2. 中国科学院生态环境研究中心城市与区域生态国家重点实验室, 北京 100085
2. State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
地表臭氧(O3)是一种对植物有高度毒害作用的大气二次污染物,主要通过挥发性有机化合物(VOCs)、氮氧化物(NOx)和甲烷(CH4)等前体物发生复杂的光化学反应而生成[1],浓度超过40 nL·L-1便可对一些敏感作物造成损伤[2-3]。目前,全球大气环境O3浓度已超过工业革命前两倍之多[4],全球近四分之一的国家夏季O3浓度高于60 nL·L-1,并且未来几十年内仍会持续上升,尤其是在人类活动高度发达与密集的地区[5]。过去30年,由于中国化石燃料消耗快速增长,导致O3前体物(如,NOx和VOCs)排放急剧增加,O3污染日趋严重,已超过欧美发达国家水平[6]。Zeng等[7]通过对中国2013—2017年大气污染物的实测数据进行分析发现,受关注度较高的颗粒物(PM2.5和PM10)污染已有了较大改善,但O3浓度一直呈持续上升的趋势,第90分位的MDA8(日最大8 h的O3平均浓度)从61.6 nL·L-1(2013年)上升至76.0 nL·L-1 (2017年),年平均增长率为5.8%,污染最严重的区域主要集中在京津冀、长江三角洲和珠江三角洲等经济高度发达的地区[6]。以上这些地区也是重要的粮食生产地。再者,O3高度污染的时期基本发生在4—9月,恰好对应中国主要粮食作物(如水稻、小麦和夏玉米等)的生长季[8],这也不可避免地会威胁到农业生产。另外,中国是人口大国,粮食安全问题关系到国家和社会的稳定与和谐。因此,探究O3污染对中国粮食生产的影响,与中国14亿人口的生存和健康息息相关。
1 地表O3污染对作物产量的影响为明确O3对粮食作物的损害过程,以便于采取科学有效的手段来评估和缓解O3农业生态风险,自20世纪60年代,国外研究者便开展了大量野外实验[9-15]。其中暴露方式可分为密闭式熏气(Greenhouse,GH,已基本被淘汰)、开顶式气室熏气(Open Top Chambers,OTCs)和完全开放式熏气(Free Air O3 Concentration Enrichment,O3-FACE)。其中O3-FACE的研究效果最好,但对浓度控制的技术水平要求很高且费用昂贵,故OTCs是目前最为常用的熏蒸设施。
O3具有强氧化特性,主要通过植物叶片气孔进入植物体内,然后激发一系列生物化学反应产生活性氧自由基(ROS,如H2O2和·OH),ROS会进一步破坏细胞结构,改变植物体内蛋白质和氨基酸等组成成分,导致植物生理代谢紊乱[16-19]。O3对作物的不利影响一般包括:加速叶片衰老、降解叶绿素、影响气孔开闭、减弱光合作用能力和抑制生长等,从而最终降低作物产量(图 1) [20-23]。通常,作物籽粒结实期对O3最为敏感,且减产形式以单个籽粒质量下降为主[24-25]。
![]() |
图 1 O3对作物产量影响的一般进程(改编自Wilkinson等[20]) Figure 1 Effects of O3 on carbon gain and carbon use that impact on crop yield (edited by Wilkinson, et al[20]) |
为获得作物产量与O3暴露之间的定量关系,通常是设置不同的O3浓度梯度,建立O3指标与相对产量的响应关系。O3指标主要分为O3暴露剂量指标和O3气孔吸收通量指标(PODY,小时O3气孔通量高于Y nmol·m-2·s-1的累积通量)两类。前者可分为两种:一种是对作物暴露期间的小时O3浓度值求平均值,主要包括M7(9:00—16:00的O3浓度平均值)和M12 (8:00—20:00的O3浓度平均值) [26];另一种是对小时O3浓度值赋予不同的权重,该方法更受研究者的青睐,主要原因是植物对O3具有一定的抵抗能力,即当O3浓度高于一定阈值后才会对其造成损害,主要包括AOT40(白天小时O3浓度值超过40 nL·L-1部分的累积值)、SUM06(小时O3浓度值大于60 nL·L-1的累积值)和W126(Sigmoidal曲线加权函数,拐点在60 nL· L-1左右) [26],其中AOT40最为常用[3]。由于O3对植物的损伤程度直接取决于自身的O3吸收通量和解毒能力,而21世纪发展起来的PODY方法可以反映植物叶片气孔的O3吸收通量[26],故该方法在O3的区域风险评估中受到日益重视,并被广泛应用[27-29]。PODY方法的主要特点是考虑到了生物学和环境因子对植物气孔O3吸收的影响,主要计算过程是通过模型模拟植物小时尺度的气孔导度值[26],然后计算每小时的O3气孔吸收通量,最终得到作物生长季内的累积通量。具体的计算过程可参照LRTAP[30]。
20世纪70年代初,中国学者便意识到O3污染对农业生态系统生产有严重的损害作用[31]。然而,20世纪90年代才正式开展关于O3生态环境效应的研究[32-33]。现今,大量研究已经证实,O3污染对中国许多重要农作物的生产有明显不利影响,如小麦[34-39]、水稻[39-43]、大豆[44-47]、玉米[48-49]、油菜[50]和菠菜[51]等。Meta整合分析结果表明,以清洁大气(由活性炭过滤O3后的大气,相当于工业革命前O3浓度水平 < 10 nL· L-1)为对照,高浓度O3(约70 nL·L-1)可导致大豆和小麦分别减产24%和29%[24, 52]。最近一项关于全球性O3减产的风险评估中指出,每年(2010—2012年)因大气环境O3污染造成水稻、玉米、小麦和大豆分别减产4.4%、6.1%、7.1%和12.4%[53]。其中,中国的受害程度极为严重,分别引起水稻、玉米、小麦和大豆减产8.1%(21.5 Tg)、10.2%(25.5 Tg)、9.8%(13.6 Tg)和19.4%(3.1 Tg)。另外,Tai等[54]通过模型研究发现,中国粮食作物(水稻、小麦、玉米和大豆)相比美国和欧洲对O3污染更为敏感。Pleijel等[55]通过野外实验数据整合分析也发现,中国小麦对O3的敏感性远高于北美洲。由此可见,当前我国高浓度的O3对农作物的负面影响不容忽视。
近些年来,中国学者也逐步建立了一些重要作物的O3暴露剂量和气孔吸收通量(PODY)与相对产量的响应关系。目前,已建立的AOT40与相对产量的响应关系主要有:小麦[56-58]、水稻[57-58]和玉米[48]。PODY与相对产量的响应关系主要有:冬小麦[56, 59]、水稻[60]、玉米[48]和大豆[47]。由此为中国O3减产风险的区域性评估奠定了良好基础。
基于AOT40与相对产量的响应关系进行全国范围内的评估结果显示,小麦的O3敏感性(即单位O3的减产量)最高,减产10.5%~37.3%;玉米最低,减产1.8%~6.4%;其他作物类型如薯类、油菜、水稻和豆类居中,分别减产2.9%~10.5%、3.2%~11.3%、5.2%~18.4和5.3%~18.9%[58],表明不同作物受O3的影响程度具有极大特异性。其次,不同作物品种间O3的敏感性也存在较大差异,例如大豆和小麦[61-62]。再者,不同地域间的作物O3敏感性也不同,比如O3对水稻产量的影响程度由南向北逐渐递减[63],其中受损较严重的长江三角洲的评估结果显示:小麦和水稻平均产量损失5.9%,导致总经济损失13.4亿元;油菜减产5.9%,经济损失2.6亿元[64]。然而,上述研究所利用的O3浓度数据中只有少部分是实测数据,导致评估结果误差较大。Feng等[65]首次采用中国1497个O3监测站点的实测数据,基于国内OTC实验建立的AOT40和相对产量的响应方程[57],对2015年我国O3的减产风险进行评估发现,水稻和小麦的产量因当时大气环境O3污染分别减产8.0%和6.0%,导致经济损失高达526.0亿元和778.0亿元。更进一步研究发现,Hu等[66]以县为单位对中国主要粮食生产区华北平原进行了高精度的评估:从2014—2017年,小麦产量分别损失18.5%、22.7%、26.2%和30.8%,造成年经济损失达438.6亿、594.2亿、701.8亿元和864.6亿元。另外,Feng等[29]利用O3-FACE建立的PODY和相对产量的响应关系评估发现,AOT40和POD12显示2015—2016年中国冬小麦平均产量损失分别为17.6%和10.4%,造成736.0亿元和400.0亿元的经济损失,说明以往基于植物外界环境O3浓度的暴露剂量指标对作物产量损失存在过高估计的现象。同样,对于长江三角洲和华南地区的水稻评估也有类似的结果[67]。再者,作物O3敏感性的评估结果还取决于暴露方式的选择,例如,基于OTC暴露的小麦和水稻对O3的敏感性要低于O3-FACE,而大豆结果却相反[68]。因此,未来开展相关研究时,上述影响作物对O3响应程度的因素应得到足够的重视,尤其是进行区域性的O3减产风险评估,以免造成研究结果存在较大偏差。
2 地表O3污染对作物品质的影响相比作物产量,O3污染对籽粒品质的影响研究较为缺乏,特别是加工品质和外观品质。目前,中国对于作物籽粒品质的研究主要集中在水稻和小麦。对稻米4个品种(武运粳21、扬稻6号、汕优63和两优培九)的研究结果显示,在高浓度O3下(1.5倍大气环境O3浓度),对于加工品质:糙米率(糙米占稻谷质量的百分率)平均降低0.2%,整精米率(整精米占稻谷质量的百分率)和精米率(精米占稻谷质量的百分率)分别平均增加0.5%和3.4%,但影响不显著,而糙米产量(糙米率×产量)、精米产量(精米率×产量)和整精米产量(整精米率×产量)均显著下降,主要原因是O3显著降低了产量;对于外观品质:垩白粒率(垩白籽粒数量占总籽粒数量的百分率;垩白指稻米胚乳中组织疏松而形成的白色不透明的部分,包括心白、腹白和背白)平均显著增加6.1%,垩白大小和垩白度分别平均增加2.2%和5.8%,但未达到显著水平;对于蒸煮品质:直链淀粉含量和胶稠度分别平均减少3.9%和5.3%,糊化温度平均增加0.4%,其中直链淀粉含量的差异达到显著水平;对于营养品质:蛋白质含量平均显著增加7.0%,K、Cu和Mn浓度分别平均减少0.3%、5.2%和2.5%,Fe、Zn、Ca和Mg浓度分别平均增加21.7%、0.8%、6.3%和8.8%,但只有Mg的浓度变化达到了显著水平;对于淀粉黏滞性:最高黏度时间、最高黏度、热浆黏度、崩解值和冷胶黏度分别平均降低0.2%、4.2%、4.5%、3.7%和1.4%,消减值平均增加10.1%,但效应均不显著[69]。然而,Wang等[70]以上述4种水稻品种中O3敏感性相对较高的汕优63为研究对象,进行两年实验发现,O3显著提高了K、Mg、Ca、Zn、Mn和Cu浓度,显著降低了K、Ca、Zn、Mn和蛋白质的累积量,这表明在一定O3浓度下,籽粒矿质营养元素的含量也会发生显著变化。另外,王春乙等[71]研究还发现,随O3浓度增加,水稻籽粒中粗脂肪和17种氨基酸含量均呈上升趋势。上述研究结果说明O3对作物品质有较大提升,这从一定程度上缓解了由减产造成的营养损失。O3污染影响作物品质的机制主要包括浓缩效应(即粮食总产量的下降幅度大于植物对养分的吸收)和加速衰老(即作物的生育期被提前,可促进营养物质向穗部转移,从而使其更容易在籽粒中沉积) [24, 42]。例如,O3胁迫下,作物的光合碳同化能力严重下降,产量的下降幅度小于蛋白质,从而造成蛋白质含量上升[41, 72];O3对籽粒灌浆的破坏程度相对谷壳的生长更大,从而导致糙米率下降[70];O3导致生育期提前,籽粒结实周期变短,导致其不完全填充,使更多籽粒呈现垩白外观[70]。然而,为进一步提升作物品质,未来应加强研究其内在的生理生化机制。
对于小麦,通过Meta整合分析,Broberg等[73]发现,以清洁大气为对照,O3显著增加了蛋白质含量和矿质营养元素(P、K、Mg、Ca、Zn、Mn、Fe和Cu)浓度,降低了淀粉含量、淀粉产量、蛋白质产量和重金属Cd浓度,但对容重、S和Na无显著影响,与水稻类似。另外,表 1提供了中国4种重要谷类作物(小麦、水稻、大豆和玉米)主要营养品质指标对O3响应的一般趋势,可以发现,O3污染增加了小麦、水稻和大豆的蛋白质和氨基酸含量,但降低了淀粉和粗脂肪含量,而玉米却相反。然而,由于玉米研究数量有限,未来应进一步探究其品质与O3污染之间的效应关系,为综合评估O3农业生态风险提供支撑。
![]() |
表 1 O3污染与常见作物营养品质的关系 Table 1 Effects of O3 on four most important crops nutritional quality in China |
自20世纪90年代以来,虽然中国关于O3对作物的影响研究发展十分迅速,但未来仍面临着严峻的挑战。
(1) 区域性O3减产风险评估的准确性有待提高。尽管国内四大重要作物(水稻、小麦、玉米和大豆)相对产量与PODY的关系已经建立,但其应用较少[28-29, 67],O3风险的评估指标仍以AOT40为主。后者仅将环境O3浓度作为唯一输入的自变量,即O3浓度越高的地区,减产幅度越大,忽略了作物自身对O3响应的特性(即O3敏感性)和其他环境因素的影响。其次,所采用的环境O3浓度数据大部分基于大气化学模型模拟得来,导致其评估结果存在较大的不确定性。再者,作物相对产量与PODY的响应关系虽已建立,但代表性不强,纳入的品种较少,有些甚至是单一品种。另外,中国国土面积广袤,粮食产区分布范围广泛,且作物品种繁多,地域间(如我国南北方)和品种间(如上述4种重要作物)O3敏感性差异极大[61, 63, 82-84]。故使用现有的响应关系对生物和环境条件高度异质性的区域进行评估仍存在一定的偏差。因此,待评估区域的代表性品种应当建立其PODY,同时O3监测覆盖度应进一步加大,以提高O3减产评估的精度。
(2) 亟待系统地建立O3风险评估指标体系。现今,对作物产量损失进行区域性评估的研究较多,但作物的品质等重要指标几乎没有涉及,评估反馈的信息单一。例如,从人体营养学角度,尽管O3降低了作物的产量,但籽粒中蛋白质和氨基酸等物质的含量有所上升,对人类能量摄取的影响相比预期较小,故单纯以产量来衡量O3污染对人类生存与健康发展的风险是不够全面与深刻的。因此,未来应加强开发作物关键品质指标与PODY之间的响应关系,综合评估O3风险。
(3) 作物减产的机制有待进一步明确。目前,研究者们普遍认为O3降低光合固碳能力是导致作物减产的主要途径,但作物的产量并非总是受到大量需求物质(如CO2和水)的限制,也常受到微量物质的限制(利比希最小因子定律)。然而,O3通过抑制根系生长来减少作物对土壤矿质养分的吸收而引起其产量下降的贡献尚未明确。再者,O3对作物生殖结构的影响与机制也研究甚少,尽管该结构是决定作物群体产量的重要指标。另外,作物的不同生育期对O3的敏感性也存在较大差异。因此,在O3胁迫下,除了光合固碳作用外,探究作物产量限制的关键外源物质、生长结构和生育期,对于建立农艺手段以减缓O3损失具有重大意义。
(4) 加强园艺作物对O3胁迫的反馈研究。O3可显著影响谷类作物的产量与品质,但对水果和蔬菜类作物的研究十分匮乏,未来应量化O3对主要园艺作物生产的影响,为进一步全面评估O3风险奠定基础。
(5) 亟需加强O3与其他全球变化因子的复合作用研究。目前,大量的研究仅以O3为单因子实验开展,并未考虑与O3共同作用于作物的其他因子,如CO2和水分,这可能导致模拟作物对未来O3浓度升高的响应结果与真实结果之间存在较大的偏差。
(6) 生态遥感技术的迫切使用。新兴的无人机高光谱遥感监测技术发展迅猛,为直接观测冠层及整体长势等大尺度上的效应带来了曙光。例如,采用修正比植被指数(mRVI)和归一化干物质含量指数(NDMI) [85]分别反演植物冠层叶绿素和干物质的含量,还可以利用叶片光学特性检测O3对叶片生化(如最大羧化效率Vcmax)的影响[86]。总而言之,该技术的应用潜力十分巨大,是未来进行O3生态环境效应观测的重要工具。
[1] |
The Royal Society. Ground-level ozone in the 21st century: Future trends, impacts and policy implications[M]//Science Policy REPORT 15/08. The Royal Society, London, 2002.
|
[2] |
Fuhrer J, Skarby L, Ashmore M. Critical levels for ozone effects on vegetation in Europe[J]. Environmental Pollution, 1997, 97(1/2): 91-106. |
[3] |
Mills G, Buse A, Gimeno B, et al. A synthesis of AOT40-based response functions and critical levels of ozone for agricultural and horticultural crops[J]. Atmospheric Environment, 2007, 41(12): 2630-2643. DOI:10.1016/j.atmosenv.2006.11.016 |
[4] |
Monks P S, Archibald A T, Colette A, et al. Tropospheric ozone and its precursors from the urban to the global scale from air quality to shortlived climate forcer[J]. Atmospheric Chemistry and Physics, 2015, 15: 8889-8973. DOI:10.5194/acp-15-8889-2015 |
[5] |
IPCC. Stocker T F, Qin D, Plattner G K, et al(Eds.). Climate change 2013: The physical science basis. Contribution of working group Ⅰ to the fifth assessment report of the intergovernmental panel on climate change[R]. New York, USA: Intergovernmental Panel on Climate Change, 2013: 1152.
|
[6] |
Wang T, Xue L, Brimblecombe P, et al. Ozone pollution in China:A review of concentrations, meteorological influences, chemical precursors, and effects[J]. Science of the Total Environment, 2017, 575: 1582-1596. DOI:10.1016/j.scitotenv.2016.10.081 |
[7] |
Zeng Y Y, Cao Y F, Qiao X, et al. Air pollution reduction in China:Recent success but great challenge for the future[J]. Science of the Total Environment, 2019, 663: 329-337. DOI:10.1016/j.scitotenv.2019.01.262 |
[8] |
Feng Z Z, Hu E Z, Wang X K, et al. Ground-level O3 pollution and its impacts on food crops in China:A review[J]. Environmental Pollution, 2015, 199: 42-48. DOI:10.1016/j.envpol.2015.01.016 |
[9] |
Dugger W M, Taylor O C, Cardiff E, et al. Relationship between carbohydrate content and susceptibility of pinto bean plants to ozone damage[J]. Proceedings of the American Society for Horticultural Science, 1962, 81: 304-315. |
[10] |
Reinert R A, Gray T N. Growth of radish, tomato and pepper following exposure to NO2, SO2 and O3 singly or in combination[J]. Hortscience, 1997, 12(4): 402-402. |
[11] |
Krupa S V, Grunhage L, Jager H J, et al. Ambient ozone(O3)and adverse crop response:A unified view of cause and effect[J]. Environmental Pollution, 1995, 87(1): 119-126. |
[12] |
Gimeno B S, Bermejo V, Reinert R A, et al. Adverse effects of ambient ozone on watermelon yield and physiology at a rural site in Eastern Spain[J]. New Phytologist, 1999, 144(2): 245-260. DOI:10.1046/j.1469-8137.1999.00509.x |
[13] |
Finnan J M, Donnelly A, Burke J I, et al. The effects of elevated concentrations of carbon dioxide and ozone on potato(Solanum tuberosum L.)yield[J]. Agriculture Ecosystems & Environment, 2002, 88(1): 11-22. |
[14] |
Ainsworth E A. Rice production in a changing climate:A meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration[J]. Global Change Biology, 2008, 14(7): 1642-1650. DOI:10.1111/j.1365-2486.2008.01594.x |
[15] |
Feng Z Z, Pang J, Kobayashi K, et al. Differential responses in two varieties of winter wheat to elevated ozone concentration under fully open-air field conditions[J]. Global Change Biology, 2011, 17(1): 580-591. |
[16] |
Bender J, Weigel H J, Jäger H J. Response of nitrogen-metabolism in beans(Phaseolus vulgaris L.)after exposure to ozone and nitrogen dioxide, alone and in sequence[J]. New Phytologist, 1991, 119(2): 261-267. DOI:10.1111/j.1469-8137.1991.tb01029.x |
[17] |
Dai L L, Feng Z Z, Pan X D, et al. Increase of apoplastic ascorbate induced by ozone is insufficient to remove the negative effects in tobacco, soybean and poplar[J]. Environmental Pollution, 2019, 245: 380-388. DOI:10.1016/j.envpol.2018.11.030 |
[18] |
Singh A A, Agrawal S B, Shahi J P, et al. Investigating the response of tropical maize(Zea mays L.)cultivars against elevated levels of O3 at two developmental stages[J]. Ecotoxicology, 2014, 23: 1447-1463. DOI:10.1007/s10646-014-1287-6 |
[19] |
Ainsworth E A. Understanding and improving global crop response to ozone pollution[J]. Plant Journal, 2017, 90(5): 886-897. DOI:10.1111/tpj.13298 |
[20] |
Wilkinson S, Mills G, Illidge R, et al. How is ozone pollution reducing our food supply?[J]. Journal of Experimental Botany, 2012, 63: 527-536. DOI:10.1093/jxb/err317 |
[21] |
Feng Z W, Jin M H, Zhang F Z, et al. Effects of ground-level ozone (O3)pollution on the yields of rice and winter wheat in the Yangtze River Delta[J]. Journal of Environmental Sciences, 2003, 15(3): 360-362. |
[22] |
Wang X K, Manning W, Feng Z W, et al. Ground-level ozone in China:Distribution and effects on crop yields[J]. Environmental Pollution, 2007, 147(2): 394-400. |
[23] |
Feng Z Z, Kobayashi K. Assessing the impacts of current and future concentrations of surface ozone on crop yield with meta-analysis[J]. Atmospheric Environment, 2009, 43(8): 1510-1519. |
[24] |
Feng Z Z, Kobayashi K, Ainsworth E A. Impact of elevated ozone concentration on growth, physiology, and yield of wheat(Triticum aestivum L.):A meta-analysis[J]. Global Change Biology, 2008, 14(11): 2696-2708. |
[25] |
Peng J L, Shang B, Xu Y S, et al. Effects of ozone on maize(Zea mays L.)photosynthetic physiology, biomass and yield components based on exposure- and flux-response relationships[J]. Environmental Pollution, 2020, 256: 113466. DOI:10.1016/j.envpol.2019.113466 |
[26] |
Lefohn A S, Malley C S, Smith L, et al. Tropospheric ozone assessment report:Global ozone metrics for climate change, human health, and crop/ecosystem research[J]. Elementa-Science of the Anthropocene, 2018, 6: 28. |
[27] |
Mills G, Hayes F, Simpson D, et al. Evidence of widespread effects of ozone on crops and(semi-)natural vegetation in Europe(1990- 2006) in relation to AOT40- and flux-based risk maps[J]. Global Change Biology, 2011, 17(1): 592-613. |
[28] |
Tang H Y, Takigawa M, Liu G, et al. A projection of ozone-induced wheat production loss in China and India for the years 2000 and 2020 with exposure-based and flux-based approaches[J]. Global Change Biology, 2013, 19(9): 2739-2752. DOI:10.1111/gcb.12252 |
[29] |
Feng Z Z, Kobayashi K, Li P, et al. Impacts of current ozone pollution on wheat yield in China as estimated with observed ozone, meteorology and day of flowering[J]. Atmospheric Environment, 2019, 217: 116945. DOI:10.1016/j.atmosenv.2019.116945 |
[30] |
LRTAP. Mapping critical levels for vegetation, chapter Ⅲ of manual on methodologies and criteria for modelling and mapping critical loads and levels and air pollution effects, risks and trends[R/OL]. UNECE convention on long-range transboundary air pollution.[2017-09-05]. http://www.icpmapping.org.
|
[31] |
任林汉, 张琪. 空气污染使农作物减产[J]. 科技简报, 1974(18): 22-23. REN Lin-han, ZHANG Qi. Air pollution reduced crop yields[J]. Today Science & Technology, 1974(18): 22-23. |
[32] |
王勋陵, 陈鑫阳, 鲁晓云. 钙对臭氧伤害小麦的防护作用[J]. 西北植物学报, 1993, 13(3): 163-169. WANG Xun-ling, CHEN Xin-yang, LU Xiao-yun. A study on prevention of calcium to the wheat injured by ozone[J]. Acta Botanica Boreal-Occidentalia Sinica, 1993, 13(3): 163-169. DOI:10.3321/j.issn:1000-4025.1993.03.001 |
[33] |
王春乙. 臭氧对农作物的影响研究[J]. 应用气象学报, 1995, 6(3): 343-349. WANG Chun-yi. A study of the effect of ozone on crop[J]. Journal of Applied Meteorology, 1995, 6(3): 343-349. |
[34] |
郑有飞, 刘宏举, 吴荣军, 等. 地表臭氧胁迫对冬小麦籽粒品质的影响研究[J]. 农业环境科学学报, 2010, 29(4): 619-624. ZHENG You-fei, LIU Hong-ju, WU Rong-jun, et al. Effects of elevated surface ozone stress on grain quality in winter wheat[J]. Journal of Agro-Environment Science, 2010, 29(4): 619-624. |
[35] |
郑有飞, 胡会芳, 吴荣军, 等. 地表太阳辐射减弱和臭氧浓度增加对冬小麦生长和产量的影响[J]. 生态学报, 2013, 33(2): 532-541. ZHENG You-fei, HU Hui-fang, WU Rong-jun, et al. Combined effects of elevated O3 and reduce solar irradiance on growth and yield of field-grown winter wheat[J]. Acta Ecologica Sinica, 2013, 33(2): 532-541. |
[36] |
胡莹莹, 赵天宏, 徐玲, 等. 臭氧浓度升高对小麦光合作用和产量构成的影响[J]. 农业现代化研究, 2008, 29(4): 498-502. HU Ying-ying, ZHAO Tian-hong, XU Ling, et al. Effects of elevated O3 exposure on photosynthesis and yield in wheat[J]. Research of Agriculture Modernization, 2008, 29(4): 498-502. DOI:10.3969/j.issn.1000-0275.2008.04.029 |
[37] |
郑启伟, 王效科, 冯兆忠, 等. 臭氧和模拟酸雨对冬小麦气体交换、生长和产量的复合影响[J]. 环境科学学报, 2007, 27(9): 1542-1548. ZHENG Qi-wei, WANG Xiao-ke, FENG Zhao-zhong, et al. Combined impact of ozone and simulated acid rain on gas exchange, growth and yield of field-grown winter wheat[J]. Acta Scientiae Circumstantia, 2007, 27(9): 1542-1548. DOI:10.3321/j.issn:0253-2468.2007.09.021 |
[38] |
Zhu X K, Feng Z Z, Sun T F, et al. Effects of elevated ozone concentration on yield of four Chinese cultivars of winter wheat under fully open-air field conditions[J]. Global Change Biology, 2011, 17(8): 2697-2706. DOI:10.1111/j.1365-2486.2011.02400.x |
[39] |
白月明, 郭建平, 王春乙, 等. 水稻与冬小麦对臭氧的反应及其敏感性试验研究[J]. 中国生态农业学报, 2002, 10(1): 17-20. BAI Yue-ming, GUO Jian-ping, WANG Chun-yi, et al. The reaction and sensitivity experiment of O3 on rice and winter wheat[J]. Chinese Journal of Eco-Agriculture, 2002, 10(1): 17-20. |
[40] |
陈展, 王效科, 谢居清, 等. 水稻灌浆期臭氧暴露对产量形成的影响[J]. 生态毒理学报, 2007, 2(2): 208-213. CHEN Zhan, WANG Xiao-ke, XIE Ju-qing, et al. Effects of zone on production of rice(Oryza sativa L.)during grain filling stage[J]. Asian Journal of Ecotoxicology, 2007, 2(2): 208-213. |
[41] |
Pang J, Kobayashi K, Zhu J G. Yield and photosynthetic characteristics of flag leaves in Chinese rice(Oryza sativa L.)varieties subjected to free-air release of ozone[J]. Agriculture, Ecosystems & Environment, 2009, 132(3/4): 203-211. |
[42] |
Shi G Y, Yang L X, Wang Y X, et al. Impact of elevated ozone concentration on yield of four Chinese rice cultivars under fully open-air field conditions[J]. Agriculture, Ecosystems & Environment, 2009, 131(3/4): 178-184. |
[43] |
邵在胜, 穆海蓉, 赵轶鹏, 等. 臭氧胁迫对不同敏感型水稻干物质积累与分配的影响[J]. 中国水稻科学, 2018, 32(2): 181-188. SHAO Zai-sheng, MU Hai-rong, ZHAO Yi-peng, et al. Impacts of ozone stress on dry mater accumulation and distraction of rice genotypes with different ozone sensitivity[J]. Chinese Journal Rice Science, 2018, 32(2): 181-188. |
[44] |
战丽杰, 郭立月, 宁堂原, 等. 臭氧胁迫下硅对大豆抗氧化系统、生物量及产量的影响[J]. 生态学报, 2012, 32(19): 6120-6127. ZHAN Li-jie, GUO Li-yue, NING Tang-yuan, et al. Effect of silicon application on antioxidant system, biomass and yield of soybean under ozone pollution[J]. Acta Ecologica Sinica, 2012, 32(19): 6120-6127. |
[45] |
郑有飞, 刘瑞娜, 吴荣军, 等. 地表臭氧胁迫对大豆干物质生产和分配的影响[J]. 中国农业气象, 2011, 32(1): 73-80. ZHENG You-fei, LIU Rui-na, WU Rong-jun, et al. Impact of surface ozone exposure on dry matter production and distribution of soybean[J]. Chinese Journal of Agrometeorology, 2011, 32(1): 73-80. DOI:10.3969/j.issn.1000-6362.2011.01.014 |
[46] |
李彩虹, 李勇, 乌云塔娜, 等. 高浓度臭氧对大豆生长发育及产量的影响[J]. 应用生态学报, 2010, 21(9): 2347-2352. LI Cai-hong, LI Yong, WUYUN Ta-na, et al. Effects of high concentration ozone on soybean growth and grain yield[J]. Chinese Journal of Applied Ecology, 2010, 21(9): 2347-2352. |
[47] |
Zhang W W, Feng Z Z, Wang X K, et al. Quantification of ozone exposure- and stomatal uptake-yield response relationships for soybean in northeast China[J]. Science of the Total Environment, 2017, 599/600: 710-720. DOI:10.1016/j.scitotenv.2017.04.231 |
[48] |
Peng J L, Shang B, Xu Y S, et al. Ozone exposure- and flux-yield response relationships for maize[J]. Environmental Pollution, 2019, 252: 1-7. DOI:10.1016/j.envpol.2019.05.088 |
[49] |
孙加伟, 赵天宏, 付宇, 等. 臭氧浓度升高对玉米活性氧代谢及抗氧化酶活性的影响[J]. 农业环境科学学报, 2008, 27(5): 1929-1934. SUN Jia-wei, ZHAO Tian-hong, FU Yu, et al. Effects of elevated O3 concentration on maize active oxygen species metabolism and antioxidative enzymes activities[J]. Journal of Agro-Environment Science, 2008, 27(5): 1929-1934. DOI:10.3321/j.issn:1672-2043.2008.05.043 |
[50] |
白月明, 王春乙, 郭建平, 等. 油菜产量响应臭氧胁迫的试验研究[J]. 农业环境科学学报, 2003, 22(3): 279-282. BAI Yue-ming, WANG Chun-yi, GUO Jian-ping, et al. Response of cole yields towards ozone stress[J]. Journal of Agro-Environment Science, 2003, 22(3): 279-282. DOI:10.3321/j.issn:1672-2043.2003.03.006 |
[51] |
白月明, 王春乙, 温民, 等. 臭氧浓度和熏气时间对菠菜生长和产量的影响[J]. 中国农业科学, 2004, 37(12): 1971-1975. BAI Yue-ming, WANG Chun-yi, WEN Min, et al. Influences of different ozone concentrations and fumigation days on spinach growth and yield[J]. Scientia Agriculture Sinica, 2004, 37(12): 1971-1975. DOI:10.3321/j.issn:0578-1752.2004.12.031 |
[52] |
Morgan P B, Ainsworth E A, Long S P. How does elevated ozone impact soybean? A meta-analysis of photosynthesis, growth and yield[J]. Plant Cell and Environment, 2003, 26(8): 1317-1328. DOI:10.1046/j.0016-8025.2003.01056.x |
[53] |
Mills G, Sharps K, Simpson D, et al. Closing the global ozone yield gap:Quantification and cobenefits for multistress tolerance[J]. Global Change Biology, 2018, 24: 4869-4893. DOI:10.1111/gcb.14381 |
[54] |
Tai A P K, Martin M V, Heald C L. Threat to future global food security from climate change and ozone air pollution[J]. Nature Climate Change, 2014, 4: 817-821. DOI:10.1038/nclimate2317 |
[55] |
Pleijel H, Broberg M C, Uddling J. Ozone impact on wheat in Europe, Asia and North America:A comparison[J]. Science of the Total Environment, 2019, 664: 908-914. DOI:10.1016/j.scitotenv.2019.02.089 |
[56] |
Feng Z Z, Tang H Y, Uddling J, et al. A stomatal ozone flux-response relationship to assess ozone induced yield loss of winter wheat in subtropical China[J]. Environmental Pollution, 2012, 164: 16-23. DOI:10.1016/j.envpol.2012.01.014 |
[57] |
Wang X K, Zhang Q Q, Zheng F X, et al. Effects of elevated O3 concentration on winter wheat and rice yields in the Yangtze River Delta, China[J]. Environmental Pollution, 2012, 171: 118-125. DOI:10.1016/j.envpol.2012.07.028 |
[58] |
耿春梅, 王宗爽, 任丽红, 等. 大气臭氧浓度升高对农作物产量的影响[J]. 环境科学研究, 2014, 27(3): 239-245. GENG Chun-mei, WANG Zong-shuang, REN Li-hong, et al. Study on the impact of elevated atmospheric ozone on crop yield[J]. Research of Environmental Sciences, 2014, 27(3): 239-245. |
[59] |
佟磊, 冯宗炜, 苏德·毕力格, 等. 冬小麦气孔臭氧通量拟合及通量产量关系的比较分析[J]. 生态学报, 2012, 32(9): 2890-2899. TONG Lei, FENG Zong-wei, BILIGE Sun-de, et al. Stomatal ozone uptake modeling and comparative analysis of flux-response relationships of winter wheat[J]. Acta Ecologica Sinica, 2012, 32(9): 2890-2899. |
[60] |
张继双, 唐昊冶, 刘钢, 等. 亚热带地区水稻(Oryza sativa L.)气孔臭氧通量和产量的响应关系[J]. 农业环境科学学报, 2016, 35(10): 1857-1866. ZHANG Ji-shuang, TANG Hao-ye, LIU Gang, et al. Stomatal ozone flux-response relationships of rice(Oryza sativa L.)in subtropical area[J]. Journal of Agro-Environment Science, 2016, 35(10): 1857-1866. DOI:10.11654/jaes.2016-0594 |
[61] |
Jiang L J, Feng Z Z, Dai L L, et al. Large variability in ambient ozone sensitivity across 19 ethylenediurea-treated Chinese cultivars of soybean is driven by total ascorbate[J]. Journal of Environmental Sciences, 2018, 64: 10-22. DOI:10.1016/j.jes.2017.07.002 |
[62] |
Feng Z Z, Jiang L J, Calatayud V, et al. Intraspecific variation in sensitivity of winter wheat(Triticum aestivum L.) to ambient ozone in northern China as assessed by ethylenediurea(EDU)[J]. Environmental Science and Pollution Research, 2018, 25: 29208-29218. DOI:10.1007/s11356-018-2782-8 |
[63] |
佟磊, 王效科, 肖航, 等. 我国近地层臭氧污染对水稻和冬小麦产量的影响概述[J]. 生态毒理学报, 2015, 10(3): 161-169. TONG Lei, WANG Xiao-ke, XIAO Hang, et al. The effects of surface ozone on the yields of rice and winter wheat in China[J]. Asian Journal of Ecotoxicology, 2015, 10(3): 161-169. |
[64] |
姚芳芳, 王效科, 逯非, 等. 臭氧对农业生态系统影响的综合评估:以长江三角洲为例[J]. 生态毒理学报, 2008, 3(2): 189-195. YAO Fang-fang, WANG Xiao-ke, LU fei, et al. Assessing the impact of ambient ozone on crop ecosystem:A case study in Yangtze Delta, China[J]. Asian Journal of Ecotoxicology, 2008, 3(2): 189-195. |
[65] |
Feng Z Z, De Marco A, Anav A, et al. Economic losses due to ozone impacts on human health, forest productivity and crop yield across China[J]. Environment International, 2019, 131: 104966. |
[66] |
Hu T J, Liu S, Xu Y S, et al. Assessment of O3-induced yield and economic losses for wheat in the North China Plain from 2014 to 2017, China[J]. Environmental Pollution, 2020, 258: 113828. DOI:10.1016/j.envpol.2019.113828 |
[67] |
Tang H Y, Pang J, Zhang G X, et al. Mapping ozone risks for rice in China for years 2000 and 2020 with flux-based and exposure-based doses[J]. Atmospheric Environment, 2014, 86: 74-83. DOI:10.1016/j.atmosenv.2013.11.078 |
[68] |
Feng Z Z, Uddling J, Tang H Y, et al. Comparison of crop yield sensitivity to ozone between open-top chamber and free-air experiments[J]. Global Change Biology, 2018, 24: 2231-2238. DOI:10.1111/gcb.14077 |
[69] |
韩妍.近地层臭氧浓度升高对稻米品质的影响[D].扬州: 扬州大学, 2009. HAN Yan. The impact of increasing surface ozone concentration on grain quality of rice(Oryza sativa L.)[D]. Yangzhou: Yangzhou University, 2009. http://cdmd.cnki.com.cn/article/cdmd-11117-2009192745.htm |
[70] |
Wang Y X, Yang L X, Han Y, et al. The impact of elevated tropospheric ozone on grain quality of hybrid rice:A free-air gas concentration enrichment(FACE)experiment[J]. Field Crops Research, 2012, 129: 81-89. DOI:10.1016/j.fcr.2012.01.019 |
[71] |
王春乙, 白月明, 郑昌玲, 等. CO2和O3浓度倍增对作物影响的研究进展[J]. 气象学报, 2004, 62(5): 875-881. WANG Chun-yi, BAI Yue-ming, ZHENG Chang-ling, et al. The study on effects of double CO2 and O3 on crops[J]. Acta Meteorologica Sinica, 2004, 62(5): 875-881. |
[72] |
Pleijel H, Uddling J. Yield vs. quality trade-offs for wheat in response to carbon dioxide and ozone[J]. Global Change Biology, 2012, 18(2): 596-605. |
[73] |
Broberg M C, Feng Z Z, Xin Y, et al. Ozone effects on wheat grain quality:A summary[J]. Environmental Pollution, 2015, 197: 203-213. DOI:10.1016/j.envpol.2014.12.009 |
[74] |
朱新开, 刘晓成, 孙陶芳, 等. 开放式O3浓度增高对小麦籽粒蛋白的影响[J]. 应用生态学报, 2010, 21(10): 2551-2557. ZHU Xin-kai, LIU Xiao-cheng, SUN Tao-fang, et al. Effects of elevated ozone concentration on wheat grain protein components with FACE system[J]. Chinese Journal of Applied Ecology, 2010, 21(10): 2551-2557. |
[75] |
郭建平, 王春乙, 白月明, 等. 大气中臭氧浓度变化对冬小麦生理过程和籽粒品质的影响[J]. 应用气象学报, 2001, 12(2): 255-256. GUO Jian-ping, WANG Chun-yi, BAI Yue-ming, et al. Effects of atmospheric ozone concentration changes on physiological process and grain quality of winter wheat[J]. Journal of Applied Meteorology, 2001, 12(2): 255-256. DOI:10.3969/j.issn.1001-7313.2001.02.017 |
[76] |
郑有飞, 刘瑞娜, 吴荣军, 等. 臭氧胁迫对冬小麦干物质生产和产量构成的影响[J]. 农业环境科学学报, 2010, 29(3): 409-417. ZHENG You-fei, LIU Rui-na, WU Rong-jun, et al. Effects of ozone stress on dry matter production and yield components in winter wheat[J]. Journal of Agro-Environment Science, 2010, 29(3): 409-417. |
[77] |
刘晓成. FACE条件下O3浓度增高对小麦籽粒产量和品质的影响[D].扬州: 扬州大学, 2010. LIU Xiao-cheng. Effects of free air ozone concentration enrichment on grain yield and quality in wheat[D]. Yangzhou: Yangzhou University, 2010. http://cdmd.cnki.com.cn/Article/CDMD-11117-2010176843.htm |
[78] |
张如标.大气O3浓度增高对小麦籽粒品质及其相关酶活性的影响[D].扬州: 扬州大学, 2012. ZHANG Ru-biao. Effects of free air ozone concentration enrichment on grain quality and activity of related enzyme in wheat plants[D]. Yangzhou: Yangzhou University, 2012. http://cdmd.cnki.com.cn/Article/CDMD-11117-1013181326.htm |
[79] |
郭建平, 王春乙, 温民, 等. 大气中O3浓度变化对水稻影响的试验研究[J]. 作物学报, 2001, 27(6): 822-826. GUO Jian-ping, WANG Chun-yi, WEN Min, et al. The experimental study on the impact of atmospheric O3 variation on rice[J]. Acta Agronomica Sinica, 2001, 27(6): 822-826. DOI:10.3321/j.issn:0496-3490.2001.06.021 |
[80] |
黄辉, 王春乙, 白月明, 等. 大气中O3和CO2增加对大豆复合影响的试验研究[J]. 大气科学, 2004, 28(4): 601-612. HUANG Hui, WANG Chun-yi, BAI Yue-ming, et al. A diagnostic experiment study of the composite influence of increasing O3 and CO2 concentration on soybean[J]. Chinese Journal of Atmospheric Sciences, 2004, 28(4): 601-612. DOI:10.3878/j.issn.1006-9895.2004.04.12 |
[81] |
付宇, 赵天宏, 孙加伟, 等. 大气O3浓度升高对玉米光合作用和籽粒品质的影响[J]. 华北农学报, 2008, 23(6): 120-124. FU Yu, ZHAO Tian-hong, SUN Jia-wei, et al. Effects of elevated ozone concentration on maize photosynthesis and grain quality[J]. Acta Agriculturae Boreali-Sinica, 2008, 23(6): 120-124. |
[82] |
Feng Z Z, Wang L, Pleijel H, et al. Differential effects of ozone on photosynthesis of winter wheat among cultivars depend on antioxidative enzymes rather than stomatal conductance[J]. Science of the Total Environment, 2016, 572: 404-411. DOI:10.1016/j.scitotenv.2016.08.083 |
[83] |
Ashrafuzzaman M, Lubna F A, Holtkamp F, et al. Diagnosing ozone stress and differential tolerance in rice(Oryza sativa L.)with ethylenediurea (EDU)[J]. Environmental Pollution, 2017, 230: 339-350. DOI:10.1016/j.envpol.2017.06.055 |
[84] |
Yendrek C R, Erice G, Montes C M, et al. Elevated ozone reduces photosynthetic carbon gain by accelerating leaf senescence of inbred and hybrid maize in a genotype-specific manner[J]. Plant Cell and Environment, 2017, 40(12): 3088-3100. DOI:10.1111/pce.13075 |
[85] |
程志庆.基于高光谱信息的杨树人工林生产力遥感估算模型的研究[D].北京: 中国林业科学研究院, 2015. CHENG Zhi-qing. Estimation model of poplar plantation productivity with hyperspectral information and remote sensing[D]. Beijing: Chinese Academy of Forestry, 2015. |
[86] |
Ainsworth E A, Serbin S P, Skoneczka J A, et al. Using leaf optical properties to detect ozone effects on foliar biochemistry[J]. Photosynthesis Research, 2014, 119(1/2): 65-76. |