文章摘要
基于PMF和机器学习模型的蒸水中下游流域农田土壤重金属污染状况及来源解析
Source apportionment of heavy metal pollution in farmland of the middle and lower reaches of the Zhengshui River basin based on PMF and machine learning models
投稿时间:2025-01-13  修订日期:2025-05-05
DOI:
中文关键词: 土壤  重金属  源解析  PMF模型  SOM模型  LightGBM模型
英文关键词: soil  heavy metal  source apportionment  PMF  SOM  LightGBM
基金项目:国家重点研发计划(2022YFD1700103); 国家重点研发青年科学家项目(2023YFD1703000, 2023YFD1703100); 国家地区联合基金(U22A20606, U21A20291); 山东省生态农业技术体系济南综合试验站(SDAIT-30-10)
作者单位邮编
董天浩 济南市农业科学研究院 250100
任传猛 济南市农业科学研究院 
任清盛 济南市农业科学研究院 
董贝 济南市农业科学研究院 
张仁杰 湖南省耕地与农业环境生态研究所 
李承永 济南市农业科学研究院 
潘淑芳 湖南省耕地与农业环境生态研究所 
郭焱 中国农业大学 
纪雄辉 湖南省耕地与农业环境生态研究所 
谢运河* 湖南省耕地与农业环境生态研究所 410125
摘要点击次数: 82
全文下载次数: 0
中文摘要:
      为了探究湘江支流蒸水中下游流域农田土壤重金属污染风险,对蒸水中下游流域农田土壤进行了采样分析及污染源解析。结果表明:1) 该区域土壤存在较大的Cd污染风险,部分存在As、Pb和Cu污染风险。2) 土壤 Cd和Zn的空间分布格局相似,Cr、Cu和Ni空间分布格局相似,且相关性均较强;Hg和As空间分布格局部分相似;Pb与其它元素空间分布格局差异较大。3) PMF模型识别出4个污染源,即自然-大气沉降混合源、自然源、大气沉降源和工业源,贡献率分别为30.8 %、27.0 %、22.6 %和19.6 %。4) SOM模型与PMF模型源解析结果均吻合度较高。LightGBM模型结果表明距蒸水主流距离对Cd、Pb、Ni和Zn的影响均较大,PM2.5浓度对Cd和Pb的影响较大;对As、Hg和Cr影响最大的因子均为母岩类型;与交通相关的因子对Cu和Zn的影响较大。可见,该研究区农田土壤有一定的重金属污染风险,且污染来源较复杂,受体模型结合机器学习模型能够更合理地判别各土壤重金属主要的污染来源。
英文摘要:
      In order to explore the heavy metal pollution risk in the farmland soil of the middle and lower watershed of the Zhengshui River, a tributary of the Xiangjiang River, sampling analysis and pollution source identification of the farmland soil in this area were conducted. The results are as follows: 1) There is a relatively high Cd pollution risk in the soil of this region, and some areas also face pollution risks from As, Pb, and Cu. 2) The spatial distribution patterns of Cd and Zn in the soil are similar. The spatial distribution patterns of Cr, Cu, and Ni are also similar, and they all have strong correlations. The spatial distribution patterns of Hg and As are partially similar. The spatial distribution pattern of Pb differs significantly from those of other elements. 3) The PMF model identified four pollution sources, namely the natural-atmospheric deposition mixed source, the natural source, the atmospheric deposition source, and the industrial source, with contribution rates of 30.8%, 27.0%, 22.6%, and 19.6% respectively. 4) The results of source identification by the SOM model are highly consistent with those of the PMF model. The results of the LightGBM model indicate that the distance from the main stream of the Zhengshui River has a significant impact on Cd, Pb, Ni, and Zn. PM2.5 has a great influence on Cd and Pb. The parent rock type is the most influential factor for As, Hg, and Cr. Traffic-related factors have a greater impact on Cu and Zn. The research shows that the farmland soil in this study area has a certain risk of heavy metal pollution, and the pollution sources are complex, and the receptor model combined with the machine learning model can more reasonably identify the main pollution sources of each soil heavy metal.
HTML    View Fulltext   查看/发表评论  下载PDF阅读器