快速检索        
  农业环境科学学报  2018, Vol. 37 Issue (6): 1291-1299

文章信息

巴闯, 杨明, 邹洪涛, 蒋一飞, 王丹蕾, 陈松岭, 虞娜, 张玉玲
BA Chuang, YANG Ming, ZOU Hong-tao, JIANG Yi-fei, WANG Dan-lei, CHEN Song-ling, YU Na, ZHANG Yu-ling
包膜/抑制剂联合调控对农田土壤N2O排放和氨挥发的影响
Combined effects of coating/inhibitors on N2O emission and ammonia volatilization in farmland soil
农业环境科学学报, 2018, 37(6): 1291-1299
Journal of Agro-Environment Science, 2018, 37(6): 1291-1299
http://dx.doi.org/10.11654/jaes.2017-1538

文章历史

收稿日期: 2017-11-07
录用日期: 2018-01-10
包膜/抑制剂联合调控对农田土壤N2O排放和氨挥发的影响
巴闯 , 杨明 , 邹洪涛 , 蒋一飞 , 王丹蕾 , 陈松岭 , 虞娜 , 张玉玲     
沈阳农业大学土地与环境学院, 农业部东北耕地保育重点实验室, 土肥资源高效利用国家工程实验室, 沈阳 110866
摘要: 采用密闭式静态箱-气相色谱法和通气法研究了盆栽试验条件下包膜/抑制剂结合型肥料对土壤N2O排放和氨挥发的影响。结果表明:与普通尿素(U)相比,包膜/抑制剂结合型尿素(T2~T4)延迟了土壤N2O排放和氨挥发出现峰值的时间。包膜尿素(T1)、含有抑制剂的包膜尿素(T2)、抑制剂涂层尿素后包膜(T3)、包膜尿素与抑制剂混合(T4)处理N2O累积排放量比U处理显著减少了27%、39%、49%、39%(P < 0.05),T3处理N2O累积排放量最小,为0.87 kg N·hm-2,显著低于其他处理(P < 0.05),T2和T4处理之间差异不显著(P>0.05);包膜/抑制剂型肥料能够减少土壤氨挥发,T3处理氨挥发量最小,为13.68 kg N·hm-2,与U处理相比,T2、T3和T4处理氨挥发量分别显著减少了34%、45%和31%(P < 0.05);T2和T3处理玉米产量分别比U处理显著提高13.03%和17.98%(P < 0.05);T3处理氮素利用率最高,为58.22%;成本效益分析结果表明,T3与其他处理相比经济净效益最大,为3 061.6元·hm-2。综上,包膜/抑制剂结合型尿素可以减少土壤N2O排放和氨挥发的气态损失,提高产量和氮素利用率,其中抑制剂涂层尿素后包膜(T3)处理效果最佳。
关键词: 包膜尿素     生化抑制剂     N2O排放     氨挥发     成本效益分析    
Combined effects of coating/inhibitors on N2O emission and ammonia volatilization in farmland soil
BA Chuang, YANG Ming, ZOU Hong-tao, JIANG Yi-fei, WANG Dan-lei, CHEN Song-ling, YU Na, ZHANG Yu-ling     
College of Land and Environment, Shenyang Agricultural University; Key Laboratory of Arable Land Conservation(Northeast China), Ministry of Agriculture; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866, China
Project supported: The National Natural Science Foundation of China(31572206); The National Key Technology Research and Development Program of the Ministry of Science and Technology of China(2015BAD23B0203);"BaiQianWan Talents Program" of Liaoning Province; Innovative Talent Program of Institutions of Higher Learning of Liaoning Province
Abstract: We examined the effects of coated fertilizer plus inhibitors on N2O emission and ammonia volatilization from soil using both closed static chamber-gas chromatography and aeration methods in pot experiments. Our results showed that the application of encapsulated urea in combination with inhibitors could delay the peak occurrence of N2O emission and ammonia volatilization compared with urea treatment(U) alone. Cumulative N2O emissions from the treatments using film-coated urea(T1), film plus inhibitor-coated urea(T2), inhibitor-coated urea encapsulated by film(T3), and film-coated urea blended with inhibitors(T4) were significantly lower than that of U by 27%, 39%, 49%, and 39%, respectively. The N2O emission from T3 was the lowest(0.87 kg N·hm-2). There was no significant difference in N2O emission between T2 and T4 treatments. Similarly, coated fertilizer plus inhibitors reduced soil ammonia volatilization. Ammonia volatilization under the T3 treatment was the lowest, at 13.68 kg N·hm-2. The amount of ammonia volatilization under treatments T2, T3, and T4 were significantly lower than that under U by 34%, 45%, and 31%, respectively. Maize yields under treatments T2 and T3 were 13.03% and 17.98% higher than that under U treatment, respectively. Nitrogen utilization efficiency under treatment T3 was up to 58.22%. Ultimately, the cost and benefit analysis results showed that, compared with that of the other treatments, the net benefit of T3 was the largest(3 061.6 yuan·hm-2). Thus, coated urea plus inhibitors could reduce ammonia volatilization and N2O emission, and subsequently increase nitrogen utilization efficiency and maize yield. Moreover, T3 was more effective than other fertilizers.
Key words: coated urea     biological inhibitor     N2O emission     ammonia volatilization     cost and benefit analysis    

化肥在提高粮食产量的同时,因其不合理施用造成养分流失已成为我国当前农业面源污染的主要来源之一[1]。我国氮肥利用率很低,当季平均约为30%[2],损失率却高达45%[3]。氮肥施入土壤后,通过氨挥发、硝化-反硝化作用、径流和淋溶等途径流失到环境[4-5],不仅造成了资源的浪费,还引发了土壤、水体、空气等环境问题[6-7]。据统计,我国全年因农业活动排放的N2O占各排放源N2O总排放量的73.8%[8],其在大气中存留时间较长,不仅破坏臭氧层、导致温室效应,还危害人类健康[9]。此外,近40%的氨气来自农田生态系统中的氮素损失[10],氨挥发不仅降低氮肥利用率,影响农作物产量[11],还会与大气中酸性物质结合生成气溶胶引发酸雨、雾霾和水体富营养化等一系列环境问题[12]

通过对尿素物理包膜可降低因施用氮肥而产生的土壤N2O排放和氨挥发损失[13-14],但施肥后若发生强降雨将降低其气体减排效果[15]。基于大数据的meta分析结果表明,包膜肥料未能显著增加作物产量和氮素吸收,反而会产生负效应[16]。在尿素中加入生化抑制剂可通过减缓酰胺态氮水解和铵态氮的硝化进程减少氨挥发和N2O排放,从而减少氮素损失[17],提高氮肥利用率[18-19],但其受环境因素影响效果有限[20]。包膜/抑制剂联用可以实现对尿素溶出和转化的双重调控,在减少氮素损失和促进作物生长方面作用效果显著[21-22]。通过国际联机检索,仅发现两篇关于包膜与抑制剂结合型尿素的发明专利,分别是在包膜材料中添加抑制剂包被尿素[23]和抑制剂涂层尿素后再包膜[24]。目前主要集中于研究包膜/抑制剂单一结合方式的作用效果,而就不同结合方式对氮素气态损失影响的研究鲜见报道。

因此,本文采用田间盆栽试验方法,通过测定不同施肥条件下作物不同生育期的土壤N2O和氨排放量及玉米产量,明确两种气体的动态变化特征,探讨包膜/抑制剂不同结合方式对N2O排放、氨挥发以及产量的影响,旨在为新型肥料研发应用和农业绿色发展提供理论依据和指导。

1 材料与方法 1.1 供试材料

供试肥料:尿素(N 46.2%),过磷酸钙(P2O5 15%),硫酸钾(K2O 54%)。

供试抑制剂:3,4-二甲基吡唑磷酸盐(3,4-dimethyl pyrazole phosphate,DMPP)和N-丁基硫代磷酰三胺[N-(n-butyl) thiophosphoric tiramide,NBPT],上海思域化工科技有限公司生产,纯度≥97%。

供试包膜材料:聚乙烯醇(Polyvinyl alcohol, PVA)和聚乙烯吡咯烷酮(Polyvinylpyrrolidone, PVP)。

供试玉米:先玉335。

1.2 试验地概况

试验于2017年在沈阳农业大学天柱山科学研究试验基地进行(123°34′ E,41°49′ N),该地区为温带半湿润季风气候,平均气温8.3 ℃,年降水量570~680 mm。供试土壤为典型棕壤,其理化性质见表 1

表 1 供试土壤理化性质 Table 1 Physical and chemical properties of tested soil
1.3 试验设计

取0~20 cm耕层土壤,自然风干压碎,剔除根系、石砾等杂质,过5 mm筛。盆栽选用高35 cm、内径25 cm的陶瓷盆,每盆装土15 kg,将盆埋入试验区土体,盆边外露11.5 cm,保证试验环境与大田环境一致。氮、磷、钾肥以基肥施入,具体施肥方式为:先将7 kg土装盆垫底,再将7 kg土与肥料混匀后装盆,最后表层覆土1 kg,按1.3 g·cm-3容重压实,浇水至土壤含水量为田间持水量的70%,次日播种玉米,具体管理与当地玉米种植常规管理一致。

试验共6个处理,分别为:(1)不施氮肥CK;(2)普通尿素U;(3)包膜尿素T1;(4)含有抑制剂的包膜尿素(抑制剂溶于膜材料中)T2;(5)抑制剂涂层尿素后包膜(抑制剂包裹在膜内部)T3;(6)包膜尿素与抑制剂混合(抑制剂在膜材料外部)T4。试验中氮(N)、磷(P2O5)、钾(K2O)施用量分别为240、105、75 kg·hm-2,DMPP和NBPT添加量均为尿素N的1%[25-26]。每个处理3次重复。

1.4 土壤N2O的采集与测定

N2O采用密闭式静态箱法采集。采样箱由箱体和底座组成。箱体为有机玻璃材质长方体(50 cm×50 cm×60 cm),内部放置小风扇,以保证箱内气体均匀分布;底座(50 cm×50 cm×25 cm)上表面周围有凹槽,采气时,用水密封凹槽,然后罩上箱体,形成一个密闭环境,再使用气体采样泵从取样口抽取样品。箱体上部插有温度计,用于测定箱内温度。待玉米株高超过60 cm时,增加箱体高度以保证采气顺利进行。气体样品自施肥后第2 d开始采集,之后每6 d采样1次,采样时间从上午8:00开始,每个处理采集3次,时间间隔为10 min。

气体样品使用Agilent 7890B气相色谱仪进行分析测定,根据气体浓度随时间的变化速率计算气体排放通量。计算公式为:

F=[273/(273+T)]×(28/22.4)×H×60×(dc/dt)

式中:F为N2O排放通量,mg N·m-2·h-1T为采样箱内温度,℃;28为每摩尔N2O分子中N的质量数,g·moL-1;22.4为温度在273 K时的N2O摩尔体积,L·moL-1H为箱体高度,m;c为N2O浓度,μL·L-1t为采样时间,min;dc/dt为采样箱内N2O浓度的变化速率,μL·L-1·min-1

相邻两次N2O排放通量的平均值与两次采样间隔时间的乘积之和得到N2O累积排放量;N2O-N损失率为各处理与空白N2O累积排放量之差再除以该处理施氮量。

采用温度传感器(18B20)测定5 cm土层温度。采用湿度传感器(EC-5)测定10 cm土层体积含水率,土壤充水孔隙度(Water-filled pore space,WFPS)计算公式为:

WFPS=土壤体积含水量/土壤孔隙度

土壤孔隙度=1-土壤容重/2.65

1.5 土壤氨挥发的采集与测定

氨挥发采用通气法测定[27]图 1装置为聚氯乙烯材质的内径10.5 cm、高11 cm的硬质塑料管。分别将两块直径11 cm、厚度2 cm的海绵均匀浸以10 mL磷酸甘油溶液(50 mL磷酸+40 mL甘油,定容至1 L),并置于装置中,下层海绵距土壤表层5 cm,上层海绵与装置顶部相平。每日早8:00将下层的海绵取出,同时换上另一块刚浸过磷酸甘油的海绵。上层海绵根据其干湿情况3~5 d更换1次。替换下来的下层海绵装入500 mL塑料瓶中,加入300 mL浓度为0.01 mol·L-1的CaCl2溶液使海绵完全浸入,在200 r·min-1下振荡1 h,浸提液中的铵态氮采用凯氏定氮法测定。每日取样1次,直至测不出氨挥发为止。氨挥发速率计算公式为:

图 1 测定土壤氨挥发装置 Figure 1 Equipment for determination of ammonia volatilization from soil

式中:A为测得的氨量(NH3-N),mg;S为装置横截面积,m2T为捕获时间,d。

氨挥发累积量为每次测定的氨挥发通量之和;NH3-N损失率为各处理氨挥发累积量与空白之差再除以该处理施氮量。

1.6 产量及氮素利用率

玉米成熟期收获计产,将植株分为秸秆和籽粒,105 ℃杀青30 min后,70 ℃烘干至恒重,称重后粉碎过0.3 mm筛,采用元素分析仪(vario EL Ⅲ)测定氮素含量。

氮肥利用率=(施氮区玉米地上部吸氮量-无氮区玉米地上部吸氮量)/施氮量×100%

1.7 成本效益分析

按试验区大田的种植密度42 000株·hm-2折算盆栽玉米产量,玉米价格为中商情报网2016年平均价格。DMPP、NBPT、PVA和PVP的价格为阿里巴巴网站上平均交易价格。氮素气态损失产生的环境效益(M,元·hm-2)计算公式为:

M=N×(FT - FUP

式中:N为施氮量,kg·hm-2FT为氮素气态损失率,%;FU为常规施肥氮素气态损失率,%;P为环境影响的经济效益值,元·kg-1 [28-30]

1.8 统计分析

采用Microsoft Excel 2010和IBM SPSS Statistics 19.0软件进行数据统计分析,采用Origin 8.5软件作图。

2 结果与分析 2.1 不同处理对土壤N2O排放的影响 2.1.1 土壤N2O排放通量动态变化

在监测期间,各施肥处理土壤N2O排放通量均高于CK(图 2)。U处理N2O排放通量在第44 d出现排放高峰,峰值为0.21 mg N·m-2·h-1。与U处理相比,在第56 d前,T1处理和包膜/抑制剂结合型尿素(T2~T4)处理N2O排放动态变化趋势相对平稳,且均处于较低水平。T1~T4处理比U处理延迟了N2O排放出峰时间,T4和T1处理在第56 d出现峰值,分别为0.18 mg N·m-2·h-1和0.20 mg N·m-2·h-1,T2和T3处理在62 d出现峰值,分别为0.16 mg N·m-2·h-1和0.10 mg N·m-2·h-1。80 d后各处理N2O排放逐渐趋于平稳。

图 2 N2O排放通量动态变化 Figure 2 Dynamics of N2O emission fluxes of different treatments
2.1.2 土壤N2O累积排放量

表 2可知,各处理土壤N2O累积排放量大小依次为U>T1>T4>T2>T3>CK。U处理N2O累积排放量为1.71 kg N·hm-2,T1处理较U处理显著减少了27%(P < 0.05),但分别比T2、T3和T4处理显著高19%、44%和19%。T3处理N2O累积排放量最小,为0.87 kg N·hm-2,比U处理显著减少了49%(P < 0.05),T2和T4处理N2O累积排放量均比T3处理显著高21%(P < 0.05)。可知,包膜/抑制剂联用可以进一步提高包膜肥料的N2O减排效果,且包膜/抑制剂结合方式不同,N2O排放量存在差异。

表 2 不同处理N2O的累积排放量 Table 2 Cumulative N2O emissions of different treatments
2.1.3 环境变量对N2O排放的影响

图 3所示,试验期间5 cm土层温度变化范围在16.6~29.3 ℃之间,土壤N2O排放通量与其呈显著性相关(r=0.204,n=102,P < 0.05)。土壤充水孔隙度(WFPS)受降水和灌溉的影响,其变化范围在30.3%~78.0%之间,土壤N2O排放通量与WFPS呈极显著性相关(r=0.283,n=102,P < 0.01)。可知,N2O的排放受WFPS影响变化较大。

图 3 环境因素时间变化规律 Figure 3 Temporal variations of environmental factors
2.2 不同处理对土壤氨挥发的影响 2.2.1 土壤氨挥发速率变化特征

各处理氨挥发动态变化速率存在差异(图 4)。U处理氨挥发出现2次排放峰,在第2 d出现首次排放峰后,第7 d达到最高峰,峰值为8.48 kg N·hm-2·d-1,之后逐渐趋于平稳。而T1~T4处理前期较为平稳,T1处理在第8 d达到峰值,T2、T3和T4处理则均在第9 d达到排放高峰,且峰值分别比T1处理低26%、32%和15%。T3处理氨挥发排放峰值最小,为3.92 kg N·hm-2·d-1,比U处理降低了54%,且分别比T2和T4处理低8%和20%。

图 4 氨挥发排放通量动态变化 Figure 4 Dynamics of ammonia volatilization rates in different treatments
2.2.2 土壤氨挥发累积量变化

表 3可知,各处理氨挥发累积排放量大小依次为U>T1>T4>T2>T3>CK。U处理氨挥发累积排放量最大,为24.66 kg N·hm-2,NH3-N损失率为8.67%。与U处理相比,T1~T4处理累积氨挥发量分别减少了8%、34%、45%和31%。T2~T4处理较T1处理分别显著减少了28%、40%和25%(P < 0.05)。T3处理氨挥发累积量最小,为13.68 kg N·hm-2,分别比T2和T4处理减少了16%和20%,但3个处理之间无显著差异(P>0.05)。

表 3 不同处理氨挥发累积量 Table 3 Cumulative ammonia volatilization of different treatments
2.3 不同处理对玉米产量、构成因素及氮素利用率的影响

各施肥处理玉米产量均较不施氮肥处理有显著性提高(表 4)。T1较U处理增产1.38%,但差异不显著(P>0.05)。T2和T3处理产量比U处理分别显著增加了13.03%和17.98%(P < 0.05),且与T1处理也差异显著,但T2与T3处理之间差异不显著。T4处理较U处理减产4.93%,但未达到显著水平(P>0.05)。

表 4 不同处理对玉米产量、构成及氮素利用率的影响 Table 4 Effects of different treatments on maize yields and its components and nitrogen utilization efficiency

各施氮处理玉米穗长、穗粗和百粒重均优于不施氮处理,其中以T3处理最优,与U处理相比,T3处理穗长、穗粗和百粒重分别增加了6.63%、6.08%和6.91%(表 4)。各处理氮肥利用率存在差异,T3处理最高,为58.22%,其次为T2、T1、U和T4处理,分别为49.04%、40.69%、28.08%和26.38%。

2.4 不同处理成本效益分析

成本效益分析结果表明(表 5),T1、T2、T3和T4处理分别带来了20.56、77.68、101.80元·hm-2和71.29元·hm-2的环境效益,且这部分环境效益主要是减少土壤氨挥发产生的经济效益。T1、T2和T3处理产生的经济效益大于成本,最终净效益为287.56、1 988.08元·hm-2和3 061.6元·hm-2。而T4处理产生了1 780.31元·hm-2的负效益。

表 5 不同处理成本效益分析 Table 5 The cost and benefit analysis of different treatments
3 讨论

尿素施入土壤后,在脲酶作用下迅速水解成铵态氮,铵态氮的累积不仅导致氨挥发,还促进硝化-反硝化作用产生N2O。试验中各施氮处理土壤N2O排放和氨挥发均显著高于不施氮处理,表明施用氮肥可显著促进氨挥发和N2O排放[31]。U处理2~4 d后土壤N2O排放和氨挥发出现排放峰,谢勇等[32]在大田条件下也得出类似趋势。尿素包膜(T1~T4)处理既延迟了N2O排放和氨挥发的出峰时间,又减少了其累积排放量[33-36],这是由于物理包膜能够控制养分释放速率,根据玉米生长需肥曲线缓慢释放氮素,防止土壤中过量的无机氮转变为气态氮,减少氮素气态损失,提高氮肥利用率[37-39]

T1处理土壤N2O累积排放量显著低于U处理[40],T2~T4比T1处理土壤N2O累积排放量小,表明包膜/抑制剂联用可以进一步提高包膜肥料N2O减排效果。T3处理的N2O累积排放量最小,且与T2和T4处理差异显著(P < 0.05),这可能是由于T2处理将改性聚乙烯醇与抑制剂结合后发生了某种交联反应,改变了包膜材料特性或降低抑制剂的抑制效果,T4处理抑制剂在膜外部易受水分等因素影响,养分溶出时抑制剂的抑制效果已降低,而T3处理改性聚乙烯醇包膜抑制剂涂层尿素,能够实现对尿素和抑制剂释放的同时控制,从而实现对尿素的溶出和转化双重调控,从源头上控制土壤矿质氮含量,减少氮素损失。有研究发现包膜肥料能够显著降低土壤氨挥发损失[41],本试验未达到显著水平,这可能与包膜材料特性、土壤pH和气候条件等因素有关。T2~T4处理比T1处理氨挥发量减少了25%~40%,且差异显著(P < 0.05)。可知,包膜与抑制剂结合对控制尿素水解更有效,这可能因为包膜与抑制剂联合调控能够有效避免尿素水解导致的土壤铵态氮含量激增,从而减缓了土壤氨挥发损失[21]。本研究中土壤N2O-N损失率为0.17%~0.52%,NH3-N损失率为4.09%~8.67%,邱炜红等[42]在辣椒地施用抑制剂型肥料土壤N2O-N损失率为0.52%~0.99%,谢勇等[32]在大田施用包膜肥料研究玉米地N2O-N损失率为0.32%~0.7%,NH3-N损失率为8.57%~9.66%。可知,包膜/抑制剂联合调控气体减排效果更佳。

T1处理增产效果不显著,王斌等[35]也发现包膜肥料对早稻增产效果不显著,但也有研究发现包膜肥料能够显著提高作物产量[43-44],这可能与环境及施肥管理措施等因素有关,有待进一步确证。T2和T3处理玉米显著增产,T4处理减产,但未达到显著水平,这可能因为T4处理抑制剂在膜外部,导致肥料与抑制剂释放不同步,进而造成养分供应与作物生长需求不同步,作物吸收氮素减少,因此达不到增产的效果。包膜/抑制剂结合型肥料显著减少了气体排放,带来了一定的环境效益,影响作物产量,产生了一定的经济效益。同时,物理包膜与生化抑制剂的添加也增加了农业生产成本。试验中T2和T3处理产生的经济净效益比T1处理大,且大于Yang等[45]研究农业上配施抑制剂产生的净效益,T4处理产生负效益是由于产量的下降,说明T4处理带来的环境效益不足以弥补产量造成的亏损。

4 结论

(1) 包膜与抑制剂联合调控可以进一步提升包膜尿素的应用效果,与普通尿素相比延迟了N2O排放和氨挥发出现峰值的时间,分别减少了39%~49%的N2O排放量和31%~45%的氨挥发量,

(2) 抑制剂涂层尿素后包膜作用效果最佳,既减少了49%(P < 0.05)的N2O排放量和45%(P < 0.05)的氨挥发量,又增产17.98%(P < 0.05),氮素利用率达到58.22%,经济净效益为3 061.6元·hm-2。可见,抑制剂涂层尿素后包膜这种联合调控氮素溶出-转化模式值得推介。但是,本研究还需要进一步开展田间试验验证结果的可靠性,为新型肥料的研发应用提供更为客观的依据。

参考文献
[1]
闫湘, 金继运, 何萍, 等. 提高肥料利用率技术研究进展[J]. 中国农业科学, 2008, 41(2): 450-459.
YAN Xiang, JIN Ji-yun, HE Ping, et al. Recent advances in technology of increasing fertilizer use efficiency[J]. Scientia Agricultura Sinica, 2008, 41(2): 450-459.
[2]
中国科学院生物学部. 我国化肥面临的突出问题及建议[J]. 科技导报, 1997(9): 35-36.
Department of Biology, Chinese Academy of Sciences. Main problems of China's chemical fertilizer and their solutions[J]. Science & Technology Review, 1997(9): 35-36.
[3]
巨晓棠, 刘学军, 邹国元, 等. 冬小麦/夏玉米轮作体系中氮素的损失途径分析[J]. 中国农业科学, 2002, 35(12): 1493-1499.
JU Xiao-tang, LIU Xue-jun, ZOU Guo-yuan, et al. Evaluation of nitrogen loss way in winter wheat and summer maize rotation system[J]. Scientia Agricultura Sinica, 2002, 35(12): 1493-1499. DOI:10.3321/j.issn:0578-1752.2002.12.011
[4]
Azeem B, Kushaari K Z, Man Z B, et al. Review on materials & methods to produce controlled release coated urea fertilizer[J]. Journal of Controlled Release, 2014, 181(1): 11-21.
[5]
牟林, 韩晓日, 于成广, 等. 不同无机矿物应用于包膜复合肥的氮素释放特征及其评价[J]. 植物营养与肥料学报, 2009, 15(5): 1179-1188.
MOU Lin, HAN Xiao-ri, YU Cheng-guang, et al. N-release characteristics of compound fertilizers coated with various minerals and its evaluation[J]. Plant Nutrition and Fertilizer Science, 2009, 15(5): 1179-1188.
[6]
Hayashi K, Nishimur S, Yagi K. Ammonia volatilization from a paddy field following applications of urea:Rice plants are both an absorber and an emitter for atmospheric ammonia[J]. Science of the Total Environment, 2008, 390(2/3): 485-494.
[7]
Erisman J W, Sutton M A, Galloway J, et al. How a century of ammonia synthesis changed the world[J]. Nature Geoscience, 2008, 1(10): 636-639. DOI:10.1038/ngeo325
[8]
国家发展和改革委员会应对气候变化司. 中华人民共和国气候变化第二次国家信息通报[M]. 北京: 中国经济出版社, 2013, 64-65.
The National Development and Reform Commission on Climate Change. The People's Republic of China second national communication on climate change[M]. Beijing: China Economic Press, 2013, 64-65.
[9]
黄耀. 中国的温室气体排放、减排措施与对策[J]. 第四纪研究, 2006, 26(5): 722-732.
HUANG Yao. Emissions of greenhouse gases in China and its reduction strategy[J]. Quaternary Sciences, 2006, 26(5): 722-732.
[10]
Huang X, Song Y, Li M M, et al. A high-resolution ammonia emission inventory in China[J]. Global Biogeochemical Cycles, 2012, 26(1): 1030.
[11]
赵允格, 邵明安, 张兴昌. 成垄压实施肥对氮素运移及氮肥利用率的影响[J]. 应用生态学报, 2004, 15(1): 68-72.
ZHAO Yun-ge, SHAO Ming-an, ZHANG Xing-chang. Impact of localized compaction and ridge fertilization on field nitrate transport and nitrate use efficiency[J]. Chinese Journal of Applied Ecology, 2004, 15(1): 68-72.
[12]
Trenkel M E. Slow and controlled-release and stabilized fertilizers:An option for enhancing nutrient use efficiency in agriculture[M]. Paris: International Fertilizer Industry Association(IFA), 2010, 56.
[13]
黄国宏, 陈冠雄, 张志明, 等. 玉米田N2O排放及减排措施研究[J]. 环境科学学报, 1998, 18(4): 345-349.
HUANG Guo-hong, CHEN Guan-xiong, ZHANG Zhi-ming, et al. N2O emission in maize field and its mitigation[J]. Acta Scientiae Circumstantiae, 1998, 18(4): 345-349.
[14]
杜建军, 毋永龙, 田吉林, 等. 控/缓释肥料减少氨挥发和氮淋溶的效果研究[J]. 水土保持学报, 2007, 21(2): 49-52.
DU Jian-jun, WU Yong-long, TIAN Ji-lin, et al. Effect of several controlled/slow-release fertilizers on decreasing ammonia volatilization and N leaching[J]. Journal of Soil and Water Conservation, 2007, 21(2): 49-52.
[15]
Jiang J Y, Hu Z H, Sun W J, et al. Nitrous oxide emissions from Chinese cropland fertilized with a range of slow-release nitrogen compounds[J]. Agriculture, Ecosystems & Environment, 2010, 135(3): 216-225.
[16]
Bruce A L, Liu L J, Chris van K, et al. Enhanced efficiency nitrogen fertilizers for rice systems:Meta-analysis of yield and nitrogen uptake[J]. Field Crops Research, 2013, 154: 246-254. DOI:10.1016/j.fcr.2013.08.014
[17]
俞巧钢, 殷建祯, 马军伟, 等. 硝化抑制剂DMPP应用研究进展及其影响因素[J]. 农业环境科学学报, 2014, 33(6): 1057-1066.
YU Qiao-gang, YIN Jian-zhen, MA Jun-wei, et al. Effects of nitrification inhibitor DMPP application in agricultural ecosystems and their influencing factors:A review[J]. Journal of Agro-Environment Science, 2014, 33(6): 1057-1066. DOI:10.11654/jaes.2014.06.001
[18]
Zaman M, Saggar S, Blennerhassett J D, et al. Effect of urease and nitrification inhibitors on N transformation, gaseous emissions of ammonia and nitrous oxide, pasture yield and N uptake in grazed pasture system[J]. Soil Biology & Biochemistry, 2009, 41(6): 1270-1280.
[19]
Pereira J, Barneze A S, Misselbrook T H, et al. Effects of a urease inhibitor and aluminum chloride alone or combined with a nitrification inhibitor on gaseous N emissions following soil application of cattle urine[J]. Biosystems Engineering, 2013, 115(4): 396-407. DOI:10.1016/j.biosystemseng.2013.05.002
[20]
Abalos D, Jeffery S, Sanz-Cobena A, et al. Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency[J]. Agriculture, Ecosystems and Environment, 2014, 189: 136-144. DOI:10.1016/j.agee.2014.03.036
[21]
张丽莉, 武志杰, 陈利军, 等. 包膜与氢醌结合对尿素释放及水解的影响[J]. 生态环境学报, 2009, 18(3): 1112-1117.
ZHANG Li-li, WU Zhi-jie, CHEN Li-jun, et al. Effect of coating and hydroquinone incorporation on urea-N release and its hydrolysis[J]. Ecology and Environmental Sciences, 2009, 18(3): 1112-1117.
[22]
宋以玲, 贺明荣, 董元杰, 等. 硝化抑制剂型包膜肥料对玉米生理特性、产量、品质的影响[J]. 河北科技师范学院学报, 2015, 29(1): 6-13.
SONG Yi-ling, HE Ming-rong, DONG Yuan-jie, et al. Effects of nitrification inhibitor fly ash coated slow release fertilizer on physiological characteristics yield and quality of maize[J]. Journal of Hebei Normal University of Science & Technology, 2015, 29(1): 6-13.
[23]
Duvdevani I. Controlled release vegetation enhancement agents coated with suffocated polymers, method of production and process of use: US, 5435821[P]. 1995.
[24]
Maeda S. Coated fertilizer granules-comprises ammonia and ammonium nitrite in granular material comprising two coated layers with a middle sub-coating layer containing nitric acid formation inhibitor: JP, 10265289[P]. 1998.
[25]
俞巧钢, 陈英旭. DMPP对稻田田面水氮素转化及流失潜能的影响[J]. 中国环境科学, 2010, 30(9): 1274-1280.
YU Qiao-gang, CHEN Ying-xu. Influences of nitrification inhibitor 3, 4-dimethylpyrazole phosphate on nitrogen transformation and potential runoff loss in rice fields[J]. China Environmental Science, 2010, 30(9): 1274-1280.
[26]
张文学, 孙刚, 何萍, 等. 双季稻田添加脲酶抑制剂NBPT氮肥的最高减量潜力研究[J]. 植物营养与肥料学报, 2014, 20(4): 821-830.
ZHANG Wen-xue, SUN Gang, HE Ping, et al. Highest potential of subtracting nitrogen fertilizer through addition of urease inhibitor NBPT in double-cropping paddy fields[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(4): 821-830. DOI:10.11674/zwyf.2014.0404
[27]
王朝辉, 刘学军, 巨晓棠, 等. 田间土壤氨挥发的原位测定:通气法[J]. 植物营养与肥料学报, 2002, 8(2): 205-209.
WANG Zhao-hui, LIU Xue-jun, JU Xiao-tang, et al. Field in situ determination of ammonia volatilization from soil:Venting method[J]. Journal of Plant Nutrition and Fertilizer, 2002, 8(2): 205-209. DOI:10.11674/zwyf.2002.0214
[28]
Jaynes D B, Thorp K, James D E. Potential water quality impact of drainage water management in the Midwest USA[R]. Canada: American Society of Agricultural and Biological Engineers Annual International Meeting, 2010.
[29]
Kusiima J M, Powers S E. Monetary value of the environmental and health externalities associated with production of ethanol from biomass feedstocks[J]. Energy Policy, 2010, 38(6): 2785-2796. DOI:10.1016/j.enpol.2010.01.010
[30]
Compton J E, Harrison J A, Dennis R L, et al. Ecosystem services altered by human changes in the nitrogen cycle:A new perspective for US decision making[J]. Ecology Letters, 2011, 14(8): 804-815. DOI:10.1111/ele.2011.14.issue-8
[31]
李鑫, 巨晓棠, 张丽娟, 等. 不同施肥方式对土壤氨挥发和氧化亚氮排放的影响[J]. 应用生态学报, 2008, 19(1): 99-104.
LI Xin, JU Xiao-tang, ZHANG Li-juan, et al. Effect of fertilization modes on soil ammonia volatilization and nitrous oxide emission[J]. Chinese Journal of Applied Ecology, 2008, 19(1): 99-104.
[32]
谢勇, 荣湘民, 张玉平, 等. 控释氮肥减量施用对春玉米土壤N2O排放和氨挥发的影响[J]. 农业环境科学学报, 2016, 35(3): 596-603.
XIE Yong, RONG Xiang-min, ZHANG Yu-ping, et al. Effects of reduced CRNF applications on N2O emissions and ammonia volatilization in spring maize soil[J]. Journal of Agro-Environment Science, 2016, 35(3): 596-603. DOI:10.11654/jaes.2016.03.025
[33]
卢艳艳, 宋付朋. 不同包膜控释尿素对农田土壤氨挥发的影响[J]. 生态学报, 2011, 31(23): 7133-7140.
LU Yan-yan, SONG Fu-peng. Effects of different coated controlled-release urea on soil ammonia volatilization in farmland[J]. Acta Ecologica Sinica, 2011, 31(23): 7133-7140.
[34]
朱永昶, 李玉娥, 秦晓波, 等. 控释肥和硝化抑制剂对华北春玉米N2O排放的影响[J]. 农业环境科学学报, 2016, 35(7): 1421-1428.
ZHU Yong-chang, LI Yu-e, QIN Xiao-bo, et al. Effects of controlled release fertilizer and nitrification inhibitor additions on nitrous oxide emissions from spring maize field in Northern China[J]. Journal of Agro-Environment Science, 2016, 35(7): 1421-1428. DOI:10.11654/jaes.2016.07.027
[35]
王斌, 李玉娥, 万运帆, 等. 控释肥和添加剂对双季稻温室气体排放影响和减排评价[J]. 中国农业科学, 2014, 47(2): 314-323.
WANG Bin, LI Yu-e, WAN Yun-fan, et al. Effect and assessment of controlled release fertilizer and additive treatments on greenhouse gases emission from a double rice field[J]. Scientia Agricultura Sinica, 2014, 47(2): 314-323. DOI:10.3864/j.issn.0578-1752.2014.02.011
[36]
范会, 姜姗姗, 魏荧, 等. 农田土壤施用系列新型氮肥后气态氮(NH3和N2O)减排效果比较:以夏玉米季为例[J]. 环境科学, 2016, 37(8): 2906-2913.
FAN Hui, JIANG Shan-shan, WEI Ying, et al. Assessment of gaseous nitrogen(NH3 and N2O) mitigation after the application of a range of new nitrogen fertilizers in summer maize cultivation[J]. Environment Science, 2016, 37(8): 2906-2913.
[37]
胡腾, 同延安, 高鹏程, 等. 黄土高原南部旱地冬小麦生长期N2O排放特征与基于优化施氮的减排方法研究[J]. 中国生态农业学报, 2014, 22(9): 1038-1046.
HU Teng, TONG Yan-an, GAO Peng-cheng, et al. N2O emission characteristics and mitigation methods in South Loess Plateau under rainfed winter wheat conditions[J]. Chinese Journal of Eco-Agriculture, 2014, 22(9): 1038-1046.
[38]
纪洋, 刘刚, 马静, 等. 控释肥施用对小麦生长期N2O排放的影响[J]. 土壤学报, 2012, 49(3): 526-534.
JI Yang, LIU Gang, MA Jing, et al. Effect of controlled-release fertilizer(CRF) on nitrous oxide emission during the wheat growing period[J]. Acta Pedologica Sinica, 2012, 49(3): 526-534. DOI:10.11766/trxb201012130524
[39]
周丽平, 杨俐苹, 白由路, 等. 不同氮肥缓释化处理对夏玉米田间氨挥发和氮素利用的影响[J]. 植物营养与肥料学报, 2016, 22(6): 1449-1457.
ZHOU Li-ping, YANG Li-ping, BAI You-lu, et al. Comparison of several slow-released nitrogen fertilizers in ammonia volatilization and nitrogen utilization in summer maize field[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(6): 1449-1457. DOI:10.11674/zwyf.16039
[40]
孙祥鑫, 李东坡, 武志杰, 等. 持续施用缓/控释尿素条件下水田土壤NH3挥发与N2O排放特征[J]. 应用生态学报, 2016, 27(6): 1901-1909.
SUN Xiang-xin, LI Dong-po, WU Zhi-jie, et al. Characteristics of ammonia volatilization and nitrous oxide emission from a paddy soil under continuous application of different slow/controlled release urea[J]. Chinese Journal of Applied Ecology, 2016, 27(6): 1901-1909.
[41]
胡小凤, 王正银, 游媛, 等. 缓释复合肥在不同土壤水分条件下氨挥发特性研究[J]. 环境科学, 2010, 31(8): 1937-1943.
HU Xiao-feng, WANG Zheng-yin, YOU Yuan, et al. Ammonia volatilization of slow release compound fertilizer in different soils water conditions[J]. Environment Science, 2010, 31(8): 1937-1943.
[42]
邱炜红, 刘金山, 胡承孝, 等. 硝化抑制剂双氰胺对菜地土壤N2O排放的影响[J]. 环境科学, 2011, 32(11): 3188-3192.
QIU Wei-hong, LIU Jin-shan, HU Cheng-xiao, et al. Mitigation of nitrous oxide emissions in vegetable system by treating soil with dicyandiamide, a nitrification inhibitor[J]. Environment Science, 2011, 32(11): 3188-3192.
[43]
赵斌, 董树亭, 王空军, 等. 控释肥对夏玉米产量及田间氨挥发和氮素利用率的影响[J]. 应用生态学报, 2009, 20(11): 2678-2684.
ZHAO Bin, DONG Shu-ting, WANG Kong-jun, et al. Effects of controlled-release fertilizers on summer maize grain yield, field ammonia volatilization, and fertilizer nitrogen use efficiency[J]. Chinese Journal of Applied Ecology, 2009, 20(11): 2678-2684.
[44]
卫丽, 马超, 黄晓书, 等. 控释肥对土壤全氮含量及夏玉米产量品质的影响[J]. 水土保持学报, 2009, 23(4): 176-179.
WEI Li, MA Chao, HUANG Xiao-shu, et al. Effects of controlled-release nitrogen fertilizer on total N of soil and yield and quality of summer maize[J]. Journal of Soil and Water Conservation, 2009, 23(4): 176-179.
[45]
Yang M, Fang Y T, Sun D, et al. Efficiency of two nitrification inhibitors(dicyandiamide and 3, 4-dimethypyrazole phosphate) on soil nitrogen transformations and plant productivity:A meta-analysis[J]. Scientific Reports, 2016, 6: 22075. DOI:10.1038/srep22075