文章摘要
范维新,邱春生,穆莉,翁靓娴,高子惟.土壤中纳米塑料与砷共存诱发的生菜毒性效应及其代谢机制[J].农业环境科学学报,2025,44(4):899-908.
土壤中纳米塑料与砷共存诱发的生菜毒性效应及其代谢机制
Toxic effect on lettuce induced by the coexistence of nanoplastics and arsenic in the soil and the related metabolic mechanisms
投稿时间:2024-03-12  
DOI:10.11654/jaes.2024-0225
中文关键词: 土壤    纳米塑料  生菜  毒性效应  代谢机制
英文关键词: soil  arsenic  nanoplastic  lettuce  toxic effect  metabolic mechanism
基金项目:国家自然科学基金项目(22176103,U22A20615);中央级科研院所基本科研业务费项目
作者单位E-mail
范维新 天津城建大学环境与市政工程学院, 天津 300384
农业农村部环境保护科研监测所, 农业农村部农产品质量安全环境因子控制重点实验室, 天津市农业环境与农产品安全重点实验室, 天津 300191 
 
邱春生 天津城建大学环境与市政工程学院, 天津 300384 qcs254@163.com 
穆莉 农业农村部环境保护科研监测所, 农业农村部农产品质量安全环境因子控制重点实验室, 天津市农业环境与农产品安全重点实验室, 天津 300191 muli@caas.cn 
翁靓娴 农业农村部环境保护科研监测所, 农业农村部农产品质量安全环境因子控制重点实验室, 天津市农业环境与农产品安全重点实验室, 天津 300191  
高子惟 农业农村部环境保护科研监测所, 农业农村部农产品质量安全环境因子控制重点实验室, 天津市农业环境与农产品安全重点实验室, 天津 300191  
摘要点击次数: 190
全文下载次数: 263
中文摘要:
      为探究土壤中纳米塑料与砷共存诱发的生菜毒性效应及其代谢机制,本研究探讨了纳米塑料进入受砷污染土壤后对土壤pH、含水量及砷含量变化的影响,以及土壤中纳米塑料与砷协同作用对生菜生长发育、营养品质及抗氧化应激系统的影响,同时通过代谢组学分析技术揭示了两者协同作用诱发的生菜毒性效应机制。结果表明:含砷土壤中纳米塑料的存在,导致土壤pH上升,持水能力及砷含量下降。植物成熟期时,未添加纳米塑料的土壤总砷含量下降了6.85%,添加10 mg·kg-1和100 mg·kg-1纳米塑料的土壤总砷含量分别下降了9.87%和20.33%。同时,纳米塑料的存在加剧了植物对无机砷的吸收,尤其是幼苗期,在分别添加10 mg·kg-1和100 mg·kg-1纳米塑料的处理组,生菜中砷主要以As(Ⅲ)为主,其分别上升了30.25%和39.10%。此外,在15 d时,相较于未添加纳米塑料组,10 mg·kg-1组的叶鲜质量上升了 20.00%,而 100 mg·kg-1组下降了 4.00%,低含量纳米塑料的存在反而促进了植物的生长,而第30天时两个处理组分别下降了6.15%和10.77%,第45天时分别下降了6.33%、12.66%。此外,生菜的根长、根质量、茎长和叶绿素等同样存在低促高抑的现象。含纳米塑料处理组中生菜的纤维素、蛋白质和维生素C含量小幅上升,且超氧化物歧化酶、丙二醛呈现同步上升趋势,增强了生菜的抗氧化胁迫能力。代谢分析表明,含砷土壤中纳米塑料的添加导致半乳糖代谢、淀粉和蔗糖代谢、肌醇磷酸代谢途径上调,硫氮代谢、三羧酸循环、酪氨酸代谢和丙酮酸代谢途径下调,对植物生长产生不利影响。
英文摘要:
      The aim of this study was to explore the toxic effect on lettuce induced by the coexistence of nanoplastics and arsenic in the soil and the related metabolic mechanisms. Primarily, our investigation scrutinized the perturbations induced by nanoplastic introduction into arsenic-contaminated soil on soil pH, moisture content, and inorganic arsenic concentration alterations. Subsequently, we delved into elucidating the holistic impact of the synergistic interplay between nanoplastics and arsenic on lettuce growth dynamics, developmental processes, nutritional attributes, and antioxidative stress response. Finally, leveraging metabolomics analysis methodologies, we wished to delineate the mechanistic underpinnings of the toxicological effects of the nanoplastic-arsenic interaction on lettuce physiology. Our results proved that nanoplastic incorporation into arsenic-laden soil matrices increased soil pH concomitant with water-holding capacity and arsenic concentration reduction. At the culmination of the vegetative growth phase, the total arsenic content in soil devoid of nanoplastics declined by 6.85%, while that in 10 mg·kg-1 and 100 mg·kg-1 of nanoplastic-treated soils decreased by 9.87% and 20.33%, respectively. Notably, trivalent arsenic decreased more markedly. Furthermore, nanoplastics accentuated inorganic arsenic uptake by the lettuce plants, particularly during the nascent growth stages. In the 10 mg·kg-1 and 100 mg·kg-1 of nanoplastic-supplemented experimental groups, lettuce predominantly assimilated trivalent arsenic yielding a 30.25% and 39.10% increase, respectively. Notably, compared to the nanoplastic-untreated group, leaf fresh weight increased by 20.00% in the 10 mg·kg-1 group, albeit it declined by 4.00% in the 100 mg·kg-1 group on Day 15, suggesting a nuanced effect of low-concentration nanoplastics on plant vigor. However, at 30 days, both experimental cohorts displayed a decline of 6.15% and 10.77%, respectively, with analogous trends in lettuce root length, root weight, stem length, and chlorophyll content. At 45 days, they decreased by 6.33% and 12.66%, respectively. A marginal enhancement in cellulose, protein, and vitamin C content in lettuce was discerned in the nanoplastic-treated groups, accompanied by synchronous superoxide dismutase and malondialdehyde level increase, indicating an attenuated antioxidative stress response. Our metabolomic profiling demonstrated that nanoplastic inclusion in arsenic-contaminated soil matrices upregulated lactose, starch and sucrose, and inositol phosphate metabolism-related pathways. Concurrently, the tricarboxylic acid cycle as well as sulfur and nitrogen, tyrosine, and pyruvate metabolism-associated pathways were downregulated, deleteriously impacting plant physiological processes.
HTML    查看全文   查看/发表评论  下载PDF阅读器