文章摘要
王晓欧,夏唯宜,王慧欣,李佳音,薛明.人工湿地-微生物燃料电池系统对十二烷基苯磺酸钠的微生物响应特征[J].农业环境科学学报,2023,42(10):2313-2323.
人工湿地-微生物燃料电池系统对十二烷基苯磺酸钠的微生物响应特征
Microbial response characteristics of a constructed wetland-microbial fuel cell system to sodium dodecyl benzene sulfonate
投稿时间:2023-04-14  
DOI:10.11654/jaes.2023-0294
中文关键词: 人工湿地  微生物燃料电池  阴离子表面活性剂  十二烷基苯磺酸钠  微生物  电化学活性菌
英文关键词: constructed wetland  microbial fuel cell  anionic surfactant  sodium dodecyl benzene sulfonate  microorganisms  electrochemically active bacteria
基金项目:河北省中央引导地方科技发展资金项目(226Z3605G);河北省自然科学基金(E2020202027)
作者单位
王晓欧 河北工业大学能源与环境工程学院, 天津 300401 
夏唯宜 河北工业大学能源与环境工程学院, 天津 300401 
王慧欣 河北工业大学能源与环境工程学院, 天津 300401 
李佳音 河北工业大学能源与环境工程学院, 天津 300401 
薛明 河北工业大学能源与环境工程学院, 天津 300401 
摘要点击次数: 896
全文下载次数: 832
中文摘要:
      直链烷基苯磺酸盐(LAS)是日化领域应用最为广泛的阴离子表面活性剂,烷基苯磺酸盐及其降解中间产物已经成为环境中常见的代表性有机污染物。本研究以十二烷基苯磺酸钠(SDBS)为目标LAS,通过小试试验探究了人工湿地-微生物燃料电池耦合系统(CW-MFC)对SDBS的处理效果及系统对SDBS的微生物响应特征。结果表明:当进水SDBS浓度为25 mg·L-1时,CWMFC对SDBS的去除率和去除负荷分别为44.3%和6.74 g·m-3·d-1; SDBS的加入对CW-MFC系统中微生物群落的组成与活性产生了较大的干扰,微生物需要一定的时间适应并发展SDBS降解能力,而电化学活性菌(EAB)对SDBS的抗性比其他微生物物种更强; SDBS促进了火山岩填料和阳极表面(厌氧环境)的微生物群落丰富度和多样性,而对植物根系和阴极表面(好氧环境)的微生物群落多样性产生了抑制; CW-MFC中火山岩填料表面、阴极表面和阳极表面的优势菌门分别为Proteobacteria、Bacteroidota和Desulfobacteroidota; SDBS将CW-MFC中阳极区EAB(Proteobacteria、Bacteroidota、Firmicutes、Acidobacteriota等)的相对丰度显著提高56.7%,从而提高了CW-MFC的最大输出功率密度并显著降低了系统内阻; CW-MFC中有7个SDBS降解相关菌属,Geobacter可参与β/ω氧化过程,Aeromonas、AcinetobacterDesulfovibrio可参与脱磺酸过程,Hydrogenophaga、ZoogloeaDechloromonas可参与苯环裂解过程,其中,GeobacterDesulfovibrio为厌氧菌属,其余为好氧菌属,此外,火山岩填料表面SDBS降解相关菌属相对丰度最高,占比为61.61%。研究表明,SDBS改变了CW-MFC内部微生物群落的空间分布规律,促进了EAB和SDBS降解相关菌属的富集生长,并改善了CW-MFC的电化学性能。总之,利用CW-MFC系统处理阴离子表面活性剂是可行的。
英文摘要:
      Linear alkyl-benzene sulfonate(LAS)is the most widely used anionic surfactant in the field of daily chemicals, and alkylbenzene sulfonate and its degradation intermediates have been common representative organic pollutants in the environment. Taking sodium dodecyl benzene sulfonate(SDBS)as the target LAS, this study investigated the SDBS removal performance of the constructed wetland-microbial fuel cell coupling system(CW-MFC)and the microbial response characteristics of the system to SDBS by conducting lab-scale experiments. Results showed that as the influent SDBS concentration was 25 mg·L-1, the removal rate and removal load of SDBS in the CW-MFC were 44.3% and 6.74 g · m-3 · d-1, respectively. The addition of SDBS exerted relatively significant interference on the composition and activity of microbial communities in the CW-MFC system; it took the microorganisms a certain amount of time to adapt and develop the ability to degrade SDBS, while the electrochemically active bacteria(EAB)were more resistant to SDBS than other microbial species. SDBS promoted the richness and diversity of microbial communities attached to the surface of lava and anodes (anaerobic environment) while inhibiting the diversity of microbial communities attached to the surface of plant roots and cathodes (aerobic environment). The dominant bacteria on the surface of lava, cathodes, and anodes in the CW-MFC were Proteobacteria, Bacteroidota, and Desulfobacteroidota, respectively. SDBS significantly increased the relative abundance of EAB(Proteobacteria, Bacteroidota, Firmicutes, Acidobacteriota, etc.)in the anode area of the CW-MFC by 56.7%, thereby increasing the maximum output power density and reducing the internal resistance of the CW-MFC. Seven genera of SDBS degradation-related bacteria were available in the CW-MFC:Geobacter could participate in the β/ω oxidation process; Aeromonas, Acinetobacter, and Desulfovibrio could participate in the desulfonic acid process; Hydrogenophaga, Zoogloea, and Dechloromonas could participate in the benzene ring cleavage process, of which Geobacter and Desulfovibrio belong to anaerobic bacteria; and the others belong to aerobic bacteria. In addition, the relative abundance of SDBS degradation-related bacteria on the surface of lava was the highest, accounting for 61.61%. The research showed that SDBS changed the spatial distribution law of microbial communities, promoted the enrichment and growth of EAB and SDBS degradationrelated bacteria in the CW-MFC, and improved the electrochemical performance of the CW-MFC. Overall, it is feasible to use CW-MFC systems to treat anionic surfactants.
HTML    查看全文   查看/发表评论  下载PDF阅读器