快速检索        
  农业环境科学学报  2021, Vol. 40 Issue (2): 260-268  DOI: 10.11654/jaes.2020-0873
0

引用本文  

张玉盛, 周亮, 肖欢, 等. 氮肥对双季稻根表铁膜形成及双季稻镉积累的影响[J]. 农业环境科学学报, 2021, 40(2): 260-268.
ZHANG Yu-sheng, ZHOU Liang, XIAO Huan, et al. Effect of nitrogen fertilizer on iron plaque formation on the root surface of double cropping rice and cadmium accumulation in double-season rice[J]. Journal of Agro-Environment Science, 2021, 40(2): 260-268.

基金项目

国家水稻产业技术体系栽培与土肥岗位专家项目(CARS-01)

Project supported

The China Agriculture Research System(CARS-01)

通信作者

敖和军  E-mail: aohejun@126.com

作者简介

张玉盛(1992-), 男, 福建龙岩人, 博士研究生, 从事农艺措施治理水稻重金属污染研究。E-mail: zhangys9210@163.com

文章历史

收稿日期: 2020-07-27
录用日期: 2020-10-30
氮肥对双季稻根表铁膜形成及双季稻镉积累的影响
张玉盛1,2 , 周亮3 , 肖欢1,2 , 匡瑜4 , 敖和军1,2 , 田伟1,2 , 肖峰1,2 , 向焱赟1,2 , 张小毅1,2     
1. 湖南农业大学农学院, 长沙 410128;
2. 南方粮油作物协同创新中心, 长沙 410128;
3. 华南农业大学资源环境学院, 广州 510642;
4. 湖南省醴陵市农业农村局社会就业促进股, 湖南 醴陵 412200
摘要:为探究淹水条件下氮肥比例对水稻根表铁膜形成量及对镉吸收转运的影响,开展大田试验,选取早稻株两优819(低镉品种)、陆两优996(高镉品种)和晚稻湘晚籼12号(低镉品种)、玉针香(高镉品种)为试验材料,以水稻全生育期施氮量为180 kg·hm-2,设3个氮肥比例,基肥:蘖肥:穗肥:粒肥分别为4:4:2:0(T1)、8:0:2:0(T2)、6:0:2:2(T3)及不施氮处理(CK)。水稻分蘖期和乳熟期,整株采集水稻,测定植株各部位镉含量和根膜铁、镉含量;成熟期测定根、茎叶、糙米镉含量。结果表明,不同稻季低镉品种根膜铁含量为分蘖期>乳熟期,高镉品种根膜铁含量及镉吸附量为乳熟期>分蘖期。株两优819、陆两优996和玉针香乳熟期根膜镉含量以T1、T2处理时较CK有所降低,T3处理时最高,湘晚籼12号以不施氮情况下最高,T2处理下最低。高镉品种陆两优996不同时期根膜铁含量与根膜镉含量显著正相关(P < 0.05),高镉品种玉针香分蘖期根膜铁含量与根膜镉含量显著正相关(P < 0.05),乳熟期根膜铁含量与叶、穗镉含量显著负相关(P < 0.05)。水稻根和茎、叶镉含量随生育期的延长而增加,施氮可降低早稻成熟期各部位镉含量,提高晚稻根和茎、叶镉含量。不同稻季糙米镉含量在氮处理下显著降低,施氮量一致情况下,改变氮肥比例对低镉品种株两优819和湘晚籼12号糙米镉含量无明显影响,高镉品种陆两优996和玉针香糙米镉含量以T3处理降低最明显,较CK分别降低52.72%和74.13%。由此可知,淹水条件下,可依据水稻品种,结合水稻镉积累关键生育期,制定合理的氮肥比例以降低糙米镉含量。
关键词双季稻    大田试验    氮肥            根表铁膜    转运系数    
Effect of nitrogen fertilizer on iron plaque formation on the root surface of double cropping rice and cadmium accumulation in double-season rice
ZHANG Yu-sheng1,2 , ZHOU Liang3 , XIAO Huan1,2 , KUANG Yu4 , AO He-jun1,2 , TIAN Wei1,2 , XIAO Feng1,2 , XIANG Yan-yun1,2 , ZHANG Xiao-yi1,2     
1. College of Agronomy, Hunan Agricultural University, Changsha 410128, China;
2. South Regional Collaborative Innovation Center for Grain and Oil in China, Changsha 410128, China;
3. College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China;
4. Social Employment Promotion Unit of Agricultural and Rural Bureau of Liling City, Hunan Province, Liling 412200, China
Abstract: Field experiments were carried out to investigate the effects of nitrogen fertilizer ratio on the formation of iron membrane on the surface of rice roots and Cd uptake and transport in rice under flooding conditions. The early rice Zhuliangyou 819(low Cd variety)and Luliangyou 996(high Cd variety), and late rice Xiangwanxian 12 hao(low Cd variety)and Yuzhenxiang(high Cd variety)were selected as experimental materials, and either nitrogen fertilizer, which included three nitrogen fertilizer ratios: 4:4:2:0 (T1), 8:0:2:0 (T2), 6:0:2:2 (T3), or no nitrogen treatment(CK), were applied at the rate of 180 kg·hm-2 during the whole growth period of rice. At the tillering stage and milk stage of rice, whole plant was collected and the contents of Cd in all parts, Fe and Cd in the root membrane, and Cd in roots and shoots of brown rice were determined at maturity. Results showed that the Fe contents on root plaque of low Cd varieties during different rice seasons were higher at tillering stage than at milk stage, and the Fe and Cd contents on root plaque of high Cd varieties were higher at milk stage than at tillering stage. The Cd contents on root plaque of the two early rice varieties(Zhuliangyou 819 and Luliangyou 996)and one late rice variety(Yuzhenxiang)were reduced by T1 and T2 treatment; however, they were the highest at T3 treatment. The Cd contents in the root plaque of Xiangwanxian 12 hao was the highest and lowest under the condition of CK and T2 treatment, respectively. The Fe content in the root plaque of the high-Cd variety Luliangyou 996 was significantly positively correlated with the Cd contents in root plaque at different periods(P < 0.05), and the Fe content in the root plaque of the high-Cd variety Yuzhenxiang was significantly positively correlated with the Cd content in root plaque at tillering stage(P < 0.05). There was a significant negative correlation between the Fe contents in root plaque and the Cd contents of leaves and panicle during milk maturity(P < 0.05). The Cd content in roots, shoots, and leaves of rice increased with the extension of growth period. Nitrogen application could reduce the Cd content in different parts of early rice and increase the Cd content in roots, shoots, and leaves of late rice, at maturity stage. Under the same nitrogen application rate, the Cd content in brown rice at different rice seasons was significantly reduced. Under the same nitrogen application rate, changes in nitrogen fertilizer ratios had no significant effect on the Cd content in brown rice of low-Cd varieties(Zhuliangyou 819 and Xiangwanxian 12 hao). The Cd content in the high-Cd varieties Luliangyou 996 and Yuzhenxiang brown rice decreased significantly at a ratio of 6:0:2:2 by 52.72% and 74.13%, respectively, compared with that in CK. It can be concluded that under flooding conditions, according to rice varieties, combined with the key growth and development of Cd accumulation in rice, a reasonable proportion of nitrogen fertilizer can reduce the Cd contents in brown rice.
Keywords: double-season rice    field experiment    nitrogen fertilizer    cadmium    iron    iron plaque    transport coefficient    

防控稻米镉污染、切断镉的食物链途径是近年来的研究热点。研究发现,水稻镉积累并非取决于根系对镉吸收能力,水稻谷粒镉积累水平取决于以木质部介导的镉转运和韧皮部的装载能力[1-2]。因此,在土壤镉“治理难”“移除难”的背景下,降低水稻对土壤镉的吸收和转运,是实现稻米安全生产的可行之路。

淹水灌溉可降低土壤镉活性,抑制镉吸收基因的表达,是降低稻米镉积累的有效途径[3]。淹水条件下,镉在土壤-植株系统中的迁移是诸多因素共同作用的结果[4],其中水稻根表铁膜的形成对水稻镉积累具有重要影响[3]。铁膜对水稻镉积累的作用方向取决于铁膜数量(浓度)、生育期以及水稻品种对镉的富集和转运能力[5-7]。营养状况显著影响铁膜的形成,如施用硅[8]、硫等[9]可促进铁膜的形成,加强铁膜对镉的吸附作用,并有效抑制镉从根部向地上部转运,从而降低水稻糙米镉含量。氮素是水稻的必需营养元素之一,施氮不仅可提高水稻对重金属毒害的耐受力,还能提高作物产量和品质[10-11]。迄今为止,虽然国内外在水稻对镉的吸收、转运和积累等方面有大量的报道[12-14],但有关氮在影响水稻根表铁膜形成量及其对水稻镉吸收方面的研究报道较少。为此,本试验通过大田试验,设3种氮肥比例,分析氮肥对根表铁膜形成量及水稻对镉吸收转运的影响,以期为重金属污染地区水稻安全生产提供理论依据。

1 材料与方法 1.1 试验地点

试验于2018年在湖南省浏阳市岩溪镇花园村进行,土壤类型为壤土,理化性质为:pH值5.48,有机质20.11 g·kg-1,全镉1.62 mg·kg-1,有效镉0.80 mg·kg-1

1.2 试验材料

参考湖南杂交水稻研究中心张玉烛研究团队的应急性镉低积累水稻品种筛选结果,分别选用早稻株两优819(低镉品种)和陆两优996(高镉品种),晚稻湘晚籼12号(低镉品种)和玉针香(高镉品种)为供试材料[15-17]

1.3 试验方法

以水稻全生育期施氮量为180 kg·hm-2,设置基肥∶蘖肥∶穗肥∶粒肥3种比例,分别为4∶4∶2∶0(T1)、8∶0∶2∶0(T2)、6∶0∶2∶2(T3)及不施氮处理(CK),每个处理3次重复。水稻移栽前翻耕后反复多次耙平、耙匀,以减小试验小区间土壤镉含量的差异。小区随机排列,面积为8 m×8 m=64 m2,小区间留排水沟,覆盖黑色地膜。早稻收获后,在原有小区内用小型打田机翻耕均匀后种植晚稻,早稻于3月22日播种,4月23日移栽,株行距为16.6 cm×16.6 cm,晚稻于6月22日播种,7月18日移栽,株行距为16.6 cm×20 cm。

1.4 水肥管理措施

常规水肥管理,水稻全生育期施氮肥(纯氮)180 kg·hm-2、磷肥(P2O5)90 kg·hm-2、钾肥144 kg·hm-2,其中:氮肥为尿素(N 46.4%),磷肥为过磷酸钙(P2O5 12%),钾肥为氯化钾(K2O 60%)。氮肥按试验氮肥比例在不同时期施用,磷肥一次性基施,钾肥于移栽前1~2 d和幼穗分化始期各施50%,蘖肥、穗肥、粒肥分别于水稻移栽后14 d、幼穗分化始期和齐穗期施用,试验期间保持浅水层淹水灌溉(2~3 cm水层),其他栽培管理措施与当地习惯保持一致。

1.5 样品采集与制备 1.5.1 水稻植株镉含量测定

于水稻移栽后28 d、乳熟期、成熟期,共3次取样,避开小区边3行,采集田间长势一致的植株5穴,用自来水洗净根部与地上部,蒸馏水和超纯水润洗,晾干表面水分后将植株分成根(不去除铁膜)、茎、叶(茎叶)、谷粒装入信封中,放入烘箱中用110 ℃杀青30 min,80 ℃烘干至恒质量,谷粒去糙,所有样品粉碎后过筛密封保存。称取0.200 0 g植株粉碎样,放入50 mL三角锥形瓶中,加入混酸10 mL(VHNO3VHClO4=4∶1),静置过夜(≥10 h)后,150 ℃消煮1 h,220 ℃消煮至澄清,待消煮液剩余1~2 mL,自然冷却,超纯水润洗定容至50 mL容量瓶中,过0.45 μm滤膜至10 mL离心管中。待测液用电感耦合等离子体质谱仪(ICP-MS,Agilent 7700x,USA)测定。试验所用试剂均为优级纯,所用器皿均在5% 硝酸溶液中浸泡24 h以上,蒸馏水洗净后用超纯水润洗自然晾干。

1.5.2 植株根表铁膜中铁、镉含量测定

采集分蘖期和乳熟期水稻根部(鲜样),先后用蒸馏水和超纯水洗净后,用滤纸吸干表面水分,取完整根系,自根基部将根系剪断,放入100 mL烧杯中,采用DCB(dithionite-citrate-bicarbonate)法浸提[7],具体操作如下:加入25 mL 0.3 mol·L-1 Na3C6H5O7·2H2O与1.0 mol·L-1 NaHCO3的混合液及3.0 g保险粉(Na2S2O4),25 ℃恒温振荡3 h(转速280 r·min-1),润洗、定容、过滤后,待测液用电感耦合等离子体质谱仪(ICP-MS,Agilent 7700x,USA)测定DCB-Fe、DCB-Cd含量。将提取后的根冲洗干净,110 ℃杀青30 min,80 ℃烘干至恒质量。

1.6 数据处理

TF茎叶/根=水稻茎叶镉含量(mg·kg-1)/水稻根镉含量(mg·kg-1)×100%,TF糙米/茎叶=水稻糙米镉含量(mg·kg-1)/水稻茎叶镉含量(mg·kg-1)×100%,TF糙米/根=水稻糙米镉含量(mg·kg-1)/水稻根镉含量(mg·kg-1)× 100%。

试验结果用Microsoft Excel 2016和SAS 9.4进行数据整理统计分析与相关性分析。

2 结果与分析 2.1 双季稻根膜铁含量及其吸附镉量

图 1可知,施用氮肥可提高早稻两品种分蘖期根膜Fe含量(以DCB-Fe表示),随生育期的延长,两品种DCB-Fe变化趋势不同,其中株两优819呈降低趋势,陆两优996反之。株两优819 DCB-Fe在分蘖期和乳熟期均以T2最高,显著高于其他处理,其中T2、T3乳熟期较分蘖期无明显变化,CK和T1较分蘖期分别降低10.57%、29.31%;陆两优996的DCB-Fe在分蘖期以T2最高,显著高于CK,而乳熟期以T3最高,与T1和T2差异显著。不同处理DCB-Fe乳熟期较分蘖期分别提高303.66%、45.43%、62.49%、236.54%。两品种乳熟期DCB-Fe表现为陆两优996>株两优819。

图中小写字母不同,表示同一生育期处理间差异显著(P < 0.05)。下同 Different lowercase letters indicate significant differences among treatments in the same growth stage(P < 0.05). The same below 图 1 双季稻不同生育期根膜铁含量 Figure 1 Fe contents on root plaque of double-cropping rice at different growth stages

晚稻两品种不同生育期DCB-Fe在不同处理下存在明显差异,湘晚籼12号为分蘖期>乳熟期,玉针香为乳熟期>分蘖期。湘晚籼12号DCB-Fe在分蘖期和乳熟期大小顺序分别为T1>CK>T3>T2、T3>T2>T1> CK,各处理下DCB-Fe乳熟期较分蘖期依次降低65.14%、68.42%、35.05%、36.35%。玉针香DCB-Fe分蘖期T3最高,显著高于CK,T1次之,T2最低;乳熟期T1最高,其次为T3,且两者与CK差异达到显著水平,较分蘖期依次提高98.81% 和14.96%,T2和CK较分蘖期提高159.32%、70.72%。两品种乳熟期DCB-Fe表现与早稻一致,即高镉品种>低镉品种。

相同处理下,低镉品种早稻株两优819和晚稻湘晚籼12号DCB-Fe随生育期的延长呈降低的趋势,高镉品种早稻陆两优996和晚稻玉针香DCB-Fe随生育期延长呈增加趋势,说明同积累型品种DCB-Fe在不同生育期变化趋势一致。

图 2可知,各处理对水稻根膜镉含量(下文以DCB-Cd表示)在不同生育期、不同品种之间差异明显。比较不同生育期,早稻两品种和晚稻玉针香DCB-Cd表现为乳熟期>分蘖期。比较不同处理,在分蘖期,T1~T3处理下,早稻株两优819 DCB-Cd较CK均有所降低,但差异不显著,早稻陆两优996和晚稻两品种DCB-Cd均高于CK,其中陆两优996和湘晚籼12号在T3处理下DCB-Cd显著高于CK。说明施氮可以抑制株两优819分蘖期根膜对镉的吸附,促进陆两优996和晚稻两品种根膜分蘖期对镉的吸附。乳熟期时,早稻两品种DCB-Cd在T1、T2处理下降低7.27%~32.52%,在T3处理较CK分别提高76.36%、24.07%。晚稻品种湘晚籼12号在不同处理下DCBCd较CK降低72.45%~81.12%,晚稻玉针香在T1、T2处理DCB-Cd较CK分别降低31.00%、64.62%,在T3处理下较CK增加33.10%。

图 2 双季稻不同生育期根膜镉含量 Figure 2 Cd contents on root plaque of double-cropping rice at different growth stages
2.2 双季稻不同生育期各器官的镉含量

早晚稻各部位分蘖期镉含量见表 1,株两优819和陆两优996根和茎镉含量在氮处理下降低,叶镉含量则提高。株两优819根和茎镉含量大小均为CK>T1>T2>T3,其中T3根镉含量较CK显著降低39.74%,茎镉含量在氮处理下分别显著降低26.92%、53.85%、57.69%,且T2、T3茎镉含量显著低于T1,叶镉含量为T3>T1>T2>CK,较CK分别提高208.33%、175.00%、25.00%,T1、T3较CK、T2差异达到显著水平。与CK相比,陆两优996根、茎镉含量分别显著降低43.22%~55.08% 和36.00%~72.00%,叶镉含量为T1>T2>T3>CK,T1较CK显著提高60.00%,但与T2、T3差异未达到显著水平。

表 1 水稻分蘖期不同处理各部位镉含量(mg·kg-1 Table 1 Cd contents in different parts of rice at tillering stage(mg·kg-1)

在分蘖期,晚稻湘晚籼12号根、茎和叶镉含量在T2达到最大值,相比CK分别提高41.35%、107.14% 和12.50%,根镉含量在T1达到最低值,较CK降低36.84%,且与其他处理差异显著;茎镉含量在T3显著降低,较CK降低35.71%;叶镉含量为T2>T3>CK>T1,处理间差异不显著。玉针香根和茎镉含量相比CK分别降低50.57%~75.28%和70.83%~86.11%,且均在T3时达到最低值,根镉含量在氮处理下差异显著,茎镉含量在处理间差异未达到显著水平;T1、T2叶镉含量显著大于CK、T3,T3较CK略有提高,但差异不显著。

早晚稻各部位乳熟期镉含量见表 2。施氮对早稻两品种各部位镉含量影响不同,其中株两优819根镉含量T1、T3较CK有所提高,茎镉含量T3显著大于CK,差值为0.27 mg·kg-1,叶镉含量在T1、T2、T3处理下显著大于CK,且在T1~T3呈逐渐上升趋势;穗镉含量均显著低于CK,处理间无显著性差异。陆两优996中,除T3根镉含量较CK有所提高外,其余各部位镉含量在不同处理下均低于CK。

表 2 水稻乳熟期不同处理各部位镉含量(mg·kg-1 Table 2 Cd contents in different parts of rice during milk stage(mg·kg-1)

晚稻两品种根、茎镉含量在氮处理下明显提高,均在T2达到最大值,且与CK差异显著。湘晚籼12号叶、穗镉含量均以T2最高、T3最低。玉针香叶镉含量T1、T2显著降低,T3与CK无显著性差异,而穗镉含量在3个处理下显著降低,以T3最低。

早晚稻各部位成熟期镉含量见表 3。施氮可降低早稻两品种根、茎叶和糙米的镉含量(除株两优819根镉含量在T2时较CK提高2.55%外),其中株两优819和陆两优996茎叶镉含量较CK分别显著降低36.36%~45.45%和46.15%~64.10%。株两优819的糙米镉在处理下显著降低38.66%~43.70%,以T2最低;陆两优996的糙米镉含量相较CK降低8.70%~52.72%,以T3最低,且显著低于CK、T1。

表 3 水稻成熟期不同处理各部位镉含量及镉转运系数 Table 3 Cd contents in different parts of rice during maturity and Cd transport coefficient

对于晚稻两个品种而言,根和茎叶镉含量均以不施氮(CK)时最低,相比CK,湘晚籼12号和玉针香根镉含量分别提高93.93%~128.74% 和122.76%~248.28%,茎叶镉含量分别提高26.67%~75.56% 和224.00%~976.00%。两品种糙米镉含量在氮处理下均显著降低,相比CK分别降低47.69%~54.36% 和47.16%~74.13%,其中湘晚籼12号的糙米镉含量在处理间差异不显著,而玉针香糙米镉含量以T3最低,且与CK和T1差异显著。

2.3 水稻根膜铁含量与根膜镉含量及植株各部位镉含量的相关性分析

水稻根膜铁含量与其根膜镉含量及植株各部位镉含量的相关性分析结果见表 4。早稻株两优819和晚稻湘晚籼12号(低镉品种)分蘖期和乳熟期DCBCd与DCB-Fe及茎、叶镉含量没有相关性。早稻陆两优996和晚稻玉针香(高镉品种)分蘖期DCB-Fe与DCB-Cd显著正相关(P < 0.05)。早稻陆两优996乳熟期DCB - Fe与DCB - Cd、茎镉含量显著正相关(P < 0.05),晚稻玉针香乳熟期DCB-Fe与叶、穗镉含量显著负相关(P < 0.05)。结合图 1,说明施用氮肥可提高高镉品种分蘖期根表铁膜形成量及对镉的吸附量,从而减少镉向地上部的转移。

表 4 水稻根膜铁含量与根膜镉含量及植株各部位镉含量的相关性分析(n=12) Table 4 Correlation analysis of rice root plaque Fe contents, root plaque Cd contents and Cd contents in various plant parts(n=12)
3 讨论 3.1 淹水条件下氮肥对水稻根表铁膜含量及吸附镉量的影响

根表铁膜是水稻适应重金属胁迫的重要机制[5],铁膜形成主要受根系氧化作用、根际Fe2+浓度和根系表面积等的影响[18],其数量(浓度)在不同水稻品种和不同生育期间均存在差异[7],由此可知根表铁膜的形成易受到其他因素的影响。

本研究发现,在早稻季,不同生育期的水稻品种间根膜铁含量存在较大的差异,且未体现出明显的规律;晚稻季亦是如此。因此,水稻根膜铁含量在大田条件下,受到品种、稻季和氮肥的共同作用后,会出现较大的变化幅度,难以体现出稳定的规律。而水稻根表铁膜乳熟期的镉吸附量在同一稻季表现出高积累品种高于低积累品种,且高镉品种根膜铁含量与根膜镉含量显著正相关,这与水稻镉积累能力在品种间表现一致,说明根表铁膜的镉吸附量越高,水稻通过根系积累镉的途径越便利,此结论与陈江民等[3]和代邹等[19]研究相符。值得注意的是,早、晚稻季各水稻品种在乳熟期均表现为T3处理根表铁膜的镉吸附量显著高于T1和T2(湘晚籼12号除外),且在分蘖期T3处理根表铁膜的镉吸附量亦处于较高水平。根据前人的研究结果可推测,在成熟期T3处理的稻米应具备高镉含量的特性。但本研究结果与前人研究相反,在早、晚稻季成熟期的高镉积累品种中,T3处理的稻米镉含量要低于CK(P < 0.05)、T1(P < 0.05)和T2。这个“高”与“低”的矛盾反映出,稻米镉含量高低并不是单一因素所决定的,而是多种因素综合后得到的最终结果。T3处理与前人研究结果不一致,水稻自身的镉转运系数可能在其中扮演着一个关键的角色。低镉积累品种在淹水条件下,各处理早、晚季稻米镉含量均在0.2 mg·kg-1以下,处于一个较低的水平。可知,氮肥施用比例的改变很难在镉污染水平较低的背景下再取得显著的降幅。本研究仅对氮肥施用方式对水稻根表铁膜形成量及镉吸附量的影响进行初步探讨,其影响机理仍需进一步探明。

3.2 淹水条件下氮肥对水稻镉转运系数的影响

土壤镉为水稻镉“源”,水稻根系、茎叶为镉“库”,水稻转运系统为“流”,“源、库、流”共同决定了水稻体内镉积累总量[14, 20],水稻根系对“源”的吸收和木质部介导的镉由根系向地上部的转运能力决定了“库”中镉的容量[1],水稻抽穗后,茎叶中的镉通过自身的转运和再分配系统进入籽粒当中,此时茎叶由“库”转变为“源”,成为籽粒中镉的主要来源,韧皮部对镉的运输能力决定了籽粒中镉的积累水平[1-2],此外,水稻灌浆-成熟阶段,根系从土壤吸收的镉也可被快速转运至籽粒当中[21-22]。转运系数常以植物各部分镉含量的比值来表示,可以反映镉在体内吸收、运输和分配情况,其值越高说明重金属在体内的迁移能力越强。

本研究结果(表 3)表明,在早、晚稻季成熟期的高镉积累品种中,T3处理的TF籽粒/茎叶均显著低于T1和T2,而TF籽粒/根在3个处理间没有显著的差异。这表明在氮肥总量不变的情况下(N 180 kg·hm-2),在齐穗期增施氮肥,能够显著抑制此时水稻茎叶中镉向稻米的转运,从而降低稻米的镉积累。同时阐明了T3处理下根表铁膜高吸镉量和稻米低镉含量矛盾的原因,即茎叶中镉向稻米的转运能力下降,给稻米镉积累带来的降幅大于根表铁膜吸附镉带来的增幅。水稻灌浆期、成熟期是籽粒镉积累的关键时期[23-24],保持水稻生育后期一定的氮素水平,可延缓叶片衰老,抑制水稻营养组织中元素的再分配[25-26]。本研究在水稻生育后期增施氮肥,能够为水稻倒三叶的光合作用提供充足养分,在一定程度上亦能减缓下部老叶的衰老。因此,可推测在外界养分充足的条件下,水稻倒三叶进行光合作用所产生的有机物能满足籽粒灌浆过程大部分所需,而老叶和茎秆中同化物向稻米转运的占比相对降低,通过“搭便车”进入稻米中的镉减少,进而达到降低稻米镉含量的效果。

4 结论

(1)不同稻季低镉品种根膜铁含量为分蘖期>乳熟期,高镉品种为乳熟期>分蘖期,不同稻季高镉品种根表铁膜镉吸附量为乳熟期>分蘖期。水稻根膜铁含量及镉吸附量在氮处理下并未呈现出明显规律。

(2)淹水条件下,施氮可降低水稻植株内的镉向籽粒迁移,显著降低不同稻季糙米镉含量,施氮量一致情况下,改变氮肥比例对低镉品种糙米镉含量无明显影响,高镉品种糙米镉含量在氮肥比例基肥∶蘖肥∶穗肥∶粒肥为6∶0∶2∶2时最低,说明生育后期增施氮肥可降低高镉品种糙米镉含量。

参考文献
[1]
Shimpei U, Shinsuke M, Masato K, et al. Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice[J]. Journal of Experimental Botany, 2009, 60(9): 2677-2688. DOI:10.1093/jxb/erp119
[2]
Tanaka K, Fujimaki S, Fujiwara T, et al. Quantitative estimation of the contribution of the phloem in cadmium transport to grains in rice plants (Oryza sativa L.)[J]. Soil Science and Plant Nutrition, 2010, 53(1): 72-77.
[3]
陈江民, 杨永杰, 黄奇娜, 等. 持续淹水对水稻镉吸收的影响及其调控机理[J]. 中国农业科学, 2017, 50(17): 3300-3310.
CHEN Jiangmin, YANG Yong-jie, HUANG Qi-na, et al. Effects of continuous flooding on cadmium absorption and its regulation mechanisms in rice[J]. Scientia Agricultura Sinica, 2017, 50(17): 3300-3310.
[4]
贺前锋, 桂娟, 刘代欢, 等. 淹水稻田中土壤性质的变化及其对土壤镉活性影响的研究进展[J]. 农业环境科学学报, 2016, 35(12): 2260-2268.
HE Qian-feng, GUI Juan, LIU Dai-huan, et al. Research progress of soil property's changes and its impacts on soil cadmium activity in flooded pad[J]. Journal of Agro-Environment Science, 2016, 35(12): 2260-2268.
[5]
何春娥, 刘学军, 张福锁. 植物根表铁膜的形成及其营养与生态环境效应[J]. 应用生态学报, 2004, 15(6): 1069-1073.
HE Chun-e, LIU Xue-jun, ZHANG Fu-suo. Formation of iron plaque on root surface and its effect on plant nutrition and ecological environment[J]. Chinese Journal of Applied Ecology, 2004, 15(6): 1069-1073.
[6]
Du J N, Yan C L, Li Z D. Formation of iron plaque on mangrove Kandalar. Obovata(S. L.)root surfaces and its role in cadmium uptake and translocation[J]. Marine Pollution Bulletin, 2013, 74(1): 105-109. DOI:10.1016/j.marpolbul.2013.07.023
[7]
胡莹, 黄益宗, 黄艳超, 等. 不同生育期水稻根表铁膜的形成及其对水稻吸收和转运Cd的影响[J]. 农业环境科学学报, 2013, 32(3): 432-437.
HU Ying, HUANG Yi-zong, HUANG Yan-chao, et al. Formation of iron plaque on root surface and its effect on Cd uptake and translocation by rice(Oryza sativa L.)[J]. Journal of Agro-Environment Science, 2013, 32(3): 432-437.
[8]
王怡璇, 刘杰, 唐云舒, 等. 硅对水稻镉转运的抑制效应研究[J]. 生态环境学报, 2016, 25(11): 1822-1827.
WANG Yi-xuan, LIU Jie, TANG Yun-shu, et al. Inhibitory effect of silicon on cadmium accumulation and transportation in rice[J]. Ecology and Environmental Sciences, 2016, 25(11): 1822-1827.
[9]
邹丽娜, 戴玉霞, 邱伟迪, 等. 硫素对土壤砷生物有效性与水稻吸收的影响研究[J]. 农业环境科学学报, 2018, 37(7): 1435-1447.
ZOU Li-na, DAI Yu-xia, QIU Wei-di, et al. Effect of sulfur on the bioavailability of arsenic in soil and its accumulation in rice plant(Oryza sativa L.)[J]. Journal of Agro-Environment Science, 2018, 37(7): 1435-1447.
[10]
Jalloh M A, Chen J H, Zhen F R, et al. Effect of different N fertilizer forms on antioxidant capacity and grain yield of rice growing under Cd stress[J]. Pubmed, 2009, 162(2/3): 1081-1085.
[11]
段骅, 傅亮, 剧成欣, 等. 氮素穗肥对高温胁迫下水稻结实和稻米品质的影响[J]. 中国水稻科学, 2013, 27(6): 591-602.
DUAN Hua, FU Liang, JU Chen-xin, et al. Effects of application of nitrogen as panicle-promoting fertilizer on seed setting and grain quality of rice under high temperature stress[J]. Chin J Rice Sci, 2013, 27(6): 591-602.
[12]
Hassan M J, Shafi M, Zhang G P, et al. The growth and some physiological responses of rice to Cd toxicity as affected by nitrogen form[J]. Springer Netherlands, 2008, 54(2): 125-132. DOI:10.1007/s10725-007-9235-6
[13]
Kashiwagi T, Shindoh K, Hirotsu K, et al. Evidence for separate translocation pathways in determining cadmium accumulation in grain and aerial plant parts in rice[J]. BioMed Central, 2009, 9(1): 8. DOI:10.1186/1471-244X-9-8
[14]
Rodda M S, Reid R J, Li G. The timing of grain Cd accumulation in rice plants: The relative importance of remobilisation within the plant and root Cd uptake post-flowering[J]. Plant and Soil, 2011, 347(1): 105-114.
[15]
方宝华, 戴力, 方建林, 等. 稻米镉积累的土壤酸碱度稳定性研究[J]. 湖南农业科学, 2017, 387(12): 66-70.
FANG Bao-hua, DAI Li, FANG Jian-li, et al. Stability of rice Cd accumulation under different soil pH status[J]. Hunan Agricultural Sciences, 2017, 387(12): 66-70.
[16]
邓伟, 张玉烛, 敖和军, 等. 不同镉积累型水稻品种苗期镉积累及转运变化特征[J]. 中国稻米, 2018, 24(4): 86-90.
DENG Wei, ZHANG Yu-zhu, AO He-jun, et al. Cadmium accumulation and transfer capacity among different types of rice cultivars at seedling stage[J]. China Rice, 2018, 24(4): 86-90.
[17]
张玉烛, 方宝华, 滕振宁, 等. 应急性镉低积累水稻品种筛选与验证[J]. 湖南农业科学, 2017, 387(12): 19-25.
ZHANG Yu-zhu, FANG Bao-hua, TENG Zhen-ning, et al. Screening and verification of rice verities with low cadmium accumulation[J]. Hunan Agricultural Sciences, 2017, 387(12): 19-25.
[18]
傅友强, 于智卫, 蔡昆争, 等. 水稻根表铁膜形成机制及其生态环境效应[J]. 植物营养与肥料学报, 2010, 16(6): 1527-1534.
FU You-qiang, YU Zhi-wei, CAI Kun-zheng, et al. Mechanisms of iron plaque formation on root surface of rice plants and their ecological and environmental effects: A review[J]. Plant Nutrition and Fertilizer Science, 2010, 16(6): 1527-1534.
[19]
代邹, 余华清, 郭长春, 等. 外源Na2SeO3和Na2SiO3对不同水稻拔节期镉吸收和积累的影响[J]. 浙江大学学报(农业与生命科学版), 2017, 43(4): 441-450.
DAI Zou, YU Hua-qing, GUO Changchun, et al. Effects of Na2SeO3 and Na2SiO3 on Cd uptake and accumulation in two different rice(Oryza Sativa L.)[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(4): 441-450.
[20]
Yao Y, Fu P N, Huang Q Q, et al. Accumulation, subcellular distribution, and oxidative stress of cadmium in Brassica chinensis supplied with selenite and selenate at different growth stages[J]. Chemosphere, 2019, 216: 331-340. DOI:10.1016/j.chemosphere.2018.10.138
[21]
喻华, 上官宇先, 涂仕华, 等. 水稻籽粒中镉的来源[J]. 中国农业科学, 2018, 51(10): 1940-1947.
YU Hua, SHANGGUAN Yu-xian, TU Shi-hua, et al. Sources of cadmium accumulated in rice grain[J]. Scientia Agricultura Sinica, 2018, 51(10): 1940-1947.
[22]
Fujimaki S, Suzui N, Ishioka N S, et al. Tracing cadmium from culture to spikelet: Noninvasive imaging and quantitative characterization of absorption, transport, and accumulation of cadmium in an intact rice plant[J]. Plant Physiology, 2010, 152(4): 1796-1806. DOI:10.1104/pp.109.151035
[23]
王倩倩, 贾润语, 李虹呈, 等. Cd胁迫水培试验下水稻糙米Cd累积的关键生育时期[J]. 中国农业科学, 2018, 51(23): 4424-4433.
WANG Qian-qian, JIA Run-yu, LI Hong-cheng, et al. Key growth stage of Cd accumulation in brown rice through a hydroponic experiment with Cd stress[J]. Scientia Agricultura Sinica, 2018, 51(23): 4424-4433.
[24]
叶长城, 陈喆, 彭鸥, 等. 不同生育期Cd胁迫对水稻生长及镉累积的影响[J]. 环境科学学报, 2017, 37(8): 3201-3206.
YE Changcheng, CHEN Zhe, PENG Ou, et al. Effects of cadmium stress on growth and cadmium accumulation in rice at different growth stages[J]. Acta Scientiae Circumstantiae, 2017, 37(8): 3201-3206.
[25]
Garnett T, Graham R. Distribution and remobilization of iron and copper in wheat[J]. Annals of Botany, 2005, 95(5): 817-826. DOI:10.1093/aob/mci085
[26]
杨安中, 吴文革, 李泽福, 等. 氮肥运筹对超级稻库源关系、干物质积累及产量的影响[J]. 土壤, 2016, 48(2): 254-258.
YANG Anzhong, WU Wen-ge, LI Ze-fu, et al. Effects of nitrogen application on source-sink relationship, dry matter accumulation and yield of super hybrid rice[J]. Soils, 2016, 48(2): 254-258.