文章摘要
李路路,董红敏,朱志平,王悦.酸化处理对猪场原水和沼液存储过程中气体排放的影响[J].农业环境科学学报,2016,35(4):774-784.
酸化处理对猪场原水和沼液存储过程中气体排放的影响
Effects of acidification on gas emissions fromraw pig slurry and biogas liquid during storage
投稿时间:2015-11-09  
DOI:10.11654/jaes.2016.04.023
中文关键词: 酸化处理  猪场原水  猪场沼液  温室气体  氨气
英文关键词: acidification  pig slurry  biogas liquid  greenhouse gas  ammonia
基金项目:公益性行业科研专项(201103039,201303091);973课题(2012CB417104)
作者单位E-mail
李路路 农业部设施农业节能与废弃物处理重点实验室, 中国农业科学院农业环境与可持续发展研究所, 北京 100081  
董红敏 农业部设施农业节能与废弃物处理重点实验室, 中国农业科学院农业环境与可持续发展研究所, 北京 100081  
朱志平 农业部设施农业节能与废弃物处理重点实验室, 中国农业科学院农业环境与可持续发展研究所, 北京 100081 zhuzhiping@caas.cn 
王悦 农业部设施农业节能与废弃物处理重点实验室, 中国农业科学院农业环境与可持续发展研究所, 北京 100081  
摘要点击次数: 2336
全文下载次数: 3070
中文摘要:
      为探索酸化处理对猪场原水和沼液存储过程中温室气体(CH4、N2O、CO2)以及NH3排放的影响,采用浓硫酸酸化处理猪场污水,利用动态箱法在线监测存储75 d内各气体排放通量。试验分别设置一个对照组和两个酸化处理组:原水对照组pH为6.5(RCK),加酸处理后pH分别为5.1(RT1)和5.7(RT2);沼液对照组pH为7.8(BCK),加酸处理后pH分别为5.7(BT1)和6.5(BT2)。对于原水组,RCK、RT1、RT2的CH4排放通量分别为32.2、2.37、3.10 g·m-3·d-1,N2O排放通量分别为336.45、23.36、29.79 mg·m-3·d-1,NH3排放通量分别为1.01、0.82、1.63 g·m-3·d-1,CO2排放通量分别为109.14、99.66、110.55 g·m-3·d-1,酸化处理显著降低原水CH4和N2O排放量;对于沼液组,BCK、BT1、BT2的CH4排放通量分别为0.24、0.86、0.63 g·m-3·d-1,N2O排放通量分别为2.54、73.43、268.66mg·m-3·d-1,NH3排放通量分别为8.02、1.35、1.51 g·m-3·d-1,CO2排放通量分别为48.9、44.3、44.0 g·m-3·d-1,酸化沼液显著增加CH4和N2O排放通量,但NH3排放可显著降低81%~83%,同时酸化组内氨氮含量较对照组增加40%~54%。根据CH4和N2O在100年尺度上的全球增温潜势计算各组的综合温室效应,猪场原水酸化后CO2-eq降低91%~92%,沼液酸化后温室气体增加5~11倍。结果表明:酸化处理原水能够有效降低温室气体排放,而酸化处理沼液则一定程度上增加了温室气体排放,但可有效降低NH3排放,同时保留沼液中氮养分。
英文摘要:
      This study aimed to investigate the emissions of greenhouse gases(CH4, N2O and CO2) and ammonia from acidified raw pig slurry and biogas liquid during their storages. Dynamic flux chamber method was used to continuously monitor gaseous emissions during a 75-day storage period. One control and two treatment groups were tested. For raw pig slurry, its pH was 6.5 in control group(RCK) while 5.1(RT1) and 5.7(RT2) in the treatment groups. For biogas liquid, pH in control was 7.8(BCK), but 5.7(BT1) and 6.5(BT2) in two treatments. The average daily gas emission rates in RCK, RT1, and RT2 were 32.2, 2.37, and 3.10 g CH4·m-3·d-1, 336.45, 23.36, and 29.79 mg N2O·m-3·d-1, 1.01, 0.82, and 1.63 g NH3·m-3·d-1, 109.14, 99.66, and 110.55 g CO2·m-3·d-1, respectively. Those of BCK, BT1, and BT2 were 0.24, 0.86, and 0.63 g CH4·m-3·d-1, 2.54, 73.43, and 268.66 mg N2O·m-3·d-1, 8.02, 1.35, and 1.51 g NH3·m-3·d-1, 48.9, 44.3, and 44.0 g CO2·m-3·d-1, respectively. For biogas liquid, acidification significantly increased CH4 and N2O emissions, but reduced NH3 emissions by 81% to 83%, while increased NH4+ by 40%to 54%, compared with the control. Based on 100-year global warming potentials(GWPs) of CH4 and N2O, total GHG(GHGs=CH4+N2O) emissions were reduced by 91% to 92% by acidifying raw pig slurry, whereas acidification increased total GHG emissions by 5 to 11 times for biogas liquid. These results show that the acidification significantly reduces GHG emissions from raw slurry, but increases GHG emissions from biogas liquid to some extent, whereas acidification significantly alleviates NH3 emissions and conserves the N content in biogas liquid.
HTML    查看全文   查看/发表评论  下载PDF阅读器