lu, AN Shen-qun, et al. Transfer of soil organic carbon to inorganic carbon in arid oasis based on stable carbon isotope technique[J]. Environmental Science, 2018, 39(8): 3867-3875. |
[103] |
郝翔翔, 韩晓增, 邹文秀. 示差红外光谱在土壤有机质组成研究中的应用[J]. 分析化学, 2018, 46(4): 616-622. HAO Xiangxiang, HAN Xiao-zeng, ZOU Wen-xiu. Studies on composition of soil organic matter by fourier transform infrared spectroscopy differential analysis[J]. Chinese Journal of Analytical Chemistry, 2018, 46(4): 616-622. |
[104] |
李丹丹, 周忠发, 但雨生, 等. 基于组合赋权TOPSIS模型的土壤养分空间分析及综合评价——以瓮安县为例[J]. 环境工程, 2018, 36(8): 183-188. LI Dan-dan, ZHOU Zhong-fa, DAN Yu-sheng, et al. Soil nutrients spatial analysis and comprehensive evaluation based on combination determining weights topsis model:A case of Weng'an County[J]. Environment Engineering, 2018, 36(8): 183-188. |
[105] |
赵明松, 李德成, 张甘霖, 等. 江淮丘陵地区土壤养分空间变异特征——以安徽省定远县为例[J]. 土壤, 2016, 48(4): 762-768. ZHAO Ming-song, LI De-cheng, ZHANG Gan-lin, et al. Spatial variability characteristics of soil nutrients in Jianghuai Hilly region:A case study of Dingyuan County, Anhui Province[J]. Soils, 2016, 48(4): 762-768. |
[106] |
陈泽涛, 沙占江, 王求贵, 等. 高寒草原草甸区土壤侵蚀及植被覆盖对养分空间分布的影响——以兴海盆地子科滩为例[J]. 水土保持研究, 2019, 26(6): 226-234. CHEN Ze-tao, SHA Zhan-jiang, WANG Qiu-gui, et al. Effects of soil erosion and vegetation cover on spatial distribution of nutrients in alpine grassland meadow area a case study of Ziketan in Xinghai basin[J]. Research of Soil and Water Conservation, 2019, 26(6): 226-234. |
[107] |
郭汉清, 谢英荷, 洪坚平, 等. 煤基复混肥对复垦土壤养分、玉米产量及水肥利用的影响[J]. 水土保持学报, 2016, 30(2): 213-218. GUO Han-qing, XIE Ying-he, HONG Jian-ping, et al. Effects of coal-derived compound fertilizer on soil nutrient, corn yield and water and fertilizer use efficiency in reclaimed area[J]. Journal of Soil and Water Conservation, 2016, 30(2): 213-218. |
[108] |
盖霞普, 刘宏斌, 翟丽梅, 等. 生物炭对中性水稻土养分和微生物群落结构影响的时间尺度变化研究[J]. 农业环境科学学报, 2016, 35(4): 719-728. GAI Xia-pu, LIU Hong-bin, ZHAI Li-mei, et al. Temporal fluctuations of impacts of corn-stover biochar on nutrients and microbial community structure in a neutral paddy soil[J]. Journal of Agro-Environment Science, 2016, 35(4): 719-728. |
[109] |
张彦军, 郭胜利. 环境因子对土壤微生物呼吸及其温度敏感性变化特征的影响[J]. 环境科学, 2019, 40(3): 1446-1456. ZHANG Yan-jun, GUO Sheng-li. Effect of environmental factors on variation characteristics of soil microbial respiration and its temperature sensitivity[J]. Environmental Science, 2019, 40(3): 1446-1456. |
[110] |
刘远, 张辉, 熊明华, 等. 气候变化对土壤微生物多样性及其功能的影响[J]. 中国环境科学, 2016, 36(12): 3793-3799. LIU Yuan, ZHANG Hui, XIONG Ming-hua, et al. Effect of climate change on soil microbial diversity and function[J]. China Environmental Science, 2016, 36(12): 3793-3799. DOI:10.3969/j.issn.1000-6923.2016.12.034 |
[111] |
韩文辉, 党晋华, 赵颖. 污灌区重金属和多环芳烃复合污染及其对农田土壤微生物数量的影响[J]. 生态环境学报, 2016, 25(9): 1562-1568. HAN Wen-hui, DANG Jin-hua, ZHAO Ying. Compound pollution of heavy metals and polycyclic aromatic hydrocarbons in sewage irrigation area and its effect on soil microbial quantity[J]. Ecology and Environmental Sciences, 2016, 25(9): 1562-1568. |
[112] |
张芳, 郜红建, 葛高飞. 苯并[J]. 环境化学, 2017, 36(8): 1849-1857. ZHANG Fang, GAO Hong-jian, GE Gao-fei. Effects of cumulative benzo(a)pyrene pollution on functional diversity of microbial community in soil[J]. Environmental Chemistry, 2017, 36(8): 1849-1857. |
[113] |
刘畅, 黄雅丹, 张莹, 等. 培养条件下双酚A对稻田土壤微生物群落特征的影响[J]. 环境科学, 2016, 37(11): 4380-4388. LIU Chang, HUANG Ya-dan, ZHANG Ying, et al. Effects of bisphenol a on characteristics of paddy soil microbial community under different cultural conditions[J]. Environmental Science, 2016, 37(11): 4380-4388. |
[114] |
喻素芳, 佘光辉, 李远发, 等. 马尾松林经不同强度采伐后与肉桂混交对土壤微生物功能多样性的影响[J]. 生态学杂志, 2017, 36(9): 2438-2446. YU Su-fang, SHE Guang-hui, LI Yuan-fa, et al. The influences of mixing with Cinnamomum cassia after different cutting intensities in a masson pine forest on soil microbial functional diversity[J]. Chinese Journal of Ecology, 2017, 36(9): 2438-2446. |
[115] |
赵凤艳, 张勇勇, 张玥琦, 等. 有机物料对设施番茄长期连作土壤细菌群落结构的影响[J]. 生态学杂志, 2019, 38(6): 1732-1740. ZHAO Feng-yan, ZHANG Yong-yong, ZHANG Yue-qi, et al. Effects of organic amendments on soil bacterial community structure with long-term tomato planting in greenhouse[J]. Chinese Journal of Ecology, 2019, 38(6): 1732-1740. |
[116] |
戴军杰, 章新平, 吕殿青, 等. 南方红壤丘陵区樟树林土壤水分动态变化[J]. 水土保持研究, 2019, 26(4): 123-131. DAI Jun-jie, ZHANG Xin-ping, LÜ Dian-qing, et al. Dynamics of soil water in Cinnamomum camphora forest in the red soil hilly region of south China[J]. Research of Soil and Water Conservation, 2019, 26(4): 123-131. |
[117] |
刘娜娜, 陈惠娟, 孔德杰. 宁夏盐池不同草地类型的土壤水分平衡研究[J]. 水土保持研究, 2016, 23(1): 23-28. LIU Na-na, CHEN Hui-juan, KONG De-jie. Soil moisture budget in different types of grasslands in Yanchi County of Ningxia arid zone[J]. Research of Soil and Water Conservation, 2016, 23(1): 23-28. |
[118] |
梁香寒, 张克斌, 乔厦. 半干旱黄土区柠条林土壤水分和养分与群落多样性关系[J]. 生态环境学报, 2019, 28(9): 1748-1756. LIANG Xiang-han, ZHANG Ke-bin, QIAO Xia. Relationship between soil moisture and nutrients and plant diversity of caragana microphylla community in semi-arid loess region[J]. Ecology and Environmental Sciences, 2019, 28(9): 1748-1756. |
[119] |
马涛, 贾志清, 周波, 等. 黄土丘陵区不同土地利用类型土壤呼吸及其与温度和水分的关系[J]. 水土保持通报, 2018, 38(1): 82-88, 95. MA Tao, JIA Zhi-qing, ZHOU Bo, et al. Soil respiration of different land uses and its relation to water and temperature in hilly area of loess plateau[J]. Bulletin of Soil and Water Conservation, 2018, 38(1): 82-88, 95. |
[120] |
张延, 梁爱珍, 张晓平, 等. 不同耕作方式下土壤水分状况对土壤呼吸的初期影响[J]. 环境科学, 2016, 37(3): 1106-1113. ZHANG Yan, LIANG Ai-zhen, ZHANG Xiao-ping, et al. Priming effects of soil moisture on soil respiration under different tillage practices[J]. Environmental Science, 2016, 37(3): 1106-1113. |
[121] |
徐学池, 黄媛, 何寻阳, 等. 土壤水分和温度对西南喀斯特棕色石灰土无机碳释放的影响[J]. 环境科学, 2019, 40(4): 1965-1972. XU Xue-chi, HUANG Yuan, HE Xun-yang, et al. Effect of soil moisture and temperature on the soil inorganic carbon release of brown limestone soil in the karst region of southwestern China[J]. Environmental Science, 2019, 40(4): 1965-1972. |
[122] |
严正升, 郭忠升, 宁婷, 等. 枝条覆盖对半干旱黄土丘陵区平茬柠条林地土壤水分的影响[J]. 生态学报, 2016, 36(21): 6872-6878. YAN Zheng-sheng, GUO Zhong-sheng, NING Ting, et al. Effects of branch mulch on soil water of pruned Caragana korshinskii forestland in the semi-arid Loess Hilly region[J]. Acta Ecologica Sinica, 2016, 36(21): 6872-6878. |
[123] |
张秀玲, 孙贇, 张水清, 等. 生物质炭对华北平原4种典型土壤N2O排放的影响[J]. 环境科学, 2019, 40(11): 5173-5181. ZHANG Xiu-ling, SUN Yun, ZHANG Shui-qing, et al. Effects of biochar on N2O emission from four typical soils in the North China Plain[J]. Environmental Science, 2019, 40(11): 5173-5181. |
[124] |
杨雨浛, 易建婷, 张成, 等. 施用不同污泥堆肥品对土壤温室气体排放的影响[J]. 环境科学, 2017, 38(4): 1647-1653. YANG Yuhan, YI Jian-ting, ZHANG Cheng, et al. Effect of application of sewage sludge composts on greenhouse gas emissions in soil[J]. Environmental Science, 2017, 38(4): 1647-1653. |
[125] |
程效义, 刘晓琳, 孟军, 等. 生物炭对棕壤NH3挥发、N2O排放及氮肥利用效率的影响[J]. 农业环境科学学报, 2016, 35(4): 801-807. CHENG Xiao-yi, LIU Xiao-lin, MENG Jun, et al. Effects of biochar on NH3 volatilization, N2O emission and nitrogen fertilizer use efficiency in brown soil[J]. Journal of Agro-Environment Science, 2016, 35(4): 801-807. |
[126] |
李仁英, 吴洪生, 黄利东, 等. 不同来源生物炭对土壤磷吸附解吸的影响[J]. 土壤通报, 2017, 48(6): 1398-1403. LI Ren-ying, WU Hong-sheng, HUANG Li-dong, et al. Effect of biochar of different sources on adsorption and desorption of phosphorus in soil[J]. Chinese Journal of Soil Science, 2017, 48(6): 1398-1403. |
[127] |
段春燕, 沈育伊, 徐广平, 等. 桉树枝条生物炭输入对桂北桉树人工林酸化土壤的作用效果[J]. 环境科学, 2020, 41(9): 4234-4245. DUAN Chun-yan, SHEN Yu-yi, XU Guang-ping, et al. Effects of Eucalyptus branches biochar application on soil physicochemical properties of acidified soil in a Eucalyptus plantation in northern Guangxi[J]. Environmental Science, 2020, 41(9): 4234-4245. |
[128] |
何玉亭, 王昌全, 沈杰, 等. 两种生物质炭对红壤团聚体结构稳定性和微生物群落的影响[J]. 中国农业科学, 2016, 49(12): 2333-2342. HE Yu-ting, WANG Chang-quan, SHEN Jie, et al. Effects of two biochars on red soil aggregate stability and microbial community[J]. Scientia Agricultura Sinica, 2016, 49(12): 2333-2342. DOI:10.3864/j.issn.0578-1752.2016.12.009 |
[129] |
吴媛媛, 杨明义, 张风宝, 等. 添加生物炭对黄绵土耕层土壤可蚀性的影响[J]. 土壤学报, 2016, 53(1): 81-92. WU Yuan-yuan, YANG Ming-yi, ZHANG Feng-bao, et al. Effect of biochar application on erodibility of plow layer soil on loess slopes[J]. Acta Pedologica Sinica, 2016, 53(1): 81-92. |
[130] |
任静, 沈佳敏, 张磊, 等. 生物炭固定化多环芳烃高效降解菌剂的制备及稳定性[J]. 环境科学学报, 2020, 40(12): 4517-4523. REN Jing, SHEN Jia-min, ZHANG Lei, et al. Preparation and stability of biochar for the immobilization ofpolycyclic aromatic hydrocarbons degradating-bacteria[J]. Acta Scientiae Circumstantiae, 2020, 40(12): 4517-4523. |
[131] |
刘晓华, 刘潘伟, 胡续礼, 等. 江淮丘陵区土壤侵蚀分布与环境因子的关系[J]. 水土保持通报, 2018, 38(1): 281-286. LIU Xiaohua, LIU Pan-wei, HU Xu-li, et al. Relationships between soil erosion distribution and environmental factors in Jianghuai Hilly region[J]. Bulletin of Soil and Water Conservation, 2018, 38(1): 281-286. |
[132] |
王涛, 徐澜, 胡阳, 等. 陕北无定河流域土壤侵蚀时空演变[J]. 环境科学研究, 2017, 30(9): 1355-1364. WANG Tao, XU Lan, HU Yang, et al. Spatial and temporal changes of soil erosion in Wuding River basin, Shaanxi Province, China[J]. Research of Environmental Sciences, 2017, 30(9): 1355-1364. |
[133] |
吕刚, 贾晏泽, 刘雅卓, 等. 褐土与棕壤坡耕地细沟侵蚀发生的阶段性水沙变化[J]. 水土保持学报, 2020, 34(5): 42-48. LÜ Gang, JIA Yan-ze, LIU Ya-zhuo, et al. Periodic variation of water and sedi? ment in rill erosion of cinnamon soil and brown soil sloping farmland[J]. Journal of Soil and Water Conservation, 2020, 34(5): 42-48. |
[134] |
肖海兵, 李忠武, 聂小东, 等. 南方红壤丘陵区土壤侵蚀-沉积作用对土壤酶活性的影响[J]. 土壤学报, 2016, 53(4): 881-890. XIAO Hai-bing, LI Zhong-wu, NIE Xiao-dong, et al. Effects of soil erosion and deposition on soil enzyme activity in hilly red soil re? gions of south China[J]. Acta Pedologica Sinica, 2016, 53(4): 881-890. |
[135] |
史志华, 王玲, 刘前进, 等. 土壤侵蚀:从综合治理到生态调控[J]. 中国科学院院刊, 2018, 33(2): 198-205. SHI Zhi-hua, WANG Ling, LIU Qian-jin, et al. Soil erosion: From comprehensive control to ecological regulation[J]. Bulletin of the Chinese Academy of Scienc? es, 2018, 33(2): 198-205. |
[136] |
陈同德, 焦菊英, 王颢霖, 等. 青藏高原土壤侵蚀研究进展[J]. 土14 2021年1月吴同亮, 等: 2016—2020年环境土壤学研究进展与热点分析壤学报, 2020, 57(3): 547-564. CHEN Tong-de, JIAO Ju-ying, WANG Hao-lin, et al. Progress in research on soil erosion in Qing? hai-Tibet Plateau[J]. Acta Pedologica Sinica, 2020, 57(3): 547-564. |
[137] |
张超, 周旭, 张海, 等. 苹果专用肥对旱地果园土壤酶活性以及微生物多样性的影响[J]. 生态学杂志, 2017, 36(12): 3485-3492. ZHANG Chao, ZHOU Xu, ZHANG Hai, et al. Effect of apple special fertilizer on soil enzyme activities and functional diversity of microbi? al community in a non-irrigated apple orchard[J]. Chinese Journal of Ecology, 2017, 36(12): 3485-3492. |
[138] |
李丽, 韩周, 张昀, 等. 减氮配施微生物菌剂对水稻根系发育及土壤酶活性的影响[J]. 土壤通报, 2019, 50(4): 932-939. LI Li, HAN Zhou, ZHANG Yun, et al. Effects of reducing nitrogen fertilizer combined with microbial agents on rice root growth and soil enzyme activities[J]. Chinese Journal of Soil Science, 2019, 50(4): 932-939. |
[139] |
何朋俊, 李星月, 王谢, 等. 川中丘陵柏木低效林开窗补阔初期土壤养分和酶活性变化[J]. 应用与环境生物学报, 2017, 23(4): 693-700. HE Peng-jun, LI Xing-yue, WANG Xie, et al. Soil nutri? ent and enzymatic activity changes amidst the early stage of gap and mixed transformation of low - efficiency cupressus funebris in the hilly area of the central Sichuan basin[J]. Chinese Journal of Applied and Environmental Biology, 2017, 23(4): 693-700. |
[140] |
李晓红. 鄱阳湖湿地不同植物群落土壤养分和土壤酶活性垂直分布特征[J]. 水土保持研究, 2019, 26(1): 69-75, 81. LI Xiaohong. Profile distribution characteristics of soil nutrients and en? zymes in the wetland of Poyang Lake[J]. Research of Soil and Water Conservation, 2019, 26(1): 69-75, 81. |
[141] |
胡尧, 李懿, 侯雨乐. 岷江流域不同土地利用方式对土壤有机碳组分及酶活性的影响[J]. 生态环境学报, 2018, 27(9): 1617-1624. HU Yao, LI Yi, HOU Yu - le. The variation of soil organic carbon fractions and soil enzyme activity of different land use types in Minjiang River valley[J]. Ecology and Environmental Sciences, 2018, 27(9): 1617-1624. |
[142] |
陈士更, 张民, 丁方军, 等. 腐植酸土壤调理剂对酸化果园土壤理化性状及苹果产量和品质的影响[J]. 土壤, 2019, 51(1): 83-89. CHEN Shi-geng, ZHANG Min, DING Fang-jun, et al. Humic acid soil conditioner improved soil physicochemical properties, apple yield and quality in acidified orchard soil[J]. Soils, 2019, 51(1): 83-89. |
[143] |
周媛媛, 张苗, 佟丙辛, 等. 冀中地区桃树养分投入、土壤养分状况及其与产量的关系[J]. 土壤通报, 2019, 50(3): 683-690. ZHOU Yuan-yuan, ZHANG Miao, TONG Bing-xin, et al. Soil nutri? ent status and input and its relationship with yield of peach trees in central Hebei[J]. Chinese Journal of Soil Science, 2019, 50(3): 683-690. |
[144] |
殷文, 柴强, 胡发龙, 等. 干旱内陆灌区不同秸秆还田方式下春小麦田土壤水分利用特征[J]. 中国农业科学, 2019, 52(7): 1247-1259. YIN Wen, CHAI Qiang, HU Fa-long, et al. Characteristics of soil water utilization in spring wheat field with different straw re? tention approaches in dry inland irrigation areas[J]. Scientia Agricul? tura Sinica, 2019, 52(7): 1247-1259. |
[145] |
董云云, 王飞, 韩剑桥, 等. 地膜和秸秆覆盖对旱地农田土壤水分和大豆产量的影响[J]. 水土保持研究, 2020, 27(3): 364-371. DONG Yun-yun, WANG Fei, HAN Jian-qiao, et al. Effects of plas? tic film and straw mulching on soil moisture and soybean yield in dry? land farmland[J]. Research of Soil and Water Conservation, 2020, 27(3): 364-371. |
[146] |
高日平, 赵思华, 刁生鹏, 等. 秸秆还田对黄土风沙区土壤微生物、酶活性及作物产量的影响[J]. 土壤通报, 2019, 50(6): 1370-1377. GAO Ri-ping, ZHAO Si-hua, DIAO Sheng-peng, et al. Ef? fects of straw mulching on soil microorganism, enzyme activity and crop yield in loess desert[J]. Chinese Journal of Soil Science, 2019, 50(6): 1370-1377. |
[147] |
郑春莲, 冯棣, 李科江, 等. 咸水沟灌对土壤水盐变化与棉花生长及产量的影响[J]. 农业工程学报, 2020, 36(13): 92-101. ZHENG Chun-lian, FENG Di, LI Ke-jiang, et al. Effects of furrow ir? rigation with saline water on variation of soil water - salt, cotton growth and yield[J]. Transactions of the Chinese Society of Agricultur? al Engineering, 2020, 36(13): 92-101. |
[148] |
董同喜, 张涛, 李洋, 等. 畜禽粪便有机肥中重金属在水稻土中生物有效性动态变化[J]. 环境科学学报, 2016, 36(2): 621-629. DONG Tong-xi, ZHANG Tao, LI Yang, et al. Bioavailability dynam? ics of heavy metals in manure and their effect on uptake of rice[J]. Ac? ta Scientiae Circumstantiae, 2016, 36(2): 621-629. |
[149] |
李俊凯, 张丹, 周培, 等. 南京市铅锌矿采矿场土壤重金属污染评价及优势植物重金属富集特征[J]. 环境科学, 2018, 39(8): 3845-3853. LI Jun-kai, ZHANG Dan, ZHOU Pei, et al. Assessment of heavy metal pollution in soil and its bioaccumulation by dominant plants in a lead-zinc mining area, Nanjing[J]. Environmental Science, 2018, 39(8): 3845-3853. |
[150] |
刘佩琪, 陈奇伯, 邓志华, 等. 城市森林对大气中重金属的富集特征[J]. 环境化学, 2017, 36(2): 265-273. LIU Pei-qi, CHEN Qibo, DENG Zhi-hua, et al. Enrichment of atmospheric heavy metals by urban forest[J]. Environmental Chemistry, 2017, 36(2): 265-273. |
[151] |
徐笠, 陆安祥, 田晓琴, 等. 典型设施蔬菜基地重金属的累积特征及风险评估[J]. 中国农业科学, 2017, 50(21): 4149-4158. XU Li, LU An-xiang, TIAN Xiao-qin, et al. Accumulation characteris? tics and risk assessment of heavy metals in typical greenhouse vege? table bases[J]. Scientia Agricultura Sinica, 2017, 50(21): 4149-4158. DOI:10.3864/j.issn.0578-1752.2017.21.009 |
[152] |
高静湉, 杜方圆, 李卫平, 等. 黄河湿地小白河片区优势植物重金属的富集特征[J]. 农业环境科学学报, 2016, 35(11): 2180-2186. GAO Jing-tian, DU Fang-yuan, LI Wei-ping, et al. Content and ac? cumulation characteristics of heavy metals in dominant plants in Xiao Bai He area of the Yellow River wetland[J]. Journal of Agro-En? vironment Science, 2016, 35(11): 2180-2186. DOI:10.11654/jaes.2016-0335 |
[153] |
黄健, 朱旭炎, 陆金, 等. 狮子山矿区不同土地利用类型对土壤微生物群落多样性的影响[J]. 环境科学, 2019, 40(12): 5550-5560. HUANG Jian, ZHU Xu-yan, LU Jin, et al. Effects of different land use types on microbial community diversity in the Shizishan mining area[J]. Environmental Science, 2019, 40(12): 5550-5560. |
[154] |
蔡红, 王晓宇, 韩辉. 产脲酶细菌矿化修复Cd和Pb污染土壤效应和机制[J]. 中国环境科学, 2020, 40(11): 4883-4892. CAI Hong, WANG Xiao-yu, HAN Hui. Effects and mechanisms of urease-pro? ducing bacteria mineralization on remediation of Cd - and Pb-con? taminated soil[J]. China Environmental Science, 2020, 40(11): 4883-4892. |