快速检索        
  农业环境科学学报  2020, Vol. 39 Issue (4): 812-821  DOI: 10.11654/jaes.2020-0042
0

引用本文  

娄运生, 张震, 武君. UV-B增强对作物生产影响的研究回顾与展望[J]. 农业环境科学学报, 2020, 39(4): 812-821.
LOU Yun-sheng, ZHANG Zhen, WU Jun. Crop growth, yield and quality as affected by ultraviolet-B (UV-B)radiation elevating[J]. Journal of Agro-Environment Science, 2020, 39(4): 812-821.

基金项目

国家自然科学基金项目(41875177,41375159)

Project supported

The National Natural Science Foundation of China(41875177, 41375159)

作者简介

娄运生(1968-), 男, 博士, 教授, 主要从事气候变化与农业、农业气象和生态气象研究。E-mail:yunshlou@163.com

文章历史

收稿日期: 2020-01-09
录用日期: 2020-03-18
UV-B增强对作物生产影响的研究回顾与展望
娄运生1,2 , 张震2 , 武君3     
1. 南京信息工程大学气象灾害预报预警与评估协同创新中心/应用气象学院, 南京 210044;
2. 南京信息工程大学江苏省农业气象重点实验室, 南京 210044;
3. 广东省茂名市气象局, 广东 茂名 525000
摘要:大气平流层臭氧耗损引起的地表紫外辐射(UV-B)增强是气候变化问题之一。UV-B辐射增强对作物生长、生理代谢、产量及品质的影响受到人们普遍关注。通常借助两种方法开展模拟试验研究,即平方波模型法和太阳追踪模型法。UV-B辐射增强引起作物生长受阻、分蘖数减少、株高下降、叶面积和叶绿素含量下降、光系统Ⅱ受抑、光合效率降低;UV-B辐射增强导致活性氧代谢失衡、叶片气孔器受到破坏、叶绿体结构变形、基粒片层排列紊乱;UV-B辐射增强使作物有效穗数、穗粒数、千粒重下降,导致产量下降;UV-B辐射增强对籽粒蛋白质影响因作物、品种而异。未来应加强UV-B辐射增强影响作物内源激素代谢分子机制研究、区域和全球模拟及其应对措施研究。
关键词UV-B辐射    作物    生长    产量    品质    
Crop growth, yield and quality as affected by ultraviolet-B (UV-B)radiation elevating
LOU Yun-sheng1,2 , ZHANG Zhen2 , WU Jun3     
1. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, China;
2. Jiangsu Key Laboratory of Agricultural Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China;
3. Maoming Meteorological Bureau, Maoming 525000, China
Abstract: Elevated UV-B radiation on the ground surface due to ozone depletion in the stratosphere has become one of the important issues in global change. Elevated UV-B radiation depressed plant growth, with reduced tiller numbers and plant height, decreased leaf area and chlorophyll content, depressed PS Ⅱ and photosynthetic efficiency. Elevated UV-B radiation resulted in the imbalance of reactive oxygen metabolism, damage to the stomatal apparatus of the blade, the chloroplast structural deformation, and the disorder of the arrangement of GRANA lamellae. Elevated UV-B radiation reduced the number of effective panicles, grain number per ear, thousand-seed weight, and yield. The effect of elevated UV-B radiation on protein content in seed varied with crop types and cultivars. Further researches are needed to investigate the molecular mechanism of endogenous hormone metabolism in crops as affected by elevated UV-B radiation, crop model simulation at regional and global scales, interaction of elevated UV-B radiation with other environmental factors as well as its counter measures.
Keywords: elevated UV-B radiation    crop    growth    yield    quality    

20世纪以来,人类活动排入大气的氯氟烃类化合物、氮氧化合物等引起平流层臭氧(O3)耗损是全球气候变化研究的重要问题之一。1985年,人类首次发现了南极“臭氧空洞”,随后,中纬度地区的臭氧层空洞被陆续证实。我国大气臭氧层衰减也很明显,据北京和昆明的监测结果,我国平流层O3总量呈降低趋势,地区平均下降5.1%。由于平流层中的O3是太阳紫外辐射的主要过滤器,臭氧层变薄及臭氧空洞的出现,使到达地面的太阳紫外辐射增强。研究表明,大气平流层O3每减少1%,到达地面的太阳紫外辐射增加2% [1-4]。紫外辐射依其生物效应可分为:超强效应波段(UV-C, 200~280 nm),为灭生性辐射,即为通常所说的杀菌紫外线,但可全部被平流层O3吸收而不能到达地面;强效应波段(UV-B, 280~320 nm),为生物有效辐射,绝大部分可被O3吸收;弱效应波段(UV-A, 320~400 nm),很少被O3吸收,但它对生物无杀伤作用,且可促进植物生长。从生物学角度分析,对地球生物造成直接影响的紫外辐射主要是UV-B辐射[5-8]

臭氧层减薄引起的地表UV-B辐射增强对农作物生长、生理特性、产量和品质的影响是普遍关注的全球环境和气候变化问题。国内外迄今已针对200多种植物开展UV-B辐射增强响应研究,发现2/3以上的植物在UV-B增强后产生不同程度伤害,其中近100种为农作物,涉及小麦、水稻、玉米、大豆等,研究涉及作物生长发育、形态结构、生理生化、产量构成及品种遗传差异等方面[9-19]。研究表明,UV-B辐射增强下,作物生长发育受阻、分蘖数减少、株高变矮、叶面积和叶绿素含量下降、光系统Ⅱ活性受抑、光合作用效率降低[16-19]。利用电镜研究表明,UV-B辐射增强导致叶片气孔器受到破坏,叶绿体结构变形,基粒片层排列紊乱[20-22]。UV-B辐射增强引起作物有效穗数、穗粒数、结实率、千粒重下降,最终导致籽粒产量下降[9, 12]。本文综述了近年来UV-B辐射增强对作物生长、生理特性、产量和品质影响的相关研究进展,为保障粮食安全及应对气候变化提供参考依据。

1 UV-B辐射增强的模拟研究方法

探究平流层O3耗损所引起的UV-B辐射增强对作物的影响,通常借助特定装置开展模拟研究。用于研究UV-B辐射增强效应的试验,主要是通过在冠层上部架设UV-B灯管来增加辐射强度。辐射剂量根据试验所在地环境UV-B强度和当地大气O3衰减趋势来确定。UV-B辐射系统有两种模型:一种为平方波模型,选取以中午为中心的时间段开灯辐射,并保持灯管与植物冠层的距离,这种系统由于具有设置简单、便于操作、运行经济的特点而得到了较广泛的应用[15-20];另一种为太阳追踪模型或可调式辐射系统,通过连续监测环境中UV-B辐射和植物受到的UV-B辐射强度,根据阳光中UV-B强度的变化来自动调整UV-B灯管的辐射强度,但由于其设备技术复杂、费用高等因素,迄今只有少数报道采用这种模拟系统[14, 23]。UV-B辐射增强试验一般分为室内试验和大田试验。为尽可能真实地反映自然环境中作物对UV-B辐射增强的响应,一般多趋向于采用大田试验。采用室内试验时,要尽量模拟田间可见光、UVA以及其他一些影响因子,室内试验的优势是可同时进行多因子复合试验及便于控制环境因子开展机理性研究[23]

2 UV-B辐射增强对作物生长的影响

UV-B辐射增强通过改变植株体内生长激素含量,削弱顶端优势[9-14]。UV-B辐射与光敏色素和蓝光受体相互作用,影响节间伸长[5, 20],从而降低株高[14, 18, 24-25]。UV-B辐射增强对株高的抑制效应因品种而异。Kataria等[14]发现,滤除UV-B辐射可显著提高4个小麦品种株高,但品种间存在差异。陈建军等[20]对20个大豆品种的研究发现,UV-B辐射增加降低了17个大豆品种株高,但提高了3个品种株高。

叶片是对环境胁迫较为敏感的植物器官,它会通过形态结构的改变来适应各种环境变化[26]。植株叶片会通过减小尺寸、增加厚度、增加表面蜡质含量等来避免或减轻UV-B辐射对植物叶片的穿透性和伤害程度[22-23]。植物还会增加叶表皮毛的数目以增加对UV-B辐射的散射和反射,降低对UV-B的吸收[27]。研究发现,叶片总厚度与紫外吸收物质(类黄酮、生物碱、花色素苷等)总量存在相关关系[28],植物通过增加叶片内紫外吸收物质含量来减少UV-B进入叶片组织内部[29],从而减轻UV-B辐射对叶肉细胞的伤害[30]。孟凡来等[31]研究发现,甘薯叶片紫外吸收物质含量随UV-B辐射增加而显著增加。但是,UV-B辐射强度超过植物忍耐阈值时,植物叶片呈现褪绿、变黄、卷曲等症状,叶脉间会出现不均匀的条状和块状斑点[32]。Li等[33]在对水稻的研究中发现,传统水稻品种可通过改变叶片空间分布(叶顶基距、叶倾角)、增加叶片蜡质含量等来适应UV-B辐射增强。

UV-B辐射增强会通过降低作物株高和绿叶数等减少作物光合有效面积,从而降低地上部干物质累积[16, 34-35],同时还会抑制地下部根系生长[36-37]。UV-B辐射增强抑制根系生长的原因在于:(1)诱使叶片产生信号分子(ROS、NO等)运输到根部抑制根生长[38];(2)减少叶片中生长激素含量,降低生长激素通过韧皮部运输到根部,从而抑制根系生长[39-40]。滤除UVB辐射可提高6个大豆品种地下部根系生物量[35]。UV-B辐射增加还引起作物生物量分配发生变化,大豆在总生物量降低的情况下,会将较多的生物量分配至籽粒,而向叶片分配的量降低[20]

3 UV-B辐射增强对作物生理代谢的影响

有关UV-B辐射增强对植物生理代谢的影响,集中于UV-B感光体UVR8和UVR8介导的信号传导途径上。UVR8是位于细胞质和细胞核中的β螺旋蛋白,在UV-B辐射下,UVR8与组成型光形态建成1蛋白发生作用,开启UV-B光反应信号[41]

叶绿素是作物光合作用的物质基础,其含量高低可作为衡量UV-B辐射增强对作物伤害程度的重要指标。UV-B辐射增强通过多种途径影响叶绿素含量,包括:(1)影响叶绿体中参与暗反应的关键酶——1, 5二磷酸核酮糖羧化酶,使羧化速率下降;(2)使叶绿体膜上镁-三磷酸腺苷酶活性下降,导致叶绿体基质pH降低,叶绿体膜组分改变[42];(3)破坏类囊体光系统,使叶绿素发生光氧化或破坏叶绿体结构[43-44]。叶绿素含量减少直接降低叶片的光能吸收效率和传递速率,干扰光能在PSⅠ和PSⅡ间的分配和转换[45]。UV-B辐射增强常导致叶绿素含量下降[46]。但也有研究认为,UV-B辐射增强可通过延迟叶片落黄,提高叶绿素含量[47-48],如权佳锋等[47]发现,UV-B辐射增强使烤烟中部叶的叶绿素a、b含量高于对照。

UV-B辐射增强通过影响植物类囊体膜中的光化学反应、卡尔文循环中酶过程、影响气孔开度阻碍CO2供应、破坏氨基酸残基、损伤氧介导的植物细胞膜中不饱和脂肪酸等影响光合作用[34, 49-52]。其中,UV-B辐射增强对光合系统Ⅱ(PSⅡ)的影响,主要是通过损坏植物PSⅡ水氧化锰决定簇,破坏光合电子传递,降低PSⅡ反应中心捕获激发能的效率[5, 53],破坏PSⅡ中酪氨酸电子供体与D1和D2蛋白反应中心,导致PSⅡ活性降低,从而降低光合能力[5]。UV-B辐射增强对气孔的影响是由UVR8介导的NO途径调控[54],增加H2O2的生成和产生,诱使细胞质碱化,导致气孔关闭[55]。研究发现,UV-B辐射增强20%会抑制大麦[16, 56-57]、小麦[58]、水稻[59]、花生[60]、棉花[61]等作物的净光合速率。UV-B辐射对光合作用的影响还与辐射剂量及时间有关。祁虹等[61]研究发现,UV-B辐射增强20%处理的棉花叶片净光合速率高于UV-B辐射增强40%。王娟等[62]研究发现,0.616 mW·cm-2的UV-B辐射处理烤烟23 d会提高烤烟净光合速率,而处理33 d则会降低烤烟净光合速率。此外,UV-B辐射增强还通过改变叶片水分运输和分配,使叶片表面气孔开度减小,气孔阻力增大,根系生长和根系活力受抑,从而降低蒸腾速率[16-63]

UV-B辐射增强导致植物体内活性氧(ROS)产生,积累过多的O2-、OH-和H2O2等自由基,引起活性氧代谢系统紊乱[64-65],从而增加植物氧化应激效应[66]。ROS积累与UVR8、COP1和HY5/HYP转录因子信号传导途径有关,低剂量UV-B辐射可诱使植物产生ROS保卫机制,激活植物应急信号途径[54]。酶促和非酶促抗氧化剂的产生是植物对非生物胁迫的适应性反应。UV-B辐射增强会提高植物酶促抗氧化剂(如超氧化物歧化酶、过氧化氢酶、过氧化物酶)活性,增加非酶促抗氧化剂(如抗坏血酸、生育酚、谷胱甘肽、脯氨酸)的积累[67-69],从而清除过多的自由基,使植物体内的自由基维持在正常的生理水平[70]。研究发现,UV-B辐射增强会使小麦[71]、水稻[46]、玉米[72]、土豆[73]等多种作物抗氧化酶活性增加,以提高作物对UV-B辐射增强耐受力。然而,高剂量UV-B辐射会使抗氧化剂不足以清除过量产生的ROS,导致DNA、蛋白质和光合作用机制受损,光合基因下调[74]。此外,不同作物抗氧化酶活性对UV-B辐射增强响应并不相同。研究发现,UV-B辐射增加使苦瓜超氧化物歧化酶、过氧化氢酶、过氧化物酶活性升高[75],而使玉米抗坏血酸过氧化物酶和谷胱甘肽过氧化物酶活性升高[76]。UV-B辐射增强会使烟草过氧化物酶活性高于其他抗氧化剂[68]

4 UV-B辐射增强对作物产量的影响

有关UV-B辐射增强(相当于臭氧耗损量的9%~ 50%)对作物产量影响的研究,大多基于田间模拟试验及温室盆栽试验,但结果不一。大多数研究认为,UV-B辐射增强通过降低作物光合面积、叶绿素含量来降低干物质累积,最终引起产量下降[14, 77]。UV-B辐射增强使大豆果荚数、粒数、粒重等产量构成指标下降,从而导致产量降低[78]。UV-B辐射增强引起春小麦成熟期植株干质量、穗粒数和穗粒质量下降,UV-B辐射增强使小麦发育小花数降低,以致可孕小花数、每穗粒数降低是导致产量下降的关键原因。UV-B辐射增强可降低水稻单株有效穗数、单穗总粒数、结实率、千粒重[79]

但也有研究认为,UV-B辐射增强并不影响作物产量。如Hakala等[80]发现,UV-B辐射增强未对小麦产量造成明显影响。少数研究认为,UV-B辐射增强会提高作物产量。此外,不同作物产量对UV-B辐射增强响应的敏感性存在差异,棉花、大豆、小麦及玉米对UV-B辐射增强响应的敏感性依次为棉花>大豆>小麦>玉米[81]。未来应进一步加强不同UV-B辐射增强对不同生态区域作物产量影响的研究,从机理上阐明引起产量差异的原因。

5 UV-B辐射增强对作物品质的影响

UV-B辐射增强对不同作物品质影响的研究,涉及花生、水稻、小麦、玉米等数十种作物[82-87],但结果不一。UV-B辐射增强对作物籽粒蛋白质含量的影响,可能与作物种类、品种抗性及UV-B辐射强度或剂量等内外因素存在差异有关。据报道,UV-B辐射增强对小麦籽粒蛋白质含量没有显著影响[83];或导致小麦籽粒蛋白质含量增加[88]。Gao等[87]研究发现,UV-B辐射增加9.5%使玉米籽粒蛋白质含量降低;而Yin等[84]则认为,UV-B辐射增加30%使玉米籽粒蛋白质含量提高。UV-B辐射增强显著增加水稻籽粒氮含量、脂肪酸及蛋白质含量,而对水分和支链淀粉没有影响[82]。UV-B辐射增强对可溶性糖、可滴定酸的影响因作物种类、辐射强度的不同而异[89-92]。例如,3.6 kJ·m-2 UV-B辐射对果实存储期间可溶性糖、可滴定酸含量无显著影响[91],而6 kJ·m-2的UV-B辐射则抑制蓝莓果实存储期间可溶性糖、可滴定酸值的增加[92]。UV-B辐射对果实蔗糖、总糖含量等品质指标影响取决于发育期,在果实二次膨大前可提高果实糖积累、可溶性固形物/总酸度比值和花青素含量,但延长UV-B辐射时间则抑制糖积累[89]。未来应进一步关注UV-B辐射增强对不同作物品质影响的研究并阐明内在机理。

6 UV-B辐射增强与其他因子对作物的耦合影响

作物生长受多种环境因子制约,研究UV-B辐射与其他胁迫因子对作物的耦合影响,有助于作物可持续生产[93]。UV-B辐射增强与其他因子耦合对作物的影响,涉及的相关因子很多,包括营养元素、温度、干旱、CO2浓度升高、O3浓度升高及重金属胁迫等,受篇幅所限,另文详述。

施加营养元素(如硒、硅、钾)会改变植物对UVB辐射增强的响应,缓解UV-B辐射增强对植物的损伤[94-95]。硒与UV-B复合可刺激苯丙素代谢途径酶活性,促进酚类物质产生[96],提高冬小麦籽粒产量和品质(如蛋白质含量和营养元素氮、铁、铜、硒含量) [97]。施硅可通过改变植物形态、调节植物内源激素、增加紫外吸收物质(总酚、类黄酮)含量等,减轻UV-B辐射增强对作物光合作用的抑制程度[37, 95]。施钾可缓解UV-B辐射增强对花生、大麦叶片净光合速率、蒸腾速率、气孔导度及水分利用率的抑制作用,提高花生株荚果数、株荚果质量和产量[56, 85]

UV-B增强可降低株高、叶面积和地上部生物量,但可提高紫外吸收物质含量[98]。增温则促进作物生长,降低酚类含量[99]。UV-B辐射与温度以相反方式影响酚类含量,特别是类黄酮的含量[100]。高温和UV-B辐射的相互作用方式因温度不同而异,在适当的温度范围内(21~31 ℃),温度升高可降低UV-B辐射对小麦生长和光合作用的抑制,但当温度过高(36 ℃)时,高温与UV-B表现为协同作用,二者共同抑制植物生长和光合作用[101]

干旱与UV-B辐射复合使玉米和大豆总干物质量因叶绿素含量及光合速率降低而降低,其中UV-B辐射起主导作用[102]。UV-B辐射增强可保护小麦叶片免受干旱引起的枯萎和叶面卷曲,UV-B辐射和干旱复合显著缓解干旱或UV-B辐射增强单因子胁迫对小麦产量的影响[103]。UV-B辐射与干旱处理间相互影响很小,UV-B辐射的影响被水分亏缺的影响所遮蔽,UV-B与干旱复合在很大程度上可推迟葡萄果实成熟[104]。可见,UV-B辐射与干旱复合对作物影响的研究结果不完全一致,这可能与UV-B和干旱处理水平、供试土壤、作物种类及品种抗性不同等有关。

CO2浓度升高可缓解UV-B辐射增强对冬小麦幼苗生长的抑制作用,但并不能缓解对水稻结实率及产量的抑制作用[105-106],原因可能在于试验条件不同,前者在室内人工气候室进行,而后者则在室外半人工气候室进行。CO2倍增和低剂量UV-B辐射能使番茄抗氧化酶活性增强,而高剂量UV-B辐射与CO2复合则对植株伤害作用加剧[107]。原因可能在于CO2倍增为光合作用提供充足原料,提高RuBP羧化酶活性,抑制RuBP加氧酶活性,提高光合速率,抵消低剂量UV-B辐射对PSⅡ抑制作用,但当UV-B辐射为高剂量时,CO2浓度倍增提高的抗氧化酶效应不能缓解UV-B辐射增强对植株的伤害。可见,UV-B辐射与CO2复合处理对作物的影响, 可能与供试作物种类、试验环境条件、CO2浓度及UV-B辐射剂量等有关。

UV-B辐射增强和O3浓度升高显著降低大豆根系生物量,改变叶片内源激素平衡[108]。UV-B辐射增强和O3浓度升高复合胁迫降低冬小麦PSⅡ最大潜在光合能力,使PSⅡ光合活性显著下降[109]。UV-B辐射增强和O3浓度升高复合胁迫下,UV-B辐射抑制希尔反应活力,降低RuBPcase活性,影响光合电子传递速率,抑制PSⅡ酶活性,使呼吸增强,净光合速率下降[110]。O3则使细胞内外CO2浓度差减小,光合作用消耗CO2量减少,细胞内CO2滞留量增加,外界CO2更不易进入叶肉细胞,这种恶性循环最终使光合作用下降,生物量积累减少[111]

UV-B辐射增强与砷复合可加剧砷对向日葵生长参数和光合色素含量抑制,使向日葵幼苗抗氧化酶活性提高,脯胺酸含量增加[112]。UV-B增强与镍复合胁迫对大豆幼苗光合电子传递的抑制作用高于单一处理,引起活性氧大量累积,对大豆幼苗造成损害[113]。UV-B增强与镉复合胁迫对冬小麦生长及生理存在协同效应[114]。镉明显拮抗UV-B辐射对大豆叶片POD活性诱导,使得植物体内POD活性较UV-B单独胁迫显著降低[115]。UV-B辐射增强与重金属复合胁迫,引起植物产生过量活性氧,活性氧可直接与生物分子作用引起脂质过氧化、蛋白质氧化和DNA突变[116-117]

7 研究展望

近年来有关UV-B辐射对作物生长、产量和品质的影响研究取得了较大进展,未来有望在以下方面取得突破:(1) UV-B辐射增强影响作物光合作用及内源激素代谢的分子机制尚缺少深入研究。(2)有关UV-B辐射增强对作物影响的研究多是通过温室或田间模拟试验进行,未来可通过作物生长模型耦合气候模式开展区域及全球尺度的相关研究。(3)加强UV-B辐射增强对作物产量及品质影响的作用机制研究。(4)筛选培育对UV-B辐射适应性强的作物品种。不同作物基因型对UV-B辐射增强及其与其他因子复合作用的响应不同,有关分子机制有待探究。(5) UV-B辐射增强与其他因子耦合对作物影响的研究多是采用模拟试验,与真实环境状况仍有一定差异,如何改进田间试验条件有待进一步研究。

参考文献
[1]
Ballare C L, Caldwell M M, Flint S D, et al. Effects of solar ultraviolet radiation on terrestrial ecosystems. Patterns, mechanisms, and interactions with climate change[J]. Photochemical & Photobiological Sciences, 2011, 10(2): 226-241.
[2]
Yokawa K, Baluška F. Pectins, ROS homeostasis and UV-B responses in plant roots[J]. Phytochemistry, 2015, 112: 80-83.
[3]
Zhang W, Jiang W. UV treatment improved the quality of postharvest fruits and vegetables by inducing resistance[J]. Trends in Food Science & Technology, 2019, 92: 71-80.
[4]
Correia C M, Pereira J M M, Coutinho J F, et al. Ultraviolet-B radiation and nitrogen affect the photosynthesis of maize:a Mediterranean field study[J]. European Journal of Asgronomy, 2005, 22(3): 337-347.
[5]
Kataria S, Jajoo A, Guruprasad K N. Impact of increasing Ultraviolet-B (UV-B) radiation on photosynthetic processes[J]. Journal of Photochemistry and Photobiology B:Biology, 2014, 137: 55-66.
[6]
Schmitz-Hoerner R, Weissenböck G. Contribution of phenolic compounds to the UV-B screening capacity of developing barley primary leaves in relation to DNA damage and repair under elevated UV-B levels[J]. Phytochemistry, 2003, 64(1): 243-255.
[7]
Bornman J F, Barnes P W, Robinson S A, et al. Solar ultraviolet radiation and ozone depletion-driven climate change:Effects on terrestrial ecosystems[J]. Photochemical & Photobiological Sciences, 2015, 14(1): 88-107.
[8]
Shaukat S S, Farooq M A, Siddiqui M F, et al. Effect of enhanced UVB radiation on germination, seedling growth and biochemical responses of Vigna mungo (L.)Hepper[J]. Pak J Bot, 2013, 45(3): 779-785.
[9]
Xu K, Qiu B S. Responses of superhigh-yield hybrid rice Liangyoupeijiu to enhancement of ultraviolet-B radiation[J]. Plant Science, 2007, 172(1): 139-149.
[10]
赵天宏, 刘轶鸥, 王岩, 等. O3浓度升高和UV-B辐射增强对大豆叶片叶绿素含量和活性氧代谢的影响[J]. 应用生态学报, 2013, 24(5): 1277-1283.
ZHAO Tian-hong, LIU Yi-ou, WANG Yan, et al. Effects of elevated O3 concentration and UV-B radiation on the chlorophyll content and active oxygen metabolism of soybean leaves[J]. Chinese Journal of Applied Ecology, 2013, 24(5): 1277-1283.
[11]
何永美, 湛方栋, 吴炯, 等. UV-B辐射对元阳梯田水稻根系LMWOAs分泌量和根际微生物数量的影响[J]. 农业环境科学学报, 2016, 35(4): 613-619.
HE Yong-mei, ZHAN Fang-dong, WU Jiong, et al. Effects of UV-B radiation on rice roots-exudated LMWOAs and rhizospheric microorganism quantities in a paddy field of Yuanyang Terraces, Yunnan Province[J]. Journal of Agro-Environment Science, 2016, 35(4): 613-619.
[12]
徐佳妮, 雷梦琦, 鲁瑞琪, 等. UV-B辐射增强对植物影响的研究进展[J]. 基因组学与应用生物学, 2015, 34(6): 1347-1352.
XU Jia-ni, LEI Meng-qi, LU Rui-qi, et al. Research progress on the effect of enhanced UV-B radiation on plants[J]. Genomics and Applied Biology, 2015, 34(6): 1347-1352.
[13]
李海涛, 董铭, 廖迎春, 等. 模拟UVB增强胁迫对大田水稻生长及内源激素含量的影响[J]. 中国农学通报, 2007, 23(3): 392-397.
LI Hai-tao, DONG Ming, LIAO Ying-chun, et al. The effects of modulated UVB supplementation on growth, leaf chlorophyll contents and endogenesis hormone contents of rice(Oryza sativa L.)in Field[J]. Chinese Agricultural Science Bulletin, 2007, 23(3): 392-397.
[14]
Kataria S, Guruprasad K. Solar UV-B and UV-A/B exclusion effects on intraspecific variations in crop growth and yield of wheat varieties[J]. Field Crops Research, 2012, 125: 8-13.
[15]
娄运生, 武君, 于晋秋, 等. 氮对UV-B辐射增强条件下大麦孕穗期叶片生理特性的影响[J]. 中国农业气象, 2012, 33(2): 202-206.
LOU Yun-sheng, WU Jun, YU Jin-qiu, et al. Effects of nitrogen fertilization on physiological characteristics of barley leaves at booting stage under enhanced UV-B radiation[J]. Chinese Journal of Agrometeorology, 2012, 33(2): 202-206.
[16]
武君, 娄运生, 李永秀, 等. UV-B辐射增强对大麦生理生态的影响[J]. 农业环境科学学报, 2010, 29(6): 1033-1038.
WU Jun, LOU Yun-sheng, LI Yong-xiu, et al. Effect of enhanced ultraviolet-B radiation on physiological and ecological parameters in barley[J]. Journal of Agro-Environment Science, 2010, 29(6): 1033-1038.
[17]
吴荣军, 郑有飞, 王传海, 等. 紫外辐射增强对玉米地上部分与根系生长的影响比较[J]. 生态环境, 2007, 16(2): 323-326.
WU Rong-jun, ZHENG You-fei, WANG Chuan-hai, et al. Effects of enhanced UV-B radiation on the growth of aerial parts and root of maize[J]. Ecology and Environment, 2007, 16(2): 323-326.
[18]
Zhang L X, Allen Jr L H, Vaughan M M, et al. Solar ultraviolet radiation exclusion increases soybean internode lengths and plant height[J]. Agricultural and Forest Meteorology, 2014, 184: 170-178.
[19]
Lou Y S, Wu L, Ren L X, et al. Effects of silicon application on diurnal variations of physiological properties of rice leaves of plants at the heading stage under elevated UV-B radiation[J]. International Journal of Biometeorology, 2016, 60(2): 311-318.
[20]
陈建军, 祖艳群, 陈海燕, 等. UV-B辐射增强对20个大豆品种生长与生物量分配的影响[J]. 农业环境科学学报, 2004, 23(1): 29-33.
CHEN Jian-jun, ZU Yan-qun, CHEN Hai-yan, et al. Influence of enhanced UV-B radiation on growth and biomass allocation of twenty soybean cultivars[J]. Journal of Agro-Environment Science, 2004, 23(1): 29-33.
[21]
吴杏春, 林文雄, 黄忠良. UV-B辐射增强对两种不同抗性水稻叶片光合生理及超显微结构的影响[J]. 生态学报, 2007, 27(2): 554-564.
WU Xing-chun, LIN Wen-xiong, HUANG Zhong-liang. Influence of enhanced ultraviolet-B radiation on photosynthetic physiologies and ultrastructure of leaves in two different resistivity rice cultivars[J]. Acta Ecologica Sinica, 2007, 27(2): 554-564.
[22]
Kakani V, Reddy K, Zhao D, et al. Effects of ultraviolet-B radiation on cotton(Gossypium hirsutum L.)morphology and anatomy[J]. Annals of Botany, 2003, 91(7): 817-826.
[23]
Kataria S, Guruprasad K. Intraspecific variations in growth, yield and photosynthesis of sorghum varieties to ambient UV(280-400 nm)radiation[J]. Plant Science, 2012, 196: 85-92.
[24]
朱婷婷, 娄运生, 黄岩. UV-B辐射增强及种植密度对大麦生长发育的影响[J]. 江苏农业学报, 2013, 29(2): 254-260.
ZHU Ting-ting, LOU Yun-sheng, HUANG Yan. Effects of planting density and enhanced UV-B radiation on growth and development of barley[J]. Jiangsu Journal of Agricultural Sciences, 2013, 29(2): 254-260.
[25]
涂云, 杨正聪, 权佳锋, 等. UV-B辐射强度对烟苗生长及抗氧化酶的影响[J]. 贵州农业科学, 2019, 47(4): 13-18.
TU Yun, YANG Zheng-cong, QUAN Jia-feng, et al. Effects of enhanced UV-B radiation on growth and antioxidant enzyme of fluecured tobacco[J]. Guizhou Agricultural Sciences, 2019, 47(4): 13-18.
[26]
Hu N, Yao K, Zhang X, et al. Effect and simulation of plant type on canopy structure and radiation transmission in rice[J]. Chinese Journal of Rice Science, 2011, 25(5): 535-543.
[27]
Manetas Y. The importance of being hairy:The adverse effects of hair removal on stem photosynthesis of Verbascum speciosum are due to solar UV-B radiation[J]. New Phytologist, 2003, 158(3): 503-508.
[28]
Qi Y, Bai S, Heisler G M. Changes in ultraviolet-B and visible optical properties and absorbing pigment concentrations in pecan leaves during a growing season[J]. Agricultural and Forest Meteorology, 2003, 120(1/2/3/4): 229-240.
[29]
Karabourniotis G, Bornman J, Liakoura V. Different leaf surface characteristics of three grape cultivars affect leaf optical properties as measured with fibre optics:Possible implication in stress tolerance[J]. Functional Plant Biology, 1999, 26(1): 47-53.
[30]
孙金伟, 任斐鹏, 任亮, 等. UV-B辐射对植物生理生态特征的影响研究进展[J]. 长江科学院院报, 2015, 32(3): 107-111.
SUN Jin-wei, REN Fei-peng, REN Liang, et al. Research progresses of the impact of UV-B radiation on plant's ecophysiology characteristics[J]. Journal of Yangtze River Scientific Research Insti, 2015, 32(3): 107-111.
[31]
孟凡来, 郭华春. UV-B辐射增强对甘薯光合特性和紫外吸收物质的影响[J]. 作物杂志, 2019, 35(5): 114-119.
MENG Fan-lai, GUO Hua-chun. Effects of enhanced UV-B on photosynthetic characteristics and UV-absorbing compounds of sweet potato[J]. Crops, 2019, 35(5): 114-119.
[32]
李元, 王勋陵. 紫外辐射增加对春小麦生理、产量和品质的影响[J]. 环境科学学报, 1998, 18(5): 504-509.
LI Yuan, WANG Xun-ling. The effect of enhanced UV-B radiation on the physiological indicator, yield and quality of wheat[J]. Acta Scientiae Circumstantiae, 1998, 18(5): 504-509.
[33]
Li Y, Zu Y, Bao L, et al. The responses of spatial situation, surface structure characteristics of leaves and sensitivity of two local rice cultivars to enhanced UV-B radiation under terraced agricultural ecosystem[J]. Acta Physiologiae Plantarum, 2014, 36(10): 2755-2766.
[34]
Surabhi G-K, Reddy K R, Singh S K. Photosynthesis, fluorescence, shoot biomass and seed weight responses of three cowpea(Vigna unguiculata(L.)Walp.)cultivars with contrasting sensitivity to UV-B radiation[J]. Environmental and Experimental Botany, 2009, 66(2): 160-171.
[35]
Baroniya S S, Kataria S, Pandey G P, et al. Growth, photosynthesis and nitrogen metabolism in soybean varieties after exclusion of the UV-B and UV-A/B components of solar radiation[J]. The Crop Journal, 2014, 2(6): 388-397.
[36]
黄晓华, 周青, 马育国. 钙减轻紫外辐射伤害小麦幼苗的研究[J]. 农业环境保护, 2001, 20(6): 456-457.
HUANG Xiao-hua, ZHOU Qing, MA Yu-guo. Alleviation of damage on wheat seedlings under ultraviolet B radiation in the presence of calcium[J]. Agro-environmental Protection, 2001, 20(6): 456-457.
[37]
孟艳, 娄运生, 吴蕾, 等. UV-B增强下施硅对水稻生长及CH4排放的影响[J]. 应用生态学报, 2015, 26(1): 25-31.
MENG Yan, LOU Yun-sheng, WU Lei, et al. Effects of silicon supply on rice growth and methane emission from paddy soil under elevated UV-B radiation[J]. Chinese Journal of Applied Ecology, 2015, 26(1): 25-31.
[38]
Zhang M, Liu G, Chen T, et al. Cascade transduction and production of the light-nitric oxide signal from shoots to roots in maize seedlings exposed to enhanced UV-B radiation[J]. Acta Physiologiae Plantarum, 2009, 31(1): 175. DOI:10.1007/s11738-008-0218-7
[39]
Hectors K, van Oevelen S, Guisez Y, et al. The phytohormone auxin is a component of the regulatory system that controls UV-mediated accumulation of flavonoids and UV-induced morphogenesis[J]. Physiologia Plantarum, 2012, 145(4): 594-603.
[40]
蒲晓宏, 岳修乐, 安黎哲. 植物对UV-B辐射的响应与调控机制[J]. 中国科学:生命科学, 2017, 47(8): 818-828.
PU Xiao-hong, YUE Xiu-le, AN Li-zhe. The response of plants to UV-B radiation[J]. Scientia Sinica (Vitae), 2017, 47(8): 818-828.
[41]
Heijde M, Ulm R. UV-B photoreceptor-mediated signalling in plants[J]. Trends in Pant Science, 2012, 17(4): 230-237.
[42]
周青, 黄晓华. 生存胁迫:紫外辐射增强对植物的生态生理效应[J]. 自然杂志, 2001, 23(4): 199-203.
ZHOU Qing, HUANG Xiao-hua. The survival stress:Ecophysiological effect of enhanced ultraviolet-B radiation on plant[J]. Chinese Journal of Nature, 2001, 23(4): 199-203.
[43]
Ambasht N, Agrawal M. Effects of enhanced UV-B radiation and tropospheric ozone on physiological and biochemical characteristics of field grown wheat[J]. Biologia Plantarum, 2003, 47(4): 625-628.
[44]
李林玉, 黄群策, 张书艮, 等. 低能氮离子束与UV-B增强对水稻光合及蒸腾速率的影响[J]. 农业工程学报, 2013, 29(15): 136-144.
LI Lin-yu, HUANG Qun-ce, ZHANG Shu-gen, et al. Effects of lowenergy N+ ion beam irradiation on photosynthetic and transpiration in rice under enhanced UV-B radiation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(15): 136-144.
[45]
周可金, 肖文娜, 官春云. 不同油菜品种角果光合特性及叶绿素荧光参数的差异[J]. 中国油料作物学报, 2009, 31(3): 316-321.
ZHOU Ke-jin, XIAO Wen-na, GUAN Chun-yun. Analysis on photosynthetic characteristics and chlorophyll fluorescence of siliques for different winter rapeseed varieties(Brassica napus L.)[J]. Chinese Journal of Oil Crop Sciences, 2009, 31(3): 316-321.
[46]
战莘晔, 殷红, 李雪莹, 等. UV-B辐射增强对粳稻光合特性及保护酶活性的影响[J]. 沈阳农业大学学报, 2014, 45(5): 513-517.
ZHAN Shen-ye, YIN Hong, LI Xue-ying, et al. Effect of UV-B radiation on photosynthetic characteristics and protective enzyme activities of japonica rice[J]. Journal of Shenyang Agricultural University, 2014, 45(5): 513-517.
[47]
权佳锋, 涂云, 杨正聪, 等. 不同UV-B辐射强度对烤烟主要次生代谢产物的影响[J]. 山东农业科学, 2019, 51(2): 68-72.
QUAN Jia-feng, TU Yun, YANG Zheng-cong, et al. Effects of different UV-B radiation intensity on main secondary metabolites of fluecured tobacco[J]. Shandong Agricultural Sciences, 2019, 51(2): 68-72.
[48]
何承刚, 杨志新, 邵建平, 等. 增强UV-B辐射对两个烤烟品种主要化学成分的影响[J]. 中国生态农业学报, 2012, 20(6): 767-771.
HE Cheng-gang, YANG Zhi-xin, SHAO Jian-ping, et al. Effects of enhanced UV-B radiation on basic chemical compositions of two fluecured tobacco cultivars[J]. Chinese Journal of Eco-Agriculture, 2012, 20(6): 767-771.
[49]
Bornman J. New trends in photobiology:Target sites of UV-B radiation in photosynthesis of higher plants[J]. Journal of Photochemistry and Photobiology B:Biology, 1989, 4(2): 145-158.
[50]
Allen D J, Nogués S, Baker N R. Ozone depletion and increased UVB radiation:Is there a real threat to photosynthesis?[J]. Journal of Experimental Botany, 1998, 49(328): 1775-1788.
[51]
Kakani V G, Reddy K R, Zhao D, et al. Senescence and hyperspectral reflectance of cotton leaves exposed to ultraviolet-B radiation and carbon dioxide[J]. Physiologia Plantarum, 2004, 121(2): 250-257.
[52]
Hui R, Li X R, Zhao R M, et al. UV-B radiation suppresses chlorophyll fluorescence, photosynthetic pigment and antioxidant systems of two key species in soil crusts from the Tengger Desert, China[J]. Journal of Arid Environments, 2015, 113: 6-15.
[53]
Bjerke J W, Gwynn-Jones D, Callaghan T V. Effects of enhanced UVB radiation in the field on the concentration of phenolics and chlorophyll fluorescence in two boreal and arctic-alpine lichens[J]. Environmental and Experimental Botany, 2005, 53(2): 139-149.
[54]
Tossi V, Lamattina L, Jenkins G I, et al. Ultraviolet-B-induced stomatal closure in Arabidopsis is regulated by the UV RESISTANCE LOCUS8 photoreceptor in a nitric oxide-dependent mechanism[J]. Plant Physiology, 2014, 164(4): 2220-2230.
[55]
Zhu Y, Ge X M, Wu M M, et al. The role and interactions of cytosolic alkalization and hydrogen peroxide in ultraviolet B-induced stomatal closure in Arabidopsis[J]. Plant Science, 2014, 215: 84-90.
[56]
娄运生, 曾志平, 韩艳, 等. UV-B增强下施钾对大麦抽穗期生理特性日变化的影响[J]. 土壤, 2014, 46(2): 250-255.
LOU Yun-sheng, ZENG Zhi-ping, HAN Yan, et al. Effect of potassium supply on diurnal variations of photosynthesis and transpiration at barley heading stage under enhanced UV-B radiation[J]. Soils, 2014, 46(2): 250-255.
[57]
娄运生, 韩艳, 刘朝阳, 等. UVB增强下施硅对大麦抽穗期光合和蒸腾生理日变化的影响[J]. 中国农业气象, 2013, 34(6): 668-672.
LOU Yun-sheng, HAN Yan, LIU Zhao-yang, et al. Effects of silicon fertilization on diurnal variations of photosynthesis and transpiration at barley heading stage under elevated UVB radiation[J]. Chinese Journal of Agrometeorology, 2013, 34(6): 668-672.
[58]
肇思迪, 娄运生, 庞渤, 等. UV-B辐射增强下施硅对冬小麦光合特性和产量的影响[J]. 江苏农业学报, 2017, 33(5): 1036-1043.
ZHAO Si-di, LOU Yun-sheng, PANG Bo, et al. Effects of silicate application on photosynthesis and yield in winter wheat under elevated UV-B radiation[J]. Jiangsu Journal of Agricultural Sciences, 2017, 33(5): 1036-1043.
[59]
吴蕾, 娄运生, 孟艳, 等. UV-B增强下施硅对水稻抽穗期生理特性日变化的影响[J]. 应用生态学报, 2015, 26(1): 32-38.
WU Lei, LOU Yun-sheng, Meng yan, et al. Effects of silicon supply on diurnal variations of physiological properties at rice heading stage under elevated UV-B radiation[J]. Chinese Journal of Applied Ecology, 2015, 26(1): 32-38.
[60]
韩艳, 韩晨光, 崔荣华, 等. 外源水杨酸对UV-B增强下花生叶片光合特性的影响[J]. 中国农业气象, 2016, 37(4): 437-444.
HAN Yan, HAN Chen-guang, CUI Rong-hua, et al. Effects of exogenous salicylic acid on photosynthetic characteristics of peanut leaves under elevated UV-B radiation[J]. Chinese Journal of Agrometeorology, 2016, 37(4): 437-444.
[61]
祁虹, 段留生, 王树林, 等. 全生育期UV-B辐射增强对棉花生长及光合作用的影响[J]. 中国生态农业学报, 2017, 25(5): 708-719.
QI Hong, DUAN Liu-sheng, WANG Shu-lin, et al. Effect of enhanced UV-B radiation on cotton growth and photosynthesis[J]. Chinese Journal of Eco-Agriculture, 2017, 25(5): 708-719.
[62]
王娟, 王毅, 陈宗瑜, 等. UV-B辐射强度变化对烤烟光合生理和化学品质的影响[J]. 中国农业气象, 2014, 35(3): 250-257.
WANG Juan, WANG Yi, CHEN Zong-yu, et al. Effects of UV-B radiation intensity variation on tobacco photosynthetic physiology and chemical quality[J]. Chinese Journal of Agrometeorology, 2014, 35(3): 250-257.
[63]
Murali N, Teramura A H. Intraspecific differences in Cucumis sativus sensitivity to ultraviolet-B radiation[J]. Physiologia Plantarum, 1986, 68(4): 673-677.
[64]
杨璐, 赵天宏. UV-B辐射增强对大豆根系活性氧代谢及抗氧化系统的影响[J]. 华北农学报, 2018, 33(5): 174-180.
YANG Lu, ZHAO Tian-hong. The effect of enhanced UV-B radiation on soybean root's activate oxygen metabolism and antioxidative system[J]. Acta Agriculturae Boreali-Sinica, 2018, 33(5): 174-180.
[65]
赵天宏, 戴震, 赵艺欣, 等. UV-B辐射增强对大豆叶片活性氧代谢及籽粒产量的影响[J]. 华北农学报, 2012, 27(5): 213-217.
ZHAO Tian-hong, DAI Zhen, ZHAO Yi-xin, et al. Effects of enhanced UV-B radiation on grain yield and reactive oxygen species metabolism in soybean leaves[J]. Acta Agriculturae Boreali-Sinica, 2012, 27(5): 213-217.
[66]
Hideg É, Jansen M A, Strid Å. UV-B exposure, ROS, and stress:inseparable companions or loosely linked associates?[J]. Trends in Plant Science, 2013, 18(2): 107-115.
[67]
Redha A, Patrice S, Al-Hasan R, et al. Conocarpus lancifolius biochemical responses to variable UV-B irradiation[J]. Biochemical Systematics and Ecology, 2013, 48: 157-162.
[68]
Majer P, Czégény G, Sándor G, et al. Antioxidant defence in UV-irradiated tobacco leaves is centred on hydrogen-peroxide neutralization[J]. Plant Physiology and Biochemistry, 2014, 82: 239-243.
[69]
Badridze G, Kacharava N, Chkhubianishvili E, et al. Effect of UV radiation and artificial acid rain on productivity of wheat[J]. Russian Journal of Ecology, 2016, 47(2): 158-166.
[70]
Das K, Roychoudhury A. Reactive oxygen species(ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants[J]. Frontiers in Environmental Science, 2014, 2: 53-60.
[71]
Badridze G, Kacharava N, Chkhubianishvili E, et al. Influence of ultraviolet irradiation and acid precipitations on the content of antioxidants in wheat leaves[J]. Applied Ecology and Environmental Research, 2015, 13(4): 993-1013.
[72]
Rudnóy S, Majláth I, Pál M, et al. Interactions of S-methylmethionine and UV-B can modify the defence mechanisms induced in maize[J]. Acta Physiologiae Plantarum, 2015, 37(8): 148.
[73]
Oyarburo N S, Machinandiarena M F, Feldman M L, et al. Potassium phosphite increases tolerance to UV-B in potato[J]. Plant Physiology and Biochemistry, 2015, 88: 1-8.
[74]
Jenkins G I. Signal transduction in responses to UV-B radiation[J]. Annual Review of Plant Biology, 2009, 60: 407-431.
[75]
Mishra V, Srivastava G, Prasad S M. Antioxidant response of bitter gourd(Momordica charantia L.)seedlings to interactive effect of dimethoate and UV-B irradiation[J]. Scientia Horticulturae, 2009, 120(3): 373-378.
[76]
Javadmanesh S, Rahmani F, Pourakbar L. UV-B radiation, soil salinity, drought stress and their concurrent effects on some physiological parameters in mize plant[J]. American-Eurasian Journal of Toxicological Sciences(AEJTS), 2012, 4(4): 154-164.
[77]
Yao X, Chu J, He X, et al. Grain yield, starch, protein, and nutritional element concentrations of winter wheat exposed to enhanced UV-B during different growth stages[J]. Journal of Cereal Science, 2014, 60(1): 31-36.
[78]
Liu B, Liu X B, Li Y S, et al. Effects of enhanced UV-B radiation on seed growth characteristics and yield components in soybean[J]. Field Crops Research, 2013, 154: 158-163.
[79]
毛晓艳, 殷红, 郭巍, 等. UV-B辐射增强对水稻产量及品质的影响[J]. 安徽农业科学, 2007(4): 82-83.
MAO Xiao-yan, YIN Hong, GUO Wei, et al. Effect of enhancement of UV-B radiation on yield and quality of rice[J]. Journal of Anhui Agricultural Sciences, 2007(4): 82-83.
[80]
Hakala K, Jauhiainen L, Koskela T, et al. Sensitivity of crops to increased ultraviolet radiation in northern growing conditions[J]. Journal of Agronomy and Crop Science, 2002, 188(1): 8-18.
[81]
王传海, 郑有飞, 闵锦忠, 等. UV-B增加对几种不同作物影响程度的种间比较[J]. 农业环境科学学报, 2004, 23(4): 646-648.
WANG Chuan-hai, ZHENG You-fei, MIN Jin-zhong, et al. Differences in sensitivity to enhanced UV-B radiation of several different crops[J]. Journal of Agro-Environment Science, 2004, 23(4): 646-648.
[82]
Hidema J, Zhang W, Yamamoto M, et al. Changes in grain size and grain storage protein of rice(Oryza sativa L.)in response to elevated UV-B radiation under outdoor conditions[J]. Journal of Radiation Research, 2005, 46(2): 143-149.
[83]
Lizana X C, Hess S, Calderini D F. Crop phenology modifies wheat responses to increased UV-B radiation[J]. Agricultural and Forest Meteorology, 2009, 149(11): 1964-1974.
[84]
Yin L, Wang S. Modulated increased UV-B radiation affects crop growth and grain yield and quality of maize in the field[J]. Photosynthetica, 2012, 50(4): 595-601.
[85]
韩艳, 娄运生, 李萌, 等. UV-B辐射增强对河南省夏直播花生产量及品质的影响[J]. 南京信息工程大学学报:自然科学版, 2014, 6(3): 244-248.
HAN Yan, LOU Yun-sheng, LI Meng, et al. Effect of enhanced UVB radiation on the quality and yield of summer sowing peanut in Henan Province[J]. Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2014, 6(3): 244-248.
[86]
Calderini D, Lizana X, Hess S, et al. Grain yield and quality of wheat under increased ultraviolet radiation(UV-B) at later stages of the crop cycle[J]. The Journal of Agricultural Science, 2008, 146(1): 57-64.
[87]
Gao W, Zheng Y, Slusser J R, et al. Effects of suplementary ultraviolet-B irradiance on maize yield and qualities:A field experiment[J]. Photochemistry and Photobiology, 2004, 80(1): 127-131.
[88]
Zu Y, Li Y, Chen J, et al. Intraspecific responses in grain quality of 10 wheat cultivars to enhanced UV-B radiation under field conditions[J]. Journal of Photochemistry and Photobiology B:Biology, 2004, 74(2/3): 95-100.
[89]
Wang X, Fu X, Chen M, et al. Ultraviolet B irradiation influences the fruit quality and sucrose metabolism of peach(Prunus persica L.)[J]. Environmental and Experimental Botany, 2018, 153: 286-301.
[90]
Nechet K L, Heck D W, Terao D, et al. Effect of the increase of UV-B radiation on strawberry fruit quality[J]. Scientia Horticulturae, 2015, 193: 7-12.
[91]
Sheng K, Zheng H, Shui S, et al. Comparison of postharvest UV-B and UV-C treatments on table grape:Changes in phenolic compounds and their transcription of biosynthetic genes during storage[J]. Postharvest Biology and Technology, 2018, 138: 74-81.
[92]
Nguyen C T T, Kim J, Yoo K S, et al. Effect of Prestorage UV-A, -B, and-C radiation on fruit quality and anthocyanin of'Duke'blueberries during cold storage[J]. Journal of Agricultural and Food Chemistry, 2014, 62(50): 12144-12151.
[93]
Kovács V, Gondor O K, Szalai G, et al. UV-B radiation modifies the acclimation processes to drought or cadmium in wheat[J]. Environmental and Experimental Botany, 2014, 100: 122-131.
[94]
Singh S, Kumari R, Agrawal M, et al. Modification of growth and yield responses of Amaranthus tricolor L. to sUV-B under varying mineral nutrient supply[J]. Scientia Horticulturae, 2009, 120(2): 173-180.
[95]
方长旬, 王清水, 余彦, 等. 硅及其吸收基因Lsi1调节水稻耐UV-B辐射的作用[J]. 作物学报, 2011, 37(6): 1005-1011.
FANG Chang-xun, WANG Qing-shui, YU Yan, et al. Silicon and its uptaking gene Lsi1 in regulation of rice UV-B tolerance[J]. Acta Agronomica Sinica, 2011, 37(6): 1005-1011.
[96]
Golob A, Kavčič J, Stibilj V, et al. The effect of selenium and UV radiation on leaf traits and biomass production in Triticum aestivum L[J]. Ecotoxicology and Environmental Safety, 2017, 136: 142-149.
[97]
Yao X, Chu J, He X, et al. Effects of selenium on agronomical characters of winter wheat exposed to enhanced ultraviolet-B[J]. Ecotoxicology and Environmental Safety, 2013, 92: 320-326.
[98]
Newsham K K, Robinson S A. Responses of plants in polar regions to UV-B exposure:A meta-analysis[J]. Global Change Biology, 2009, 15(11): 2574-2589.
[99]
Lavola A, Nybakken L, Rousi M, et al. Combination treatment of elevated UV-B radiation, CO2 and temperature has little effect on silver birch (Betula pendula) growth and phytochemistry[J]. Physiologia Plantarum, 2013, 149(4): 499-514.
[100]
Randriamanana T R, Lavola A, Julkunen-Tiitto R. Interactive effects of supplemental UV-B and temperature in European aspen seedlings:Implications for growth, leaf traits, phenolic defense and associated organisms[J]. Plant Physiology and Biochemistry, 2015, 93: 84-93.
[101]
王玉洁.增强UV-B辐射对不同温度下小麦幼苗生长和光合作用的影响[D].陕西师范大学, 2010.
WANG Yu-jie.Effects of enhanced UV-B radiation on growth and Photosynthesis of wheat seedlings at different temperatures[D]. Xi'an: Shaanxi Normal University, 2010.
[102]
Shen X F, Dong Z X, Chen Y. Drought and UV-B radiation effect on photosynthesis and antioxidant parameters in soybean and maize[J]. Acta Physiologiae Plantarum, 2015, 37(2): 25-33.
[103]
Gondor O K, Szalai G, Kovács V, et al. Impact of UV-B on droughtor cadmium-induced changes in the fatty acid composition of membrane lipid fractions in wheat[J]. Ecotoxicology and Environmental Safety, 2014, 108: 129-134.
[104]
Martínez-Lüscher J, Morales F, Delrot S, et al. Characterization of the adaptive response of grapevine(cv. Tempranillo)to UV-B radiation under water deficit conditions[J]. Plant Science, 2015, 232: 13-22.
[105]
苗秀莲, 刘传栋, 郭彦. UV-B辐射增强及CO2浓度升高对水稻产量及品质的影响[J]. 作物杂志, 2015(1): 138-142.
MIAO Xiu-lian, LIU Chuan-dong, GUO Yan, et al. Effects of enhancing UV-B radiation and elevating carbon dioxide on yield and quality of rice (Oryza sativa L.)[J]. Crops, 2015(1): 138-142.
[106]
郭伟伟, 王光全, 张文会, 等. 大气CO2浓度倍增及UV-B辐射对冬小麦幼苗生长发育及抗氧化特性的影响[J]. 麦类作物学报, 2010, 30(6): 1118-1121.
GUO Wei-wei, WANG Guang-quan, ZHANG Wen-hui, et al. Effects of doubled carbon dioxide and UV-B radiation on growth and antoxidation of winter wheat[J]. Journal of Triticeae Crops, 2010, 30(6): 1118-1121.
[107]
王军, 李方民, 邹志荣, 等. CO2浓度倍增减轻UV-B辐射对大棚番茄的抑制作用研究[J]. 西北植物学报, 2004, 24(5): 817-821.
WANG Jun, LI Fang-min, ZOU Zhi-rong, et al. Study on doubled CO2 concentration reduce the inhibition of enhanced UV-B radiation on tomato in plastic greenhouse[J]. Acta Botanica Boreali-Occidentalia Sinica, 2004, 24(5): 817-821.
[108]
赵天宏, 刘波, 王岩, 等. UV-B辐射增强和O3浓度升高对大豆叶片内源激素和抗氧化能力的影响[J]. 生态学报, 2015, 35(8): 2695-2702.
ZHAO Tian-hong, LIU Bo, WANG Yan, et al. Effects of plant endogenous hormones and antioxidant ability in soybean leaves under UVB and ozone stress[J]. Acta Ecologica Sinica, 2015, 35(8): 2695-2702.
[109]
郑有飞, 胡会芳, 吴荣军, 等. O3和UV-B共同作用对大豆干物质和产量的影响[J]. 环境科学研究, 2013, 26(6): 624-630.
ZHENG You-fei, HU Hui-fang, WU Rong-jun, et al. Effects of enhance of UV-B radiation and O3 concentration on dry matter and yield of soybean[J]. Research of Environmental Sciences, 2013, 26(6): 624-630.
[110]
赵平, 曾小平, 孙谷畴. 陆生植物对UV-B辐射增量响应研究进展[J]. 应用与环境生物学报, 2004, 10(1): 123-128.
ZHAO Ping, ZENG Xiao-ping, SUN Gu-chou. A review:Response of terrestrial plants to enhanced UV-B radiation[J]. Chinese Journal of Applied and Environmental Biology, 2004, 10(1): 123-128.
[111]
郭建平, 王春乙, 温民, 等. 大气中O3浓度变化对水稻影响的试验研究[J]. 作物学报, 2001, 27(6): 822-826.
GUO Jian-ping, WANG Chun-yi, WEN Min. The experimental study on the impact of atmospheric O3 variation on rice[J]. Acta Agronomica Sinica, 2001, 27(6): 822-826.
[112]
Yadav G, Srivastava P K, Parihar P, et al. Oxygen toxicity and antioxidative responses in arsenic stressed Helianthus annuus L. seedlings against UV-B[J]. Journal of Photochemistry & Photobiology B Biology, 2016, 165: 58-70.
[113]
Prasad S M, Dwivedi R, Zeeshan M. Growth, photosynthetic electron transport, and antioxidant responses of young soybean seedlings to simultaneous exposure of nickel and UV-B stress[J]. Photosynthetica, 2005, 43(2): 177-185.
[114]
何永美, 湛方栋, 徐渭渭, 等. 镉和UV-B辐射增强复合胁迫对冬小麦幼苗生长和生理的影响[J]. 农业环境科学学报, 2013, 32(3): 450-455.
HE He-yong, ZHAN Fang-dong, XU Wei-wei, et al. Combined effects of Cd and enhanced UV-B radiation on growth and physiology of winter wheat seedling[J]. Journal of Agro-Environment Science, 2013, 32(3): 450-455.
[115]
强维亚, 杨晖, 汤红官, 等. 重金属镉(Cd)和增强UV-B辐射复合对大豆生长和生理代谢的影响[J]. 西北植物学报, 2003, 23(2): 235-238.
QIANG Wei-ya, YANG Hui, TANG Hong-guan, et al. Effect of cadmium and UV-B radiation in combination on growth and physiology of soybean[J]. Acta Botanica Boreali-Occidentalia Sinica, 2003, 23(2): 235-238.
[116]
Gangwar S, Singh V P. Indole acetic acid differently changes growth and nitrogen metabolism in Pisum sativum L. seedlings under chromium(VI)phytotoxicity:Implication of oxidative stress[J]. Scientia Horticulturae, 2011, 129(2): 321-328.
[117]
Mishra V, Srivastava G, Prasad S M, et al. Growth, photosynthetic pigments and photosynthetic activity during seedling stage of cowpea (Vigna unguiculata)in response to UV-B and dimethoate[J]. Pesticide Biochemistry and Physiology, 2008, 92(1): 30-37.