快速检索        
  农业环境科学学报  2016, Vol. 35 Issue (10): 2011-2018

文章信息

肖娇, 樊建凌, 叶桂萍, 刘德燕, 阎静, LUOJia-fa, HOULBROOKEDavid J, 丁维新
XIAO Jiao, FAN Jian-ling, YE Gui-ping, LIU De-yan, YAN Jing, LUO Jia-fa, HOULBROOKE David J, DING Wei-xin
不同施肥处理下小麦季潮土氨挥发损失及其影响因素研究
Ammonia volatilization from fluvo-aquic clay soil and its influencing factors during wheat growing season under different fertilization
农业环境科学学报, 2016, 35(10): 2011-2018
Journal of Agro-Environment Science, 2016, 35(10): 2011-2018
http://dx.doi.org/10.11654/jaes.2016-0263

文章历史

收稿日期: 2016-03-02
不同施肥处理下小麦季潮土氨挥发损失及其影响因素研究
肖娇1,2, 樊建凌1, 叶桂萍1,2, 刘德燕1, 阎静3, LUOJia-fa4, HOULBROOKEDavid J4, 丁维新1     
1. 土壤与农业可持续发展国家重点实验室(中国科学院南京土壤研究所), 南京 210008 ;
2. 中国科学院大学, 北京 100049 ;
3. 恒天然(北京)牧场管理咨询有限公司, 北京 100006 ;
4. Land and Environment, AgResearch, Hamilton 3240, 新西兰
摘要: 氨挥发是肥料氮素损失的重要途径之一,由于土壤类型、气候条件、肥料种类、用量和施用时间等因素不同而存在很大差异。试验采用间歇式密闭室通气法,对华北平原不同施肥处理(新鲜牛粪与尿素配施、堆腐牛粪与尿素配施和NPK单施)下,冬小麦生长季粘质潮土氨挥发及其影响因素进行了研究。结果表明:冬小麦季土壤氨挥发总量占肥料氮用量的1.23%~1.97%,主要来源于追肥,占整个小麦生长季氨挥发总量的80%左右。不同施肥处理强烈影响氨挥发强度,新鲜牛粪与尿素配施处理氨挥发损失量最高,氮素损失率为1.97%,显著高于堆腐牛粪与尿素配施和NPK单施。基肥期氨挥发速率与气温密切相关,追肥期土壤含水量和NH4+-N浓度是影响氨挥发的主控因子。
关键词: 冬小麦     新鲜牛粪     堆腐牛粪     氨挥发    
Ammonia volatilization from fluvo-aquic clay soil and its influencing factors during wheat growing season under different fertilization
XIAO Jiao1,2, FAN Jian-ling1, YE Gui-ping1,2, LIU De-yan1, YAN Jing3, LUO Jia-fa4, HOULBROOKE David J4, DING Wei-xin1     
1. Key State Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China ;
2. University of Chinese Academy of Sciences, Beijing 100049, China ;
3. Fonterra-Farm Management Consulting(Beijing) Co. Ltd, Beijing 100006, China ;
4. Land and Environment, AgResearch, Hamilton 3240, New Zealand
Abstract: Ammonia(NH3) volatilization is a major path of N losses from applied nitrogen fertilizers, which not only results in economic losses, but also poses risks to the environment. A field experiment was set up in Yutian county, Hebei Province, to evaluate the NH3 volatilization in fluvo-aquic clay soil under applications of different fertilizers. There were four treatments with four replicates per treatment:fresh cow manure+urea(RAW), composted cow manure+urea(COM), NPK fertilizer(NPK), and control with no N fertilizer(CK). The manures and chemical fertilizer were applied at a rate of 225 kg N·hm-2, with half mixed into the soil as basal fertilization before planting and the other half applied to the soil as a top dressing after plant emergence. A continuous air-flow enclosure method was used to monitor NH3 volatilization rates during a winter wheat growing season. The highest cumulative amount of NH3 volatilization during the wheat growing season was measured in the RAW treatment with a net loss through NH3 volatilization of 1.97% of the N applied, which was significantly higher than that in the COM and NPK treatments. Up to 80% of the total NH3 volatilization occurred after top-dressing. Soil temperature was identified as a key factor affecting NH3 volatilization during the basal fertilization period and the flux of NH3 volatilization was significantly correlated with soil moisture and NH4+-N contents after top-dressing.
Key words: winter wheat     fresh cow manure     composted cow manure     ammonia volatilization    

冬小麦是华北地区主要粮食作物之一,2014年该区小麦播种面积占全国小麦播种面积的15.4%[1]。近年来,畜禽粪便在华北地区冬小麦-夏玉米轮作体系中有了较大的投入,有机肥氮在该地区的平均施用量已达74 kg N·hm-2·a-1 [2]。随着养殖业的进一步发展,畜禽粪便排放量处于进一步增加的态势[3],有机肥氮在农田生态系统的投入量势必会继续增加。氨挥发是农田氮素损失的重要途径,也是氮肥利用率低的重要原因之一[4-5]。研究表明,我国主要粮食作物氮肥利用率为30%~35%,每年农田氮肥损失率为33.3%~73.6%,农田氨挥发损失占总施氮量的1%~47%[6-7]。如何将畜禽粪便无害化、资源化投入到农田生产中,降低氨挥发损失,提高氮肥利用率,充分发挥氮肥增产效益,保护生态环境成为我国农业亟待解决的问题。目前,新西兰等国家主张禽畜粪便固液分离,固体粪渣(干物质含量高于15%)直接还田或发酵生产有机肥[8],通过研究新西兰草地施用牛粪粪渣的氮素利用及损失发现,牛粪固液分离的粪渣可不同程度提高土壤质量,实现畜牧-农业结合的可持续发展[9-10]。近年来,国内科研工作者对不同土壤环境条件、肥料类型、氮肥用量、施肥方法以及环境因素对无机肥氨挥发影响等方面做了较多的研究[11-13],对畜禽粪便氨挥发的研究工作大都基于盆栽,温室培养及蔬菜地[14-16]。而对有机无机肥配合施用,尤其是利用畜禽粪便固液分离后的粪渣等有机肥在农田施用过程中氨挥发损失的关注较少。为此,本研究以占我国畜禽粪便氮排放比例最高的牛粪[17]为对象,研究了固液分离后的新鲜牛粪、堆腐牛粪和无机氮肥在华北平原冬小麦生长土壤上的氨挥发损失,以期为牛粪资源合理利用和创建适宜的氮肥管理模式提供科学数据。

1 材料与方法 1.1 试验区域和供试土壤

试验地点位于河北省唐山市玉田县杨家板桥镇恒天然玉田第二牧场(39°45′29″N,117°37′48″E),地处河北省东北部,唐山市最西端。属北温带大陆性季风气候,年均降水量693 mm,年均气温11.2 ℃,无霜期193 d。供试土壤为粉砂粘质潮土,土壤理化性质见表 1

表 1 土壤基本理化性质 Table 1 Basic physical and chemical properties of soil
1.2 试验设计

试验共设4个处理,分别为:不施肥的对照(CK)、化肥(NPK)、50%牛粪堆肥+50%尿素(COM)和50%新鲜牛粪+50%尿素(RAW),每个处理4次重复,随机区组排列。施肥处理为氮磷钾等量输入,氮、磷和钾用量分别为225 kg N·hm-2、112.5 kg P2O5·hm-2和112.5 kg K2O·hm-2。氮用量的基肥追肥比例为1:1,全部的P肥、K肥和50%的N肥以基肥一次施入(即基肥时,有机肥施用前进行氮磷钾全量养分含量测定,以基肥氮输入量112.5 kg N·hm-2为基准,换算所需有机肥量,有机肥中不足的P和K用无机磷钾肥分别补充至112.5 kg P2O5·hm-2和112.5 kg K2O·hm-2),追肥时施肥处理均追施尿素(112.5 kg N·hm-2)。肥料品种:无机氮肥为尿素,磷肥为过磷酸钙,钾肥为硫酸钾。新鲜牛粪为恒天然牧场内当天产生后进行固液分离的牛粪粪渣,堆肥为恒天然牧场固液分离后的牛粪粪渣经过4个月发酵腐熟。供试有机肥性质见表 2

表 2 供试有机肥基本性质 Table 2 Basic properties of organic manures

基肥于2013年10月26日表施,并立即翻耕,10月27日播种后灌水。追肥时间为2014年4月2日,施肥当日灌水。基肥和追肥施用后次日开始氨挥发测定。2014年5月30日小麦收获青贮。以CK处理的测定值作土壤背景氨挥发量,用于计算施肥处理中肥料的氨挥发强度。

1.3 氨挥发测定

氨挥发原位测定采用间歇密闭抽气法[18]。利用真空泵减压抽气使密闭室内土壤挥发出的氨(NH3)随气流通过装有2%硼酸的洗气瓶,使其吸收于硼酸溶液中,收集溶液用0.01 mol·L-1 H2SO4滴定,计算吸收氮量。装置由不透明PVC材料制成的密闭室(高8 cm,直径15 cm)、250 mL洗气瓶和转速为2500 r·min-1的真空泵组成(图 1)。测定时,密闭室置于底座上并用密封圈密封,换气速率为15~20次··min-1。施肥后,每天上午8:30-10:30和下午2:30-4:30测定,以4 h的测定值计算每天氨挥发通量,持续测定至各施肥处理氨挥发通量接近背景值。基肥和追肥施用后的测定时间分别为18 d和15 d。

图 1 氨挥发田间捕获装置示意图 Figure 1 Sketch of monitoring system for ammonia volatilization

氨挥发速率计算公式如下:

式中:F为氨挥发速率,kg N·hm-2·d-1C为标准酸浓度,mol·L-1;V为样品滴定消耗的标准酸体积,mL; V0为空白滴定消耗的标准酸体积,mL;M为密闭室覆盖的土壤面积,m2h为每天测定氨挥发的时间,h;24与100为换算系数。

1.4 土壤样品采集和分析

每次施肥后的第1、3、5、7、10、13、15、17 d,用直径2 cm的土钻采集各小区0~10 cm的多点土壤样品,形成混合土样。土壤含水量用烘干法测定。NH4+-N和NO3--N含量用2 mol·L-1 KCl溶液浸提(水土比5:1),流动分析仪(Skalar,荷兰)测定。pH值采用1:1土水比,电位计法测定;土壤有机质、全氮、全磷和全钾含量采用常规方法测定。

1.5 数据处理

采用SPSS 20.0软件对数据进行方差分析以及LSD检验,用Origin 8.5作图。

2 结果分析 2.1 不同处理土壤氨挥发速率的动态变化

基肥施用后,各处理土壤氨挥发速率变化趋势一致。在整个测定过程中,氨挥发速率一直较低,变化范围为0.01~0.25 kg N·hm-2·d-1图 2)。氨挥发速率随着施肥后时间的延长逐渐增强,在第5 d达到峰值。其中,COM处理的峰值最高,为0.23 kg N·hm-2·d-1。随后氨挥发速率逐渐降低,到第17 d氨挥发通量降到0~0.027 kg N·hm-2·d-1,与土壤背景氨挥发速率无明显差异。

图 2 施肥后土壤氨挥发速率的动态变化 Figure 2 Temporal variation of ammonia volatilization flux after fertilizer application

不同施肥处理的追肥均为尿素。与基肥施用后的情形明显不同,追肥后土壤氨挥发速率迅速增大(图 2)。施肥后第1 d氨挥发速率即达到最高值,不同处理峰值依次为:RAW>COM>NPK>CK,RAW处理的氨挥发速率显著高于其他处理(P < 0.05)。第2 d氨挥发速率降至0.03~0.27 kg N·hm-2·d-1,降幅达64.4%~81.0%。到第12 d,不同处理氨挥发速率已无明显差异,介于0.018~0.13 kg N·hm-2·d-1

2.2 不同施肥处理对土壤累积氨挥发的影响

小麦生长季累积氨挥发量见图 3表 3。基肥施用后累积氨挥发量一直缓慢增加,不同处理的累积氨挥发量表现为:RAW>NPK>COM>CK,RAW处理显著高于NPK和COM处理,但COM与NPK处理间差异不显著。追肥后各处理的累积氨挥发量明显高于基肥后,其中RAW处理的累积氨挥发量最高,达到4.21 kg N·hm-2,COM处理为3.05 kg N·hm-2,NPK处理为2.68 kg N·hm-2。RAW处理的累积氨挥发量显著高于其他处理(P < 0.05)。在整个小麦生长季,RAW、COM和NPK处理氨挥发量分别为5.06、3.76、3.40 kg N·hm-2,追肥后的氨挥发量占2次施肥累积氨挥发量的80%左右。RAW处理的氨挥发量比COM和NPK处理分别高出25.7%和32.8%,差异达到显著水平(P < 0.05)。COM处理比NPK处理高0.36 kg N·hm-2,但差异不显著(P > 0.05)。

图 3 小麦生长期间累积氨挥发量 Figure 3 Cumulative amount of ammonia volatilization flux during wheat growing season
表 3 小麦生长季肥料氮氨挥发损失量和损失率 Table 3 Cumulative amount of N losses through ammonia volatilization and its ratio to N applied during wheat growing season

施肥处理中氨挥发损失一是来自土壤氮,二是施入的肥料氮。假设施肥处理来自土壤氮的氨挥发损失量等于不施氮处理的氨挥发损失量,那么施肥处理来自肥料氮的氨挥发损失率可由其与不施肥处理的差值计算获得[19]。从表 3可见,基肥的氨挥发损失率为0.38%~0.50%,追肥氨挥发损失率略高,在2.08%~3.44%之间,RAW、COM和NPK处理2次施肥的氨挥发量占肥料氮总量的比例分别为1.97%、1.39%和1.23%。与无机肥相比,有机肥RAW和COM氨挥发损失率分别高出0.74%和0.16%。

将不同处理累积氨挥发排放量(y)与时间(t)用Elovish动力学方程(y=a+b×lnt)进行拟合(表 4)。结果表明,相关系数均达到显著水平,说明该方程是适宜的。方程中常数a为第1 d的氨挥发量,a < 0表示氨挥发量很低或者检测不到,a>0表示有可测氨挥发量。基肥期只有NPK处理的a值为正值,有机肥和对照处理均为负值,表明基肥施用后第1 d有机肥中无机态氮的水解还未完成,作为氨挥发源的NH4+含量不足,氨挥发量均极低甚至无法检出。方程中的b值是氨挥发量y随ln(t)的变化速率,b=dy/dlnt,追肥期土壤氨挥发累积量的b值均大于基肥期,其中NPK处理累积氨挥发量的b值约为基肥的5.2倍,COM和RAW处理分别为基肥期的3.25和3.73倍,数据的对数方程拟合参数再现了追肥期氨挥发强于基肥期。

表 4 不同处理累积氨挥发量(y)与时间(t)的动力学方程拟合曲线 Table 4 Fitting of kinetics equation between cumulative ammonia loss(y) and time(t)
2.3 土壤性质和气候因素对氨挥发的影响

图 4a可知,基肥施用后气温呈波浪式递减,波动在5.33~15 ℃之间。追肥测定期气温回升,平均为17.6 ℃,明显高于基肥测定期的平均温度。

图 4 麦季氨挥发测定期间气温和耕层土壤含水量的变化 Figure 4 Dynamic variations of air temperature and soil moisture content in surface layer during monitoring period

基肥施用后,0~10 cm土壤含水量(图 4b)变化在19.9%~35.3%之间,追肥期则为14.6%~34.8%,总体上呈逐步下降的态势(图 4c)。两次施肥后灌水时间和灌水量相同,土壤水分含量的差异可能与温度和作物需水量不同有关。

图 5为氨挥发测定期间0~10 cm土壤NH4+-N含量的动态变化。基肥测定期RAW和COM处理土壤NH4+-N含量较低,变化在0.22~1.62 mg N·kg-1之间。NPK处理土壤NH4+-N含量在施肥后第2 d达到最高,为3.70 mg N kg-1,此后逐渐下降。追肥后,土壤NH4+-N含量的变化趋势与氨挥发速率的变化规律一致,施肥后第1 d即达到最大值,第3 d后各处理土壤NH4+-N含量显著下降,处于平稳状态,说明追肥期尿素的水解在3 d内基本完成。此外,追肥后NH4+-N的含量高于基肥后。

图 5 施肥后土壤NH4+-N含量的动态变化 Figure 5 Temporal variation of NH4+-N concentrations in soil during monitoring period

相关分析表明,基肥施用后氨挥发速率与气温存在着显著相关关系(表 5),土壤含水量与有机肥处理的氨挥发速率也显著相关,但这种关系未出现在无机肥处理中。土壤NH4+-N含量与氨挥发速率也呈一定的相关,但没有达到显著水平。追肥期,土壤水分和NH4+-N含量与氨挥发通量呈显著正相关,气温与氨挥发速率的相关关系则未达到显著水平。

表 5 氨挥发通量与气温、土壤含水量和NH4+-N含量的相关关系 Table 5 Correlation between NH3 flux and air temperature, NH4+-N concentration or soil moisture following fertilization during wheat growing season
3 讨论 3.1 不同施肥处理对土壤氨挥发损失的影响

本研究中冬小麦不同施肥处理累积氨挥发量为3.40~5.06 kg N·hm-2,肥料氮的氨挥发损失率为1.23%~1.97%。对于河南封丘壤质潮土,Cai等[20]报道麦季肥料氮的氨挥发损失率变化在1%~20%之间,倪康等[21]测定的小麦季氨挥发量为13.31~17.89 kg N·hm-2,肥料氮的损失率为7.54%~11.93%。吉艳芝等[22]在河北保定轻壤质潮土上测定的冬小麦氮肥的氨挥发损失率为9.5%。本试验结果与前人在潮土上测定相比,肥料氮的氨挥发损失率较低,但接近于王珏等[23]在河北潮褐土上获得的结果,他们发现麦季来自氮肥的氨挥发损失率为1%~4.2%。究其原因可能与土壤性质有关,本试验供试土壤为粘质潮土,粘粒含量多且有机质含量较高(表 1),质地黏重土壤一般对NH4+有较强的吸附力,有效降低了土壤液相中NH4+含量,从而减少了氨的挥发损失[24]。Reynolds等[25]证实粘粒含量与土壤氨挥发呈显著的负相关关系。

施用基肥后,氨挥发损失率以RAW最强,显著高于NPK和COM处理。NPK处理和COM处理氨挥发损失相近,差异不显著。基肥RAW处理氨挥发量高的原因可能是供试新鲜牛粪的全氮含量低于腐熟牛粪,而无机氮含量差异不大,在等氮量设计下RAW中无机和全氮比例高,使得RAW带入了更多的无机氮。此外,固体有机肥中干物质含量也显著影响着氨挥发强度[26]。Petersen等[27]认为,有机肥干物质含量高,由于持水能力强、粘度较高,施入土壤后无机氮不易下渗,从而提高了氨挥发强度。Li等[28]将有机肥施用到草地时发现,有机肥中干物质含量越高,氨挥发强度就越大。本研究中,等氮输入时新鲜牛粪输入的干物质量约为牛粪堆肥处理的3倍,施肥后灌水,无机肥处理的无机氮随水下渗,新鲜牛粪处理中较多的干物质可能会阻止氮的下渗,为氨挥发提供较多NH4+-N,使氨挥发损失率要高于COM和NPK处理。

追肥期,不同施肥处理追施等量尿素,与单施无机肥处理相比,有机肥与尿素配施提高了氨挥发损失量。原因可能是有机肥中有机物质能够阻碍NH4+进入黏土矿物,减少铵的固定,增加NH4+有效性,促进氨挥发[29]。这与目前国内外许多报道结果不尽一致,一般认为有机无机配施能够降低土壤氨挥发,原因在于有机肥分解过程中可以产生大量有机酸,降低土壤pH,同时形成的腐殖质,提高土壤的吸附能力,吸附更多的NH4+,降低土壤氨挥发损失[21, 30-32]。本试验有机肥施用增加追肥尿素氮素损失的机制有待进一步研究。

3.2 土壤氨挥发的影响因子

温度对土壤氨挥发的影响是多方面的,温度升高能够提高水中NH3/NH4+比率,降低氨在水中的溶解度,促进从土壤向大气的扩散[33]。温度上升增强土壤脲酶活性,加快尿素水解,提高土壤溶液中NH4+浓度,增大氨分压,促进氨向大气的挥发[34]。倪康等[21]对潮土长期定位试验发现,小麦在基肥期的氨挥发速率与气温有显著的正相关关系,与本研究结果一致。基肥期温度低,脲酶活性弱,使得氨挥发的底物维持在较低水平,极大降低了氨挥发强度。与基肥期相比,追肥期温度大幅度上升,氨挥发底物供应充足,氨挥发速率增加。此时,温度不再是氨挥发速率的主要影响因子。

土壤含水量对氨挥发的影响报道不一。Fenn等[35]认为,较高的土壤含水量降低了液相中NH4+含量,降低了氨分压和氨挥发速率。张志莹等[36]将不同处理的牛粪施入土壤,发现含水量50%~70%的土壤中各种粪肥的累积氨挥发量均显著高于含水量10%~30%的土壤。堆腐牛粪在土壤含水量为50%时,氨挥发量最大;土壤含水量70%时,新鲜牛粪的氨挥发损失最多。张承先等[36]发现,有机无机配施时,氨挥发速率随土壤含水量增加而增大。从图 3可见,虽然基肥期有机肥处理土壤含水量波动较小,但也显著影响着有机肥的氨挥发速率。有机肥相对难溶,不易随水下渗,但容易在土壤中形成碱性环境,发生氨化反应。追施尿素后,有机肥处理耕层土壤的NH4+-N含量迅速增加,它不仅来自尿素,也可能来自先前施入的有机肥,为氨挥发提供了更多的底物。随着监测时间的延长,土壤含水量不断降低,耕层土壤硝化作用增强,NH4+很快转化为NO3-,使得氨挥发速率不断降低[37]。对无机肥处理,基肥期温度低,尿素水解速率慢,加之氮素可能随水下渗或者土壤固定,使得土壤水分对氨挥发的影响不显著。追肥期,当温度不再是限制因子时,以及氨挥发底物供应充足,土壤水分对氨挥发的影响得以充分体现。

4 结论

不同施肥期氨挥发损失量差异显著,冬小麦氨挥发损失主要来自追肥。新鲜牛粪与尿素配施的氨挥发损失量最大,显著高于牛粪堆肥与尿素配施和NPK平衡施肥。基肥期氨挥发速率与气温密切相关,追肥期土壤含水量和NH4+-N浓度是影响氨挥发的主控因子。在供试土壤上,无机和有机肥的氨挥发损失率小于2%,表明氨挥发在粘质潮土肥料氮损失较低。

参考文献
[1] 中华人民共和国国家统计局. 中国统计年鉴-2015年[M]. 北京: 中国统计出版社, 2015 . National Bureau of Statistics of the People's Republic of China. China statistical year book-2015[M]. Beijing: China Statistics Press, 2015 .
[2] 裴宏伟, 沈彦俊, 刘昌明. 华北平原典型农田氮素与水分循环[J]. 应用生态学报 , 2015, 26 (1) : 283–296. PEI Hong-wei, SHEN Yan-jun, LIU Chang-ming. Nitrogen and water cycling of typical cropland in the North China Plain[J]. Chinese Journal of Applied Ecology , 2015, 26 (1) : 283–296.
[3] Liao Q, Wei G P, Jiang Z P, et al. Research progress on resource utilization of livestock and poultry manure[J]. Agricultural Science & Technology , 2014, 15 (1) : 105–110.
[4] Bouwman A F, Boumans L J M, Batjes N H. Estimation of global NH3 volatilization loss from synthetic fertilizers and animal manure applied to arable lands and grasslands[J]. Global Biogeochemical Cycles , 2002, 16 (2) : 1024–1039.
[5] Mosier A R. Exchange of gaseous nitrogen compounds between agricultural systems and the atmosphere[J]. Plant and Soil , 2001, 228 : 17–27. DOI:10.1023/A:1004821205442
[6] 薛利红, 杨林章, 施卫明, 等. 农村面源污染治理的"4R"理论与工程实践:源头减量技术[J]. 农业环境科学学报 , 2013, 32 (5) : 881–888. XUE Li-hong, YANG Lin-zhang, SHI Wei-ming, et al. Reduce-retain-reuse-restore technology for controlling the agricultural non-point pollution in countryside in China:Source reduction technology[J]. Journal of Agro-Environment Science , 2013, 32 (5) : 881–888.
[7] 朱兆良. 中国土壤氮素研究[J]. 土壤学报 , 2008, 45 (5) : 778–783. ZHU Zhao-liang. Research on soil nitrogen in China[J]. Acta Pedologica Sinica , 2008, 45 (5) : 778–783.
[8] Longhurst B, Houlbrooke D, Orchiston T, et al. Characterising dairy manures and slurries[R]. Advanced Nutrient Management:Gains from the Past-Goals for the Future, 2012:1-6.
[9] Spiehs M J, Woodbury B L, Tarkalson D D, et al. Long term effects of annual additions of animal manure on soil chemical, physical, and biological properties in the Great Plains[C]//International Symposium on Air Quality and Manure Management for Agriculture Conference Proceedings, 13-16 September 2010, Dallas, Texas. American Society of Agricultural and Biological Engineers, 2010:1.
[10] Li J, Shi Y, Luo J, et al. Use of nitrogen process inhibitors for reducing gaseous nitrogen losses from land-applied farm effluents[J]. Biology and Fertility of Soils , 2014, 50 (1) : 133–145. DOI:10.1007/s00374-013-0842-2
[11] 马银丽, 吉艳芝, 李鑫, 等. 施氮水平对小麦-玉米轮作体系氨挥发与氧化亚氮排放的影响[J]. 生态环境学报 , 2012, 21 (2) : 225–230. MA Yin-li, JI Yan-zhi, LI Xin, et al. Effects of N fertilization rates on the NH3 volatilization and N2O emissions from the wheat-maize rotation system in North China Plain[J]. Ecology and Environmental Sciences , 2012, 21 (2) : 225–230.
[12] 俞映倞, 薛利红, 杨林章. 太湖地区稻田不同氮肥管理模式下氨挥发特征研究[J]. 农业环境科学学报 , 2013, 32 (8) : 1682–1689. YU Ying-liang, XUE Li-hong, YANG Lin-zhang, et al. Ammonia volatilization from paddy fields under different nitrogen schemes in Tai Lake region[J]. Journal of Agro-Environment Science , 2013, 32 (8) : 1682–1689.
[13] 董文旭, 胡春胜, 陈素英, 等. 耕作对冬小麦-夏玉米农田氮肥氨挥发损失的影响[J]. 中国农业科学 , 2013, 46 (11) : 2278–2284. DONG Wen-xu, HU Chun-sheng, CHEN Su-ying, et al. Effect of conservation tillage on ammonia volatilization from nitrogen fertilizer in winter wheat-summer maize cropping system[J]. Scientia Agricultura Sinica , 2013, 46 (11) : 2278–2284.
[14] 郝小雨, 高伟, 王玉军, 等. 有机无机肥料配合施用对日光温室土壤氨挥发的影响[J]. 中国农业科学 , 2012, 45 (21) : 4403–4414. HAO Xiao-yu, GAO Wei, WANG Yu-jun, et al. Effects of combined application of organic manure and chemical fertilizers on ammonia volati-lization from greenhouse vegetable soil[J]. Scientia Agricultura Sinica , 2012, 45 (21) : 4403–4414.
[15] 靳红梅, 常志州, 郭德杰, 等. 追施猪粪沼液对菜地氨挥发的影响[J]. 土壤学报 , 2012, 49 (1) : 86–95. JIN Hong-mei, CHANG Zhi-zhou, GUO De-jie, et al. Effect of top-dressing with digested pig slurry on ammonia volatilization in vegetable fields[J]. Acta Pedologica Sinica , 2012, 49 (1) : 86–95.
[16] 李喜喜, 杨娟, 王昌全, 等. 猪粪施用对成都平原稻季氨挥发特征的影响[J]. 农业环境科学学报 , 2015, 34 (11) : 2236–2244. LI Xi-xi, YANG Juan, WANG Chang-quan, et al. Effects of pig manure applications on ammonia volatilization in soil during rice season in Chengdu Plain[J]. Journal of Agro-Environment Science , 2015, 34 (11) : 2236–2244.
[17] 国辉, 袁红莉, 耿兵, 等. 牛粪便资源化利用的研究进展[J]. 环境科学与技术 , 2013, 36 (5) : 68–75. GUO Hui, YUAN Hong-li, GENG Bing, et al. Research progress in resource utilization of cattle manure[J]. Environmental Science & Technology , 2013, 36 (5) : 68–75.
[18] Tian G M, Gao J L, Cai Z C, et al. Ammonia volatilization from winter wheat field top-dressed with urea[J]. Pedosphere , 1998, 8 (4) : 331–336.
[19] 王朝辉, 刘学军, 巨晓棠, 等. 田间土壤氨挥发的原位测定--通气法[J]. 植物营养与肥料学报 , 2002, 8 (2) : 205–209. WANG Zhao-hui, LIU Xue-jun, JU Xiao-tang, et al. Field in situ determination of ammonia volatilization from soil venting method[J]. Plant Nutrition and Fertilizer Science , 2002, 8 (2) : 205–209.
[20] Cai G X, Chen D L, Ding H, et al. Nitrogen losses from fertilizers applied to maize, wheat and rice in the North China Plain[J]. Nutrient Cycling in Agroecosystems , 2002, 63 (2/3) : 187–195. DOI:10.1023/A:1021198724250
[21] 倪康, 丁维新, 蔡祖聪. 有机无机肥长期定位试验土壤小麦季氨挥发损失及其影响因素研究[J]. 农业环境科学学报 , 2009, 28 (12) : 2614–2622. NI Kang, DING Wei-xin, CAI Zu-cong. Ammonia volatilization from soil as affected by long-term application of organic manure and chemical fertilizers during wheat growing season[J]. Journal of Agro-Environment Science , 2009, 28 (12) : 2614–2622.
[22] 吉艳芝, 巨晓棠, 刘新宇, 等. 不同施氮量对冬小麦田氮去向和气态损失的影响[J]. 水土保持学报 , 2010, 24 (3) : 113–118. JI Yan-zhi, JU Xiao-tang, LIU Xin-yu, et al. Impact of different nitrogen application on nitrogen movement and gaseous loss of winter wheat fields[J]. Soil and Water Conservation , 2010, 24 (3) : 113–118.
[23] 王珏, 巨晓棠, 张丽娟, 等. 华北平原小麦季氮肥氨挥发损失及影响因素研究[J]. 河北农业大学学报 , 2009, 32 (3) : 5–11. WANG Jue, JU Xiao-tang, ZHANG Li-juan, et al. Ammonia volatilization of N fertilizer and influencing factors in the North China Plain[J]. Journal of Agricultural University of Hebei , 2009, 32 (3) : 5–11.
[24] 段争虎, 周玉麟. 土壤特性和环境因子对氨挥发的影响[J]. 土壤通报 , 1990, 21 (3) : 131–134. DUAN Zheng-hu, ZHOU Yu-lin. Study on effects of soil characteristics and environmental factors on ammonia volatilization[J]. Chinese Journal of Soil Science , 1990, 21 (3) : 131–134.
[25] Reynolds C M, Wolf D C. 1987:Influence of urease activity and soil properties on ammonia volatilization from urea[J]. Soil Science , 1987, 143 : 418–425. DOI:10.1097/00010694-198706000-00005
[26] Sommer S G, Hutchings N J. Ammonia emission from field applied manure and its reduction-invited paper[J]. European Journal of Agronomy , 2001, 15 (1) : 1–15. DOI:10.1016/S1161-0301(01)00112-5
[27] Petersen S O, Andersen M. Influence of soil water potential and slurry type on denitrification activity[J]. Soil Biology Biochemistry , 1996, 28 : 977–980. DOI:10.1016/0038-0717(96)00067-3
[28] Li J, Shi Y, Luo J, et al. Effects of form of effluent, season and urease inhibitor on ammonia volatilization from dairy farm effluent applied to pasture[J]. Journal of Soils & Sediments , 2014, 14 (8) : 1341–1349.
[29] Stevenson F J, Dhariwal A P S. Distribution of fixed ammonium in soils[J]. Soil Science Society of America Journal , 1959, 23 (2) : 121–125. DOI:10.2136/sssaj1959.03615995002300020013x
[30] 李菊梅, 徐明岗, 秦道珠, 等. 有机肥无机肥配施对稻田氨挥发和水稻产量的影响[J]. 植物营养与肥料学报 , 2005, 11 (1) : 51–56. LI Ju-mei, XU Ming-gang, QIN Dao-zhu, et al. Effects of chemical fertilizers application combined with manure on ammonia volatilization and rice yield in red paddy soil[J]. Plant Nutrition and Fertilizer Science , 2005, 11 (1) : 51–56.
[31] 刘红梅, 庞凤梅, 赖欣, 等. 供氮水平和有机无机配施对麦田土壤氨挥发的影响[J]. 安徽农业科学 , 2012, 40 (12) : 7119–7122. LIU Hong-mei, PANG Feng-mei, LAI Xin, et al. Effects of nitrogen fertilizers rate and combined application of organic manure and chemical fertilizer on soil ammonia volatilization in winter wheat field[J]. Journal of Anhui Agricultural Sciences , 2012, 40 (12) : 7119–7122.
[32] 葛顺峰, 姜远茂, 彭福田, 等. 春季有机肥和化肥配施对苹果园土壤氨挥发的影响[J]. 水土保持学报 , 2010, 24 (5) : 199–203. GE Shun-feng, JIANG Yuan-mao, PENG Fu-tian, et al. Effect of chemical fertilizers application combined with organic manure on ammonia volatilization in spring in apple orchard[J]. Soil Water Conservation , 2010, 24 (5) : 199–203.
[33] Sharpe R R, Harper L A. Soil, plant and atmospheric conditions as they relate to ammonia volatilization[J]. Fertilizer Research , 1995, 42 : 149–158. DOI:10.1007/BF00750509
[34] Freney J R, Simpson J R, Denmead O T. Volatilization of ammonia[M]//Gaseous Loss of Nitrogen from Plant-Soil Systems. Springer Netherlands, 1983:1-32.
[35] Fenn L B, Richards J. Ammonia loss from surface applied urea-acid products[J]. Fertilizer Research , 1986, 9 : 265–275. DOI:10.1007/BF01050352
[36] 张志莹, 吴景贵, 杨天悦, 等. 不同处理牛粪与氮肥混配氨挥发的模拟研究[J]. 水土保持学报 , 2013, 27 (6) : 285–289. ZHANG Zhi-ying, WU Jing-gui, YANG Tian-yue, et al. Ammonia volatilization of different cattle manures mixed with Nitrogen fertilizer[J]. Soil Water Conservation , 2013, 27 (6) : 285–289.
[37] 张承先, 武雪萍, 吴会军, 等. 不同土壤水分条件下华北冬小麦基施不同氮肥的氨挥发研究[J]. 中国土壤与肥料 , 2008 (5) : 28–32. ZHANG Cheng-xian, WU Xue-ping, WU Hui-jun, et al. Research on the relationship of ammonia volatilization rate and fertilizer type with irrigation treatments for winter wheat in North China[J]. Soil and Fertilizer Sciences in China , 2008 (5) : 28–32.