文章摘要
段晓婷,叶静,林辉,邹平,孙万春,马军伟,符建荣.地埋式秸秆反应堆对南方越冬茄子生产及温室土壤微环境的影响[J].农业环境科学学报,2019,38(6):1296-1304.
地埋式秸秆反应堆对南方越冬茄子生产及温室土壤微环境的影响
Effects of buried straw bioreactor technology on the production of winter greenhouse eggplant and the soil microenvironment
投稿时间:2018-10-10  
DOI:10.11654/jaes.2018-1273
中文关键词: 地埋式秸秆反应堆  温室  茄子  CO2通量  土壤微生物
英文关键词: buried straw bioreactor  greenhouse  eggplant  CO2 flux  soil microorganism
基金项目:国家重点研发计划项目(2016YFD0201007);浙江省基础公益研究计划项目(LGN18D010005);浙江省科技计划项目公益技术应用研究计划(2017C32005)
作者单位E-mail
段晓婷 浙江农林大学环境与资源学院, 杭州 311300
浙江省农业科学院环境资源与土壤肥料研究所, 杭州 310021 
 
叶静 浙江省农业科学院环境资源与土壤肥料研究所, 杭州 310021 yejing@zaas.ac.cn 
林辉 浙江省农业科学院环境资源与土壤肥料研究所, 杭州 310021  
邹平 浙江省农业科学院环境资源与土壤肥料研究所, 杭州 310021  
孙万春 浙江省农业科学院环境资源与土壤肥料研究所, 杭州 310021  
马军伟 浙江省农业科学院环境资源与土壤肥料研究所, 杭州 310021  
符建荣 浙江省农业科学院环境资源与土壤肥料研究所, 杭州 310021 fujr@zaas.ac.cn 
摘要点击次数: 1658
全文下载次数: 1702
中文摘要:
      为分析不同秸秆生物反应堆技术对茄子生产及温室土壤微环境的影响,设置常规栽培的CK、T1(秸秆22 500 kg·hm-2)、T2(秸秆22 500 kg·hm-2+菌剂60 kg·hm-2+羊粪7800 kg·hm-2)和T3(秸秆22500 kg·hm-2+菌剂60 kg·hm-2+羊粪7800 kg·hm-2+腐植酸750 kg·hm-2)4个处理。结果表明:使用秸秆生物反应堆技术,茄子产量可以提高29.2%~32.0%,但不同秸秆反应堆处理之间无显著差异;秸秆反应堆技术可增加茄子中可溶性总糖、维生素C和固形物含量,降低硝酸盐含量,明显改善品质。3种秸秆反应堆技术均有效提高了温室土壤CO2排放通量,增加植株根系周边土壤有机质和总氮含量,其中有机肥和菌剂的添加促进了早期CO2释放,有利于土壤有机质和养分累积,腐植酸的添加对温室CO2的产生影响不大,但可以提高土壤微生物代谢能力。对土壤微生物数量的分析表明,秸秆生物反应堆提高了植株根系周边土壤中的真菌数量,降低土壤细菌数量。其中T3处理倾向于提高苗期土壤中真菌数量和花期土壤中细菌数量,而T2处理倾向于提高花期和盛果期栽培土壤中的真菌数量以及盛果期栽培土壤细菌数量。研究表明,秸秆生物反应堆可以显著提高茄子产量和品质,增加温室土壤CO2排放通量,提高植株根系周边土壤中有机质和养分含量,影响土壤中微生物代谢活性,改变栽培过程中真菌和细菌的数量变化模式。
英文摘要:
      In order to investigate the effects of different straw bioreactor technologies on greenhouse eggplant production and the soil microenvironment, four treatments were set up in this experiment, namely CK, T1 (straw 22 500 kg·hm-2), T2 (straw 22 500 kg·hm-2 + microbial inoculants 60 kg·hm-2 + sheep dung 7800 kg·hm-2), and T3 (straw 22 500 kg·hm-2 + microbial inoculants 60 kg·hm-2+ sheep dung 7800 kg·hm-2 + humic acid 750 kg·hm-2). The results showed that the yield of eggplant could be increased by 29.2%~32.0% under the different straw bioreactor treatments compared with that of CK, but there was no significant difference in eggplant yield between the different straw bioreactor treatments. The bioreactor technology increased the concentration of total soluble sugar, vitamin C, and solids, and decreased the nitrate content in eggplant. The three straw bioreactor technologies effectively increased the average greenhouse soil CO2 flux and the soil organic carbon and total nitrogen contents. The amendment of organic fertilizers and microbial inoculants promoted CO2 release in the early growing stage of the greenhouse eggplant, which was beneficial to soil organic carbon and nutrient accumulation. The addition of humic acid had little effect on the greenhouse CO2 production, but it could improve soil microbial activities. Further analysis of soil microbial quantity showed that the straw bioreactor increased the quantity of fungi in the rhizosphere and reduced the quantity of soil bacteria. Treatment T3 tended to increase the quantity of soil fungi at the seedling stage and the quantity of soil bacteria at the flowering stage, while treatment T2 tended to increase the quantity of soil fungi at the flowering and fruiting stages and the quantity of soil bacteria during the fruiting period. Our results indicated that the straw bioreactor could significantly improve the yield and quality of eggplant, increase the average greenhouse soil CO2 flux, and increase the soil organic carbon and total nitrogen contents around the root system. The straw bioreactor could also influence soil microbial metabolic activities via microbial community changes during the cultivation process.
HTML    查看全文   查看/发表评论  下载PDF阅读器