文章摘要
郭辉,石海,张全旺.基于CWT-HHT的玉米叶片铜离子污染信息探测[J].农业环境科学学报,2023,42(10):2183-2189.
基于CWT-HHT的玉米叶片铜离子污染信息探测
Detection of copper ion pollution in corn leaves based on continuous wavelet transform-Hilbert-Huang transform
投稿时间:2023-04-24  
DOI:10.11654/jaes.2023-0319
中文关键词: 连续小波变换  希尔伯特-黄变换  铜污染胁迫  玉米叶片
英文关键词: continuous wavelet transform  Hilbert-Huang transform  copper pollution stress  corn leave
基金项目:国家自然科学基金项目(41271436);矿山环境与灾害协同监测煤炭行业工程研究中心开放基金项目(KSXTJC202202)
作者单位E-mail
郭辉 安徽理工大学空间信息与测绘工程学院, 安徽 淮南 232001
安徽理工大学矿山环境与灾害协同监测煤炭行业工程研究中心, 安徽 淮南 232001 
 
石海 安徽理工大学空间信息与测绘工程学院, 安徽 淮南 232001
安徽理工大学矿山环境与灾害协同监测煤炭行业工程研究中心, 安徽 淮南 232001 
1508069850@qq.com 
张全旺 安徽理工大学空间信息与测绘工程学院, 安徽 淮南 232001
安徽理工大学矿山环境与灾害协同监测煤炭行业工程研究中心, 安徽 淮南 232001 
 
摘要点击次数: 861
全文下载次数: 1161
中文摘要:
      为了准确探测农作物在不同浓度重金属污染下叶片光谱间微弱的畸变信息,本研究通过设置不同浓度铜离子(Cu2+)胁迫下的玉米盆栽实验,在采集了不同梯度下玉米叶片光谱并测定同期叶片Cu2+含量的基础上,采用连续小波变换(CWT)结合希尔伯特-黄变换(HHT)的方法,构建CWT-HHT算法以探测玉米叶片光谱重金属污染信息,同时与红边位置(REP)、红边归一化指数(NDVI705)和红边植被胁迫指数(RVSI)等常规的植被指数监测方法进行对比分析。结果表明:基于CWT-HHT探测方法提取的瞬时能量峰值呈现先升高、后降低的趋势,与玉米叶片Cu2+含量变化趋势一致。而且通过与植被指数监测农作物重金属污染的方法对比,证明CWT-HHT探测结果最优,表明CWT-HHT方法在玉米叶片重金属Cu2+污染信息探测方面具有可行性。
英文摘要:
      To accurately detect weak spectral distortion information for crops under different concentrations of heavy metal pollution, a corn pot experiment with different Cu2+ stress gradients was performed. The spectra of corn leaves under different gradients were collected and the Cu2+ content of the leaves was measuring at the same time. Continuous wavelet transform(CWT) combined with Hilbert-Huang transform(HHT)was used to construct a CWT-HHT algorithm to detect spectral copper pollution information from the corn leaves. This method was compared with other conventional vegetation index monitoring methods, such as the red edge position, the red edge normalization index, and the red edge vegetation stress index. The results showed that the instantaneous energy peak extracted using the CWT-HHT detection method had a trend of first increasing and then decreasing, which was consistent with the trend in the Cu2+ content of the corn leaves. Moreover, the CWT-HHT method was found to be better than the vegetation index monitoring method for detecting heavy metal pollution in crops, indicating that the CWT-HHT method is feasible for the detection of heavy metal copper pollution in corn leaves.
HTML    查看全文   查看/发表评论  下载PDF阅读器